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 In this study, we present an integrated motor inspection system utilizing digital processing 
techniques, which can be applied in fields such as factory automation, electric vehicles, and 
mechanical arms. The system collects signals from multiple sensors placed around the motor 
and triggers specific alarm signals upon detecting fault conditions. In the proposed approach, a 
microcontroller is used to monitor the motor operation continuously. Initially, it receives 
temperature signals from an infrared sensor to assess whether the motor temperature falls within 
the specified working range. Additionally, current and noise sensors are utilized to measure 
whether the current and noise levels exceed the respective rated limits. Furthermore, a Hall 
magnetic rotation position sensor determines the speed and motor rotation angles, enabling the 
detection of issues related to speed and current. Moreover, a three-axis accelerometer installed 
on the motor gauges motor vibrations. Subsequently, the discrete wavelet transformation is 
applied to segregate vibration signals into the domains, enabling the identification of abnormal 
vibrations resulting from electrical or mechanical issues using statistical methods. Finally, the 
system can transmit inspection results to an external panel via serial communication for 
graphical display. The proposed system can effectively detect motor faults and ensure the 
motor’s normal operation. It is designed to facilitate real-time monitoring and aid maintenance 
personnel in troubleshooting.

1. Introduction

 Motors are crucial in various fields, including industrial manufacturing, transportation, and 
household appliances. However, traditional motor inspection methods have several limitations 
and challenges, such as disassembly, monitoring, and measurement difficulties. These 
intermittent inspection methods may fail to detect potential motor issues or faults in time, 
leading to production interruptions, safety concerns, and increased maintenance costs. Common 
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motor faults include overheating, insulation damage, bearing failures, power fluctuations, 
magnetic coil or brush issues, and mechanical structure damage or wear.(1,2) When performing 
maintenance, technicians must determine problems on the basis of the motor’s specifications and 
abnormal conditions. General criteria for diagnosis include the following:
(1)  Vibration: Understanding vibration is essential for assessing motor health. It can signal 

electrical or mechanical issues.(3–5) Built-in vibration sensors are costly, and adding them 
along with analyzing data can be pricey. Additionally, algorithms related to vibration 
diagnostics and the hardware required for these algorithms are relatively expensive and 
complex. However, vibration diagnostics are critical for ensuring motor operation.

(2)  Sound: Unusual noises during motor operation often indicate problems with the motor, 
bearings, gears, or mechanical structures. This type of research emphasizes the filtering, 
transformation, and analysis of sound signals. Verifying motor fault diagnosis under various 
background conditions and with different microphones is a major focus of such research.(6)

(3)  Speed: Abnormally high, low, or irregular speeds may suggest issues with the electrodes, 
coils, controllers, or other components of motors. Additionally, issues such as bearing faults, 
shaft misalignment, and rotor unbalance can also be identified through further analysis of 
rotational signals.(7)

(4)  Temperature: The motor’s operating temperature should remain within a normal range. 
Excessive temperatures can indicate overloading, cooling system failures, or other issues, 
which are usually associated with multiple causes. This is not only a matter of fault detection 
but also an important area of research for safety precautions.(8)

(5)  Current: Voltage or current levels exceeding specifications could signal power supply issues 
or potential problems with the motor’s rotor or stator coils. The current detection methods 
employed are noninvasive, making them preferred in practical applications. The techniques 
involve analyzing specific motor current characteristics to identify and address any issues 
accurately.(9–12)

 Therefore, in this research, we propose an integrated real-time monitoring system with these 
functionalities embedded in motor equipment, which can be applied to robotic arms, automotive 
power motors, and other applications. This system can promptly detect motor abnormalities, 
effectively reduce maintenance time and costs, and improve maintenance efficiency. 

2. Multisensor Embedded System for Motor Inspection

 As shown in Fig. 1, a motor inspection system was developed, employing a range of sensors, 
including vibration, current, temperature, and speed detectors. The system uses discrete wavelet 
transform (DWT) to convert the vibration sensor data into the frequency spectrum. Subsequently, 
all parameters are subjected to digital signal processing and statistical analysis to determine the 
operational status of the motor. This enables the system to detect abnormalities, predict faults, 
and estimate maintenance needs.
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3. Real-time Vibration Signal Analysis Algorithm

 Using vibration signals to analyze whether a motor is abnormal is a commonly used method 
in many studies.(3–5) Owing to the difficulty of time domain analysis, converting to frequency 
domain space, such as using the Fourier transform,(13) is the most common signal preprocessing 
method. However, setting up a signal processing system capable of performing Fourier transform 
might be prohibitively expensive for a typical motor, making it impractical for actual application. 
Therefore, the algorithm design in this study focuses on low computational cost, choosing lighter 
transformation methods and combining them with less computationally intensive decision-
making methods to establish an economical motor fault detection system.

3.1 Lifting 5/3 DWT

 In the proposed system, the motor’s accelerometer can measure vibration signals, allowing 
the estimation of any abnormalities during operation. However, analyzing these continuous-time 
vibration signals can be challenging. To separate abnormal vibration and normal rotation signals, 
the proposed approach applies the DWT to develop filters for noise reduction.(14) DWT 
decomposes the signal into high-frequency coefficients (details) and low-frequency coefficients 
(approximation), as shown in Fig. 2.

Fig. 1. (Color online) Proposed motor inspection system.
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 The DWT offers the advantage of computational simplicity, making it feasible for 
implementation even on platforms with low computational resources. In this study, we utilized 
the Lifting 5/3 method within the DWT for data reduction and signal extraction. The Lifting 5/3 
method is known for its high computational efficiency and extremely low computational 
complexity. The computational process can be generally categorized into two steps:
1) Splitting step
  This step assumes that the vector variable d with m data points (for example, the input 

vibration values) can be divided into two parts: odd-numbered points and even-numbered 
points, which are represented by S and D, respectively. The calculation method is described 
as

 0 0
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 DWT can be completed using the two simple steps mentioned above. The result of the 
computation after two repetitions of DWT is called the second-order wavelet transform. After 
the computation, the high-frequency signal will be reduced to only one-quarter of the original 
data size. Note that no significant feature reduction can effectively reduce the computation time 
of complex algorithms in the following calculations. In this study, the accelerometer captures a 
vibration value every 2 ms, and after gathering 128 data points, two wavelet transforms are 
performed. The 32 high-frequency components retained are used for subsequent computations.

Fig. 2. (Color online) Lifting 5/3 DWT algorithm.
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3.2	 Box	plot	and	five-number	summary
 
 A box plot is a commonly used method for visualizing data that displays a five-number 
summary, namely, the minimum, first quartile, median, third quartile, and maximum. As shown 
in Fig. 3, the two ends of the box represent the first quartile Q1 and third quartile Q3 of the 
dataset. The vertical line inside the box represents the median of the dataset, and the values 
presented at the two endpoints represent the minimum and maximum values.
 To enhance computational performance, we computed the five-number summary of the data 
processed by the previously mentioned DWT. This method utilizes only five data points to 
describe the high-frequency components of the vibration signals, which facilitates rapid and 
real-time classification to identify the presence of any anomalies.

3.3 Self-organizing map (SOM)

 SOM is a type of unsupervised neural network. Its basic principle is to simulate the 
characteristics of the human brain, where brain cells with similar functions cluster together. This 
neural network is developed to learn data that exhibits clustering classification rules, making it 
suitable for SOM networks.(15) The structure of SOM is simple, as shown in Fig. 4. It consists of 
only one input layer and one output layer, also known as the Kohonen layer.
 In SOM, the neurons in the output layer are arranged in a matrix in either 1D or 2D space. 
Each neuron is interconnected with other neurons to form a meaningful topological structure. 
The feature map refers to neurons competing to adjust connection weights based on the input 
vector.
 Consider an input vector x, which comprises motor revolutions per minute (rpm) and the five-
number summary of vibration sensor data processed by DWT, and an output layer vector k, 
which represents normal and abnormal categories.
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Fig. 3. Box plot and five-number summary.
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Here, n is the quantity of input data x, representing motor’s rpm and the five-number summary 
(n = 6), and N is the number of rows and columns in the output layer. 
 Therefore, the weight vector k

ijw  connecting to the neurons ijk  in the output layer can be 
represented as

 1 2[ , ,..., ]k k k k T
ij ij ij ijnw w w=w ,  (4)

where i and j are the row and column indices, respectively, for the output neuron k.
 When SOM begins learning, the connection weight vectors k

ijw  for the input vector x, which 
are fully connected to the output layer k, are assigned randomly. Assuming that the best-
matching output neuron is represented as b(x), it can be identified using the shortest Euclidean 
distance calculation, which is 

 
, 

( ) {( , ),  arg min }k
iji j

b i j= −x x w . (5)

 Once a best-matching neuron is found, the weights of the winning neuron and its topologically 
neighboring neurons are also adjusted. The equations for the adjustment can be represented as 
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where tk represents the current iteration index and 0 ≤ ηk(tk) ≤ 1 is the learning rate, which 
gradually decreases over the learning period. hb(x)(tk) is the formula for calculating the 

Fig. 4. (Color online) SOM structure.



Sensors and Materials, Vol. 37, No. 3 (2025) 1265

neighboring neurons centered on b(x), and σ(tk) is the parameter for the width of the neighborhood 
range, which also gradually decreases over the learning period.
 Repeat Eqs. (5) to (7) until the learning process is complete. The termination condition can be 
set to a fixed number of training iterations or when the learning results converge. Input the 
training data of abnormal vibrations occurring in motors under various speeds and loads into  
SOM, such as bearing anomalies, casing vibration abnormalities, insufficient lubrication, and 
coupling anomalies. After training, the weights of the output layer of SOM can be used for 
feature clustering and implemented on an 8-bit microcontroller. When the motor is in operation, 
the data returned by the accelerometer, after being filtered through DWT and processed by the 
five-number summary calculation, is input into the SOM classifier, and the system can 
immediately issue an alert signal. The training process may be complex, but once it is finished, 
there is no need to relearn during actual use. The decision-making of the proposed approach is 
very fast, making it highly suitable for applications where installing high-computing or high-
priced processors is not feasible.

4. Experimental Results

 An 8-bit microcontroller module with 12 MHz working frequency, 32 KB data memory, and 
1 MB program memory was utilized in this study for all programming tasks. A DC motor was 
used as the test subject. Around the motor, an accelerometer, a sound sensor, a Hall effect sensor, 
a temperature sensor, and a current sensor were installed, as shown in Fig. 5. In accordance with 
Ref. 16, we utilized Node-RED, a programming language development tool, to create a data 
observation interface for motor inspection. This interface receives data from the microcontroller 
via serial communication. When the motor is in operation, the data from all sensors will be 
displayed on the graphical interface. In the case of a motor anomaly, the microcontroller will use 
calculations to detect the issue and then send the corresponding signal to be displayed on the 
screen.

Fig. 5. (Color online) Installation motor inspection system and graphical interface.
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4.1 Real-time multisensor measurement

 Microcontroller polling and interrupt programming techniques were employed to develop 
high-speed sensor data acquisition functions in this study. Figure 6 shows the results of the 
experimental data capture for sound, rotational speed, temperature, and current. In this study, 
the determination method for these sensors depends on whether the sensor data exceeds or falls 
below the set threshold during the observation. 
 Figure 6(a) shows a digital microphone capturing sound signals. When the decibel level of the 
sound is below the set threshold, it will be determined as normal operation. The resulting loud 
noise will be considered an anomaly when the motor is connected to a damaged bearing. 
 Figure 6(b) shows the Hall sensor capturing the position of the motor rotor. Each complete 
waveform cycle represents one full rotor rotation, allowing for precise rotor position and motor 
speed calculation. Any deviation from this signal indicates the abnormal motor speed caused by 
external forces or other issues. 
 Figures 6(c) and 6(d) show the temperature and current sensors of the motor, respectively. 
When the motor operates outside the designated temperature or current range, such as when the 
motor casing generates unusually high temperatures or when the motor mechanism is subjected 
to abnormal forces causing unusual current flow, the system will issue an alarm in such cases.

Fig. 6. (Color online) Multisensor signal measurement. (a) Sound sensor. (b) Hall effect sensor. (c) Temperature 
sensor. (d) Current sensor.

(a) (b)

(c) (d)
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4.2 Vibration signal experimental results

 Figure 7 illustrates the specific acceleration values that have been measured by an 
accelerometer while the motor was operating at 1800 rpm. During smooth motor operation, the 
acceleration values tend to remain within a lower range, specifically within ±1 g, as observed in 
our experiment. However, the presence of a defective and unbalanced bearing installed on the 
motor shaft can cause irregular vibrations, resulting in heightened variations that are detectable 
by the accelerometer. This increase in acceleration value serves as an indication of the abnormal 
behavior caused by the faulty bearing.
 Since vibration signals can vary depending on the current, load, and speed conditions, using 
a fixed threshold for error detection is not feasible. In this study, we used DWT, five-number 
summary, and SOM methods to analyze signals. We collected a training dataset of 540 records, 
with 296 normal and 244 abnormal records for training, and a test dataset of 500 records, with 
334 normal and 166 abnormal records, to validate the proposed method’s effectiveness. The 
confusion matrix visualizes the results of both datasets, as shown on the right-hand side of 
Fig. 7.(17) The values 0 and 1 on the x- and y-axes represent normal and abnormal records, 
respectively.
 The classification reports for the training and test datasets are presented in Tables 1 and 2, 
respectively, and briefly described as follows. Accuracy rate is defined as the ratio of the number 
of correctly predicted examples to the total number of examples. The training and test data 
accuracy rates are 97 and 91%, respectively, indicating a strong capability for detecting motor 
anomalies by this method. Additionally, the precision of abnormal predicted results (the ratio of 
the number of correct positive predictions to the total number of predicted positives) for both the 
training and testing data in this experiment is as high as 100%. Such results indicate that the 
signals diagnosed as motor anomalies are indeed abnormal. This meets the requirements of 
practical scenarios and can provide maintenance personnel with stable and accurate repair 
recommendations. 
 In the experiment, the recall rate for the test dataset, representing the ratio of actual positive 
cases correctly identified, is 72%. Although the recall result may not be optimal, note that 
achieving such performance on a resource-constrained microcontroller platform using a variety 

Fig. 7. (Color online) Vibration signal detection and confusion matrix analysis.



1268 Sensors and Materials, Vol. 37, No. 3 (2025)

of algorithms for real-time diagnostics is noteworthy. It is necessary to pay attention to future 
improvements.

5. Conclusions

 In this study, we implemented a low-computation-cost embedded motor inspection system 
that uses an 8-bit microcontroller to perform real-time detection from multiple sensors. 
Furthermore, DWT, five-number summary, and a SOM model are embedded into the 
microcontroller to classify normal and abnormal motor operation signals. This system also 
implements a visual graphical interface to display real-time data and alarm messages via serial 
communication from the microcontroller on a monitoring screen. 
 Experimental results showed that although the proposed algorithm is simple, it can detect 
abnormal motor signals quickly and efficiently. The accuracy of the test results can reach up to 
91%, which is very effective for a microcontroller system with limited resources. Therefore, this 
system is highly suitable for extensive deployment in fields that use many motors. It provides a 
cost-effective way to monitor motor operations in real time, reducing the workload of 
maintenance personnel and preventing operational losses or hazards caused by malfunctions. As 
the system’s recall performance needs improvement, algorithmic adjustments are necessary to 
enhance its value in future studies while preserving low complexity and efficiency.
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Table 1
Classification report for the training dataset.

Precision Recall F1-score Support
0 (Normal) 0.95 1.00 0.98 296
1 (Abnormal) 1.00 0.94 0.97 244
Accuracy 0.97 540
Macro avg 0.98 0.97 0.97 540
Weighted avg 0.97 0.97 0.97 540

Table 2
Classification report for the test dataset.

Precision Recall F1-score Support
0 (Normal) 0.88 1.00 0.94 334
1 (Abnormal) 1.00 0.72 0.84 166
Accuracy 0.91 500
Macro avg 0.94 0.86 0.89 500
Weighted avg 0.92 0.91 0.9 500
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