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 In computer numerical control (CNC) production, product specifications are entered into 
machine software, and sensors automatically distinguish between conforming and 
nonconforming products, preventing mixing and shipment issues. Modern factories often use 
sensor-based automated measurement instruments to improve efficiency and reduce costs. 
Process capability indices (e.g., Cp, Cpk, and Cpm) quantify process variability relative to 
specifications, with Cpk widely used owing to its focus on aligning the process mean with the 
specification center. In this study, we explored product quality stabilization by using Cpk to 
analyze sensor data in lock manufacturing, stabilizing product quality, and verifying process 
stability after equipment maintenance to make the material inspections more accurate. We 
selected key dimensions of lock products for measurement, employing an image-measuring 
instrument for bi-daily sampling. Analysis results indicate that Cpk effectively reflects process 
stability. If the Cpk value does not reach ≥1.33, CNC lathe parameters are adjusted to enhance 
the Cpk value, demonstrating significant process capability improvement. Additionally, we 
innovatively applied Cpk to evaluate process capability post-equipment maintenance, ensuring 
that product quality meets the required standards. In summary, we demonstrated the practicality 
and effectiveness of Cpk in process capability assessment and improvement.
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1. Introduction

 In today’s highly competitive market, the challenge is to produce high-quality products at the 
lowest cost while maintaining a leading position. An “industrial process” is a unique combination 
of machines, materials, methods, and personnel producing measurable outputs.(1) Process 
capability is a measurable attribute of a process relative to its specifications. This measurement 
output can predict the number of units produced out of specification.(2,3) Process capability 
analysis, alongside the statistical process control and design of experiments, has been utilized for 
decades as a statistical methodology aimed at reducing variability in industrial processes and 
products.(4) Process capability analysis involves evaluating the capability of a manufacturing 
process and using process information to improve that capability. It allows for determining how 
well a process performs relative to product requirements or specifications. Before evaluating 
process capability, it is essential to ensure that the process is stable and repeatable. Statistical 
process control is typically applied to check process stability, enabling the detection and 
elimination of assignable causes of variation.(5) Control charts are commonly used to determine 
whether a process is under statistical control and reveal systematic process output patterns.(6)

 Precision manufacturing is a method that emphasizes extremely high accuracy and quality 
control throughout the production process.(7) Such manufacturing is typically applied in 
scenarios with stringent dimensions, tolerances, and surface roughness requirements, such as in 
the aerospace, medical device, and precision machinery industries. The main characteristics of 
precision manufacturing include high-precision equipment and highly sensitive sensors and 
tools, such as the utilization of high-precision machinery (e.g., computer numerical control 
(CNC) machines and advanced measuring instruments).(8,9) Strict quality control such as 
implementing rigorous quality control measures throughout the production process ensures that 
each manufacturing stage meets the predetermined quality standards. A narrow tolerance range, 
such as a minimal manufacturing tolerance range, necessitates precise control throughout the 
production process. Advanced manufacturing techniques use the latest manufacturing 
technologies and materials to enhance product performance and production efficiency.
 Understanding processes and quantifying performance are crucial for any successful quality 
improvement program. The relationship between actual process performance and specification 
limits or tolerances can be quantified using appropriate process capability indices. In the 
manufacturing industry, three commonly used capability indices are the Process Capability 
Index (Cp), the Process Capability Index with Centering (Cpk), and the Process Capability Index 
with Target (Cpm). Cp measures whether process variability is within specification limits. Cpk 
considers both process variability and the alignment of the process mean with the specification 
center. Cpm is a variant of the capability index that incorporates the target value, considering 
process variability, centering, and the target. These indices provide numerical measures to 
determine if a manufacturing process meets predefined specification limits. Cpk is widely used 
in manufacturing because it accounts for the centering of the process mean with the specification 
center, offering a more comprehensive reflection of process quality.(10) Compared with Cpm, 
Cpk is more straightforward to calculate while providing sufficient information to evaluate 
process capability. In the manufacturing industry, Cpk is the most commonly used process 
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capability index(11–15) because it balances variability and centering, making it a practical and 
effective metric.(4,16,17) Therefore, in this study, we employed Cpk as the metric for assessing 
process capability.
 When product specifications approach the upper specification limit (USL) or lower 
specification limit (LSL), the risk of producing defective products significantly increases. This is 
due to process variation and fluctuations that make it more likely for products to fall outside the 
specification range. Assuming that the probability of process variation and fluctuations follows 
a normal distribution, the process mean should ideally be positioned at the center of the 
specification range. In this case, products can remain within specification limits even with some 
variation. However, when the process is close to the specification boundaries, any small 
variation, such as minor environmental changes, equipment wear, or operational errors—can 
cause products to exceed the specifications, resulting in defects. Over time, these risks 
accumulate, significantly impacting product quality and production efficiency. Therefore, 
monitoring process variation and adjusting the process means moving away from the 
specification boundaries are essential strategies to reduce the risk of defective products and 
ensure consistency and stability in product quality.
 In this study, we used a lock manufacturing company as a case study. The company’s quality 
assurance personnel collect one sample from the production line each morning and afternoon to 
check whether the products meet the customer’s specified requirements. However, no further 
scientific quality control measures are implemented. Consequently, even if the products meet the 
specified requirements, there is a high risk of the product specifications nearing the upper or 
lower specification limits, leading to a high probability of producing nonconforming products. 
Therefore, we aimed to introduce the concept of process capability indices into the factory’s 
quality control practices. Specifically, the objectives of this study are (1) to quantify and improve 
the process capability of lock products based on Cpk and (2) to measure and assess the stability 
of product quality after equipment maintenance using Cpk.

2. Data, Materials, and Methods

2.1 Target company

 Established in 2013, the case company specializes in manufacturing locks and components 
and import-export business. It provides customers with various lock parts and components and 
is dedicated to developing a range of lock products. The company has a total capital of NTD 10 
million and an annual turnover of approximately NTD 100 million. Its factory is located in the 
Pingtung City Industrial Zone in Taiwan. The company’s business scope covers the Americas, 
Asia, and China. Figure 1 shows the CNC digital lathe used for product manufacturing, where 
engineers utilize software programs through the control panel to set machining parameters. 
Sensors are employed to control the cutting tools, ensuring that the dimensions meet the 
customer’s specifications.
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2.2 Measurement objectives and methods

 We selected a lock case product made of brass from the company, processed using a CNC 
lathe. Owing to the numerous dimensional specifications within a single product, we focused on 
the dimension with minimal tolerance (dimension: 3.51 ± 0.038 mm) as the measurement target. 
The product measurement instrument used is an image-measuring instrument, and all 
measurements are recorded in millimeters (mm). For the first experiment, the measurement 
target’s USL is 3.548 mm, the LSL is 3.472 mm, and the center line (CL) is 3.51 mm.
 During the experiment, the image-measuring instrument was initially operated manually by 
quality assurance personnel for dimensional measurements. An automated image-measuring 
instrument was introduced (Fig. 2) to improve measurement efficiency and accuracy. This 
instrument integrates multiple sensors to perform various functions, including automatic 
dimensional measurements to make the material inspections more accurate. Once the parameters 
are set and saved during the first measurement, subsequent measurements of products with the 
same specifications can be performed automatically by placing them on the measurement 
platform, with the instrument automatically measuring the predefined dimensions. In summary, 
the measurement method involves the quality assurance personnel at the company taking one 
sample each morning and afternoon during the production of the lock case. They measure the 
target dimension (i.e., the dimension with the minimal tolerance) and record the results.

2.3 Equations

 We employed Cpk as the quantitative indicator of process capability. Cpk is a critical 
quantitative method in statistical process control (SPC) used to measure whether a process can 
produce products that meet quality standards within specified limits. The Cpk value reflects the 
deviation of the process mean from the specification center and the relative magnitude of process 
variation. Cpk is defined as 

Fig. 1. (Color online) Control panel (a) and machine enclosure (b) of a CNC digital lathe.

(a) (b)
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where x  is the overall mean of the sample data (process mean) and σ is the standard deviation of 
the sample data (process standard deviation). The physical meaning of Cpk is to measure the 
distance from x  to the nearest specification limit, reflecting whether the process mean deviates 
from the target specification. The Cpk formula uses three standard deviations as the denominator 
to measure the extent of process variation. According to the Production Parts Approval Process 
(PPAP),(18) the grading of Cpk is as follows: Cpk ≥ 1.33: the process capability is good and the 
process can stably produce products within specifications; 1.00 ≤ Cpk < 1.33: the process 
capability is moderate and requires continuous monitoring and improvement; Cpk < 1.00: the 
process capability is insufficient, the product quality is unstable, and an immediate process 
improvement is necessary. Several studies have utilized Cpk as their quality assurance parameter 
in the field of pharmaceuticals and in decision-making procedures.(12,19,20)

 In practical quality control processes, the x-bar chart (x̄ -chart) and range control chart 
(R-chart) are used to visualize the results of sample measurements.(21) For example, as shown in 
Fig. 2, the x̄ -chart displays the variation in the twice-daily specification measurements’ average, 
indicating whether the manufacturing process quality is stable. The R-chart shows the range (R) 
of the twice-daily specification measurements, illustrating the variation in the daily sampled 
specification measurements. The x̄ -chart includes UCL and LCL, defined as 

 UCL x� � 3� , (2)

 LCL x� � 3� . (3)

This statistical limit is used to monitor process variation. If a data point exceeds this limit, the 
process variation is beyond the acceptable range, necessitating investigation and improvement. 

Fig. 2. (Color online) Automated image measuring instrument.
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In the R-chart, UCLR represents the upper control limit for range, calculated as 

 4UCLR D R= ⋅ , (4)

where R is the average of the sample ranges and D4 is a constant related to the sample size 
provided by standard SPC tables.(22)

2.4 Experiment design

 The objectives of the first experiment in this study are to quantify the process capability of 
manufacturing a specific lock case product using Cpk and to achieve an increase in Cpk by 
adjusting the lathe parameters. The process is indicated in Fig. 3.
 The second experiment in this study aims to measure the process capability after equipment 
maintenance based on Cpk. The same product is used, and three critical dimensions with smaller 
tolerance values are selected. The product part number is 10-1194-2211, with dimensions of 
5.842 ± 0.05, 39.472 ± 0.05, and 35.622 ± 0.05 mm. Measurements for these three dimensions are 
taken once each morning and afternoon for 20 consecutive days. The data are presented in 
Appendices 1, 2, and 3. Subsequently, Cpk values are calculated to determine the stability of the 
equipment’s machining dimensions.

Fig. 3. Process flow for quantifying and improving manufacturing process capability based on Cpk.
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3. Results

3.1 Quantifying and improving manufacturing process capability based on Cpk

 To measure the process capability of the target lock product, personnel measure the same 
critical dimension of the same product each morning and afternoon for 20 consecutive days. 
Measurements are recorded in millimeters (mm). The x̄ -chart and R-chart are shown in Fig. 4, 
and the measurement data is presented in Appendix 1. Subsequently, researchers calculated Cpk 
for manufacturing the product as 0.72 (Table 1), below the standard value of 1.33 from the 
literature. This indicates a risk of producing defective products, necessitating appropriate 
improvement measures.
 To improve the Cpk value, engineers adjusted the CNC lathe tool control software to fine-
tune the tool’s positioning (up, down, left, right) while monitoring the critical dimensions of the 

Fig. 4. x̅ -chart (a) and R-chart (b) before improvement. UCL: upper control limit, LCL: lower control limit, x̅ 
(x-bar): average of two daily sample measurements, R: difference between the two daily sample measurements, R̅ 
(R-bar): average of R values over the measurement period, and UCLR: upper control limit for range.

Table 1 
Differences in Cpk, x , and σ before and after improvement.

Measurement timing Cpk x (mm) σ
Before improvement 0.72 3.49 0.006
After improvement 1.54 3.51 0.008
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product. The x̄ value was adjusted to near the specification center line (3.51 mm). A second 
round of 20-day measurements was then conducted. The results of the retest are shown in Fig. 5.
 The x̅ -chart in Fig. 5 shows that the x̄ values are near the specification center line. The 
calculated Cpk value is 1.54 (Table 1), more significant than 1.33, indicating sufficient process 
capability and no concern for producing nonconforming products. Therefore, it can be concluded 
that the process is under statistical control, indicating that the process is stable over time.

3.2 Application of Cpk: Quantifying post-maintenance production stability

 In addition to using Cpk to quantify and enhance the process capability of online products, 
we also aimed to verify whether the process capability reaches an optimal state post-maintenance 
using Cpk. Therefore, three critical dimensions were selected for measurement and data analysis 
for a recently serviced CNC machine producing the same lock case product as in Experiment 1. 
 The x̄ -chart in Fig. 6 shows that the x̄ values are near the specification center line, and the 
Cpk value is 1.63, greater than 1.33. This indicates that the process capability is sufficient, and 
there is no concern for producing nonconforming products. Therefore, it can be concluded that 
the process is under statistical control, indicating that the process is stable over time.
 The x̄ -chart in Fig. 7 shows that the x̄ values are near the specification center line, and the 
Cpk value is 1.53, greater than 1.33. This indicates that the process capability is sufficient, and 

Fig. 5. x̅ -chart (a) and R-chart (b) after improvement. UCL: upper control limit, LCL: lower control limit, x̅ (x-bar): 
average of two daily sample measurements, R: difference between the two daily sample measurements, R̅ (R-bar): 
average of R values over the measurement period, and UCLR: upper control limit for range. 
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Fig. 6. x̅ -chart (a) and R-chart (b) for the first-dimension data post-maintenance in the case study. UCL: upper 
control limit, LCL: lower control limit, x̅ (x-bar): average of two daily sample measurements, R: difference between 
the two daily sample measurements, R̅ (R-bar): average of R values over the measurement period, and UCLR: upper 
control limit for range.

Fig. 7. x̅ -chart (a) and R-chart (b) for the second-dimension data post-maintenance in the case study. UCL: upper 
control limit, LCL: lower control limit, x̅ (x-bar): average of two daily sample measurements, R: difference between 
the two daily sample measurements, R̅ (R-bar): average of R values over the measurement period, and UCLR: upper 
control limit for range.
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there is no concern for producing nonconforming products. Therefore, it can be concluded that 
the process is under statistical control, indicating that the process is stable over time.
 The x̄ -chart in Fig. 8 shows that the x̄ values are near the specification center line, and the 
Cpk value is 1.96, greater than 1.33. This indicates that the process capability is sufficient, and 
there is no concern for producing nonconforming products. Therefore, it can be concluded that 
the process is under statistical control, indicating that the process is stable over time.
 Figures 6–8 show that after the maintenance of the processing equipment, the process 
capability was analyzed using Cpk for three critical dimensions. The Cpk values are all greater 
than 1.33, confirming that the post-maintenance process capability is satisfactory.

4. Discussion

4.1 Theoretical implications of this study

 The relationship between “precision processes and stable quality” and Cpk is of significant 
theoretical and practical importance, primarily involving how precise process control can 
achieve consistent and high-quality product output. This relationship revolves around several 
core concepts.(23,24) “Precision processes and stable quality” emphasize implementing strict 
process control during production to ensure that each batch meets predetermined quality 

Fig. 8. x̅ -chart (a) and R-chart (b) for the third-dimension data post-maintenance in the case study. UCL: upper 
control limit, LCL: lower control limit , x̅ (x-bar): average of two daily sample measurements, R: difference between 
the two daily sample measurements, R̅ (R-bar): average of R values over the measurement period, and UCLR: upper 
control limit for range.



Sensors and Materials, Vol. 37, No. 3 (2025) 1221

standards. Cpk, as a measurement tool, provides a quantitative way to assess process 
performance, indicating the alignment of product quality with specification limits. The Cpk 
value, a process capability index, measures whether the output can reliably produce products that 
meet standards within specified limits. The Cpk calculation considers the process mean, 
variance, and distance to specification limits. A high Cpk value, typically greater than 1.33, 
indicates that the process mean is centered within the specification limits and that process 
variability is low, resulting in stable product quality. Under the “precision processes and stable 
quality” strategy, applying Cpk can guide process improvement efforts, ensuring that 
adjustments precisely achieve the goal of enhancing quality. This involves selecting appropriate 
machinery, equipment, raw materials, working methods, and continuous process monitoring and 
optimization. Utilizing Cpk and other process capability indices for data analysis helps 
manufacturers identify quality issues, predict potential process failures, and develop 
countermeasures. This data-driven approach enhances the objectivity and effectiveness of 
decision-making. In many high-specification manufacturing industries, such as medical devices, 
automotive, or aerospace, high Cpk values are part of compliance requirements and quality 
control standards. Through precision processes and the application of Cpk, companies can 
effectively reduce the risk of product failure, enhancing confidence among consumers and 
regulatory bodies. In summary, the relationship between “precision processes and stable quality” 
and Cpk guides the manufacturing industry in achieving continuous product quality optimization 
and maximizing process efficiency through scientific data analysis and process control 
techniques.

4.2 Practical implications of this study

 In this study, process capability analysis was conducted to eliminate quality issues in turning 
operations (digital CNC). In addition to controlling product specifications, process capability 
indices (Cpk) were used to manage potential risks of defective products. A Cpk value of ≥1.33 for 
digital CNC equipment maintenance was used to verify adequate process capability and ensure 
post-maintenance dimensional stability. Several recommendations were made to address 
observed quality issues. Errors exceeding tolerance limits were eliminated, reducing process 
variability and costs associated with low-quality production. The underlying implications of the 
study is that Cpk reflects the stability of product quality after equipment maintenance, as it 
captures both the process mean (μ) and variation (σ) within acceptable limits. The Cpk formula 
assesses process capability by comparing the distance between the process mean and the 
specification limits (i.e., USL and LSL), then dividing this distance by three standard deviations. 
The use of three standard deviations is based on the statistical principle that 99.73% of data 
points in a normal distribution fall within ±3σ, meaning that if the process variation is within 
this range, most products will meet specifications. Therefore, by calculating Cpk after equipment 
maintenance, it is possible to verify whether the process mean has returned to the center and 
whether the equipment has effectively reduced variation, ensuring consistent product quality. A 
higher Cpk value indicates a more stable process and consistent product quality post-
maintenance, with less variation. Conversely, a lower Cpk value may suggest that the process 
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remains unstable after maintenance, with greater quality fluctuations, necessitating further 
equipment inspection. Thus, in this study, we not only take Cpk as a tool for quality control but 
also as a metric for evaluating the effectiveness of equipment repairs and long-term process 
stability.
 In the CNC production process, sensors are used to differentiate between conforming and 
nonconforming products, automatically sorting them to prevent mixing and avoid issues during 
shipment. In terms of measurement, manual operations have been replaced by automated image-
measuring instruments, which utilize multiple sensors to perform various functions, including 
automatic dimensional measurement. This transition has improved measurement efficiency and 
accuracy while achieving the goal of cost reduction.
 Advanced process control techniques such as SPC and automated monitoring systems 
monitor manufacturing processes in real time, ensuring that process parameters remain within 
predetermined ranges. Data collection and the application of data analysis and machine learning 
techniques predict process deviations and optimize them, enhancing product consistency and 
reducing waste. Comprehensive quality management systems systematically manage quality, 
including quality plans, objectives, manuals, and operating procedures. Continuous process 
improvement and technological innovation enhance process efficiency and product quality, 
addressing market and technological changes. These practices help manufacturing enterprises 
improve product quality and market competitiveness, reduce production costs, and increase 
customer satisfaction. Thus, this research is significant for high-tech industries, pharmaceuticals, 
and automotive manufacturing.

5. Conclusions

 Research on “precision processes and stable quality” can be deepened and expanded in 
various aspects. Future research should focus on integrating intelligent manufacturing systems 
by combining Cpk process capability with IoT, AI, and machine learning technologies to achieve 
precision processes and stable quality control and reduce unnecessary waste. This includes 
studying methods for automatically collecting and analyzing process data to adjust parameters 
in real time. Additionally, process capability analysis should consider the environmental impact 
of manufacturing processes, exploring ways to minimize energy consumption and waste 
generation. Developing sustainable process technologies enhances process efficiency, meets 
environmental standards, and aligns with ESG initiatives. Furthermore, we should investigate 
achieving personalized production while maintaining high quality and stability. This involves 
exploring the application of modular design and flexible manufacturing systems to meet diverse 
market demands, combined with process capability analysis, to achieve the goal of “precision 
processes and stable quality.” These suggestions can help researchers find new directions and 
deepen existing research, further advancing technological progress and industrial upgrading in 
the manufacturing sector.
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Appendix

Appendix 1
day index data 1 (mm) data 2 (mm) X-bar (mm) R (mm)
1 3.494 3.48 3.487 0.014
2 3.498 3.482 3.49 0.016
3 3.484 3.491 3.4875 0.007
4 3.489 3.48 3.4845 0.009
5 3.49 3.48 3.485 0.01
6 3.496 3.48 3.488 0.016
7 3.497 3.479 3.488 0.018
8 3.48 3.49 3.485 0.01
9 3.481 3.495 3.488 0.014

10 3.486 3.48 3.483 0.006
11 3.49 3.48 3.485 0.01
12 3.488 3.48 3.484 0.008
13 3.48 3.49 3.485 0.01
14 3.483 3.49 3.4865 0.007
15 3.487 3.483 3.485 0.004
16 3.484 3.483 3.4835 0.001
17 3.48 3.49 3.485 0.01
18 3.485 3.475 3.48 0.01
19 3.487 3.482 3.4845 0.005
20 3.48 3.49 3.485 0.01
USL = 3.548, LSL = 3.472, CL = 3.51, σ = 0.006, and Cpk = 0.722
USL: Upper Specification Limit, LS: Lower Specification Limit, CL: Center Line, and σ: sample standard deviation.

Appendix 2
day index data 1 (mm) data 2 (mm) X-bar (mm) R (mm)
1 3.519 3.519 3.519 0
2 3.508 3.518 3.513 0.01
3 3.517 3.519 3.518 0.002
4 3.501 3.513 3.507 0.012
5 3.504 3.516 3.51 0.012
6 3.511 3.512 3.5115 0.001
7 3.501 3.497 3.499 0.004
8 3.522 3.504 3.513 0.018
9 3.507 3.494 3.5005 0.013

10 3.512 3.511 3.5115 0.001
11 3.518 3.511 3.5145 0.007
12 3.519 3.504 3.5115 0.015
13 3.513 3.511 3.512 0.002
14 3.516 3.501 3.5085 0.015
15 3.512 3.522 3.517 0.01
16 3.497 3.507 3.502 0.01
17 3.504 3.512 3.508 0.008
18 3.494 3.518 3.506 0.024
19 3.511 3.518 3.5145 0.007
20 3.511 3.519 3.515 0.008



1226 Sensors and Materials, Vol. 37, No. 3 (2025)

Appendix 3
day index data 1 (mm) data 2 (mm) X-bar (mm) R (mm)
1 5.861 5.865 5.863 0.004
2 5.844 5.846 5.845 0.002
3 5.849 5.867 5.858 0.018
4 5.855 5.86 5.8575 0.005
5 5.85 5.869 5.8595 0.019
6 5.845 5.865 5.855 0.02
7 5.849 5.846 5.8475 0.003
8 5.854 5.846 5.85 0.008
9 5.864 5.848 5.856 0.016

10 5.862 5.844 5.853 0.018
11 5.848 5.858 5.853 0.01
12 5.851 5.848 5.8495 0.003
13 5.862 5.845 5.8535 0.017
14 5.848 5.848 5.848 0
15 5.844 5.845 5.8445 0.001
16 5.846 5.863 5.8545 0.017
17 5.866 5.861 5.8635 0.005
18 5.845 5.846 5.8455 0.001
19 5.867 5.849 5.858 0.018
20 5.855 5.841 5.848 0.014

Appendix 4
day index data 1 (mm) data 2 (mm) X-bar (mm) R (mm)
1 39.473 39.461 39.467 0.012
2 39.5 39.497 39.4985 0.003
3 39.476 39.472 39.474 0.004
4 39.475 39.471 39.473 0.004
5 39.467 39.456 39.4615 0.011
6 39.461 39.468 39.4645 0.007
7 39.465 39.463 39.464 0.002
8 39.466 39.461 39.4635 0.005
9 39.473 39.471 39.472 0.002

10 39.457 39.467 39.462 0.01
11 39.455 39.464 39.4595 0.009
12 39.461 39.457 39.459 0.004
13 39.455 39.461 39.458 0.006
14 39.469 39.464 39.4665 0.005
15 39.459 39.466 39.4625 0.007
16 39.464 39.463 39.4635 0.001
17 39.475 39.475 39.475 0
18 39.478 39.47 39.474 0.008
19 39.473 39.46 39.4665 0.013
20 39.487 39.477 39.482 0.01
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Appendix 5
day index data 1 (mm) data 2 (mm) X-bar (mm) R (mm)
1 35.669 35.686 35.6775 0.017
2 35.662 35.666 35.664 0.004
3 35.678 35.662 35.67 0.016
4 35.67 35.682 35.676 0.012
5 35.664 35.668 35.666 0.004
6 35.662 35.666 35.664 0.004
7 35.666 35.658 35.662 0.008
8 35.668 35.664 35.666 0.004
9 35.676 35.667 35.6715 0.009

10 35.662 35.651 35.6565 0.011
11 35.654 35.672 35.663 0.018
12 35.666 35.667 35.6665 0.001
13 35.66 35.665 35.6625 0.005
14 35.663 35.642 35.6525 0.021
15 35.651 35.66 35.6555 0.009
16 35.656 35.662 35.659 0.006
17 35.659 35.656 35.6575 0.003
18 35.673 35.662 35.6675 0.011
19 35.674 35.672 35.673 0.002
20 35.671 35.672 35.6715 0.001
USL = 35.712, LSL = 35.612, CL = 35.662, and σ = 0.008




