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 In this paper, we propose a practical and reliable car accident sound recognition model using 
deep learning techniques. In this study, 400 car accident sound files were collected, segmented, 
and classified into 1312 sound files for training the model and 327 sound files for testing the 
model. The sound files were transformed into spectrograms using a short-time Fourier 
transform. YOLOv7 was utilized to train the model to detect the sounds of vehicle skidding and 
collisions. During the model training, image augmentation parameters need to be turned off so 
that the trained overall model can achieve an average accuracy of 0.875 for vehicle skidding and 
collision sounds in car accidents during testing. The threshold for average precision was set to 
0.8, and the misdetection rate for common vehicle horn sounds was kept below 22.5%. The 
verification results of this car accident sound detection model demonstrate its practical 
application capability.

1. Introduction

 According to a World Health Organization report,(1) more than 1 million people die in car 
accidents every year, making this a public health issue that must be taken seriously. It is worth 
noting that in some areas and during certain times, owing to the small number of vehicles 
passing by, pedestrians who accidentally fall on the road may be unable to report the accident 
themselves, which may lead to secondary accidents due to the slow reaction of vehicles behind 
them. If the accident can be monitored and reported immediately when it happens, the time for 
relevant units to arrive at the scene can be shortened, the accident scene can be handled 
efficiently, and the injured can be protected, reducing the risk of accident escalation.
 Current AI technology is rapidly developing, significantly enhancing the efficiency of 
intelligent monitoring and management in industries, healthcare, and urban management. Recent 
research has applied AI technology to traffic monitoring. In a previous study,(2) cameras were 
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used to capture traffic videos and generate images, which were then used for deep learning 
model training and monitoring. In this paper, the authors revealed that decomposing videos into 
a large number of images and learning from them were the biggest challenges. Rezaei and 
Ebrahimpour-Komleh(3) used traffic accident videos for model training and testing, employing 
Faster R-CNN technology to improve training speed without affecting accuracy. They mentioned 
that about 25% of accident images were difficult to detect, including those from accidents 
occurring in different directions, under varying weather conditions, and those caused by special 
vehicles. Choi et al.(4) used in-car sensors, including cameras, microphones, GPS, and 
accelerometers, to build models using data collected from multiple sensors. The multimodal data 
included images, voice, and vehicle motion status during driving. This data was used to analyze 
and detect whether a car collision has occurred, improving collision detection accuracy. 
Ghahremannezhad et al.(5) used traffic surveillance images to build deep learning models, 
tracking target motion patterns based on target appearance, size, and location to determine in 
real time if a traffic accident has occurred. Recent studies(2–6) all used image-based monitoring 
technology, utilizing models trained on traffic accident images and monitored using real-time 
images. However, the large volume of image data, the complexity of learning calculations 
required for image detection, and high resource demands lead to delayed detection and high 
overall costs. Additionally, image capture is easily affected by weather and variable road 
conditions, causing detection interference and increasing the likelihood of misdetection. 
 Foggia et al.(6) mentioned that traditional video analysis systems have been widely used in 
detecting road accidents, but relying solely on visual information is unreliable under conditions 
such as nighttime, rainy days, or foggy days. Therefore, we installed a set of microphones at 
fixed distances and heights on one side of the road. The system extracts a set of features from the 
low-level audio stream that can capture event characteristics, and the high-level audio stream 
uses a bag-of-words model to detect short-term and continuous events, identifying abnormal 
sounds on the road such as tire skidding and car crash sounds for road accident monitoring. 
Ahmed et al.(7) used in-car microphone sensors with algorithms based on acoustic signal 
processing. They statistically analyzed ten signal parameters that are very helpful for identifying 
vehicle accidents and recognizing vehicle collision sounds and human fatigue distress calls. 
Fatimah et al.(8) proposed an automatic alarm sound detection algorithm that distinguishes 
different types of sound from noisy traffic environments. They used Fourier decomposition and 
Mel-frequency cepstral coefficients (MFCCs) to calculate audio feature vectors, identifying the 
approach of emergency vehicles and alerting drivers to make way, thereby reducing the time 
emergency vehicles (such as ambulances and fire trucks) take to reach their destinations. 
Sathruhan et al.(9) used deep learning technology to detect the sound models of emergency 
vehicles, aiming to improve the accuracy of existing vehicle accident detection technologies. 
This model uses convolutional neural networks (CNNs) to process short audio signals and 
MFCC feature extraction techniques to convert sounds into images. The study results showed 
that this model can achieve an accuracy rate of 93%.
 Compared with image detection, the use of sound for detecting traffic accidents offers certain 
advantages. We employed deep learning techniques to develop a reliable and accurate sound 
detection model for traffic accidents, which is applicable in real-world scenarios. In Sect. 2, we 
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introduce the methods employed for training the traffic accident sound recognition model. In 
Sect. 3, we discuss the verification of the model and the techniques used to enhance its detection 
accuracy. Test results demonstrated that the proposed traffic accident sound detection model is 
highly capable of accurately detecting accidents while maintaining a low rate of misdetection.

2. Training Model

 The process of training a traffic accident sound detection model consists of eight steps, as 
shown in Fig. 1. The first step is to collect a dataset of road accident sound recordings. In this 
study, we obtained the audio files from the Mivia Lab at the University of Salerno, which 
provided us with 400 recordings.(10) These audio files were recorded using the Axis P8221 Audio 
Module and Axis T83 omnidirectional microphones at a sampling rate of 32000 Hz, with each 
pulse code modulation (PCM) sample quantized to 16 bits. The recordings, saved in WAV audio 
format, included background sounds from various real traffic accident scenarios, such as vehicle 
skidding and collisions. 
 In the second step of our analysis of car accident sounds, we used the digital audio editing 
software Wave Editor(11) to perform an initial screening and classification of the sounds, as 
depicted in Fig. 2. This process involved the exclusion of redundant and irrelevant data, followed 
by the extraction of braking skid and collision sounds. These sounds were then segmented into 

Fig. 1. Process flow for training the car accident sound detection model used in this study.
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1639 separate files, each with a duration of 0.5 s. Finally, these files were annotated and stored 
for further use.
 Visual acoustic significant feature extraction (VASFE) methods were proposed in previous 
studies.(8,9,12) These methods employ short-time Fourier transform (STFT) to transform digital 
audio into spectrograms for analysis, a transformation that is crucial in sound analysis techniques 
across various fields. In our third step, we utilized the audio analysis Python package Librosa(13) 
to transform the classified 1639 audio files into spectrograms using STFT as shown in Fig. 3.
 In the fourth step, we utilized the spectrograms, which contain audio information, to train the 
car accident detection model. The primary hardware specifications employed for this training 
are detailed in Table 1. We used YOLOv7, a mainstream object detection algorithm renowned for 
its superior speed and accuracy compared with other known object detectors.(14) YOLOv7 takes 
advantage of graphics processing unit (GPU) acceleration to boost computational speed, capture 
details and contextual information in images more effectively, and enhance the efficiency of 
model construction. It provides a variety of parameters and commands that can be adjusted or 
added on the basis of development requirements. These modifications can result in different 
training model configurations (MODEL_TYPE), contingent on changes in advanced 
environment variables such as WEIGHT, HYP_YAML, and CFG_YAML. For the purpose of 
applying the system to road accident monitoring, we opted for the YOLOv7-tiny setting, which 
is capable of edge computing for model training.(15) 
 As mentioned earlier, the 1639 spectrograms were categorized into two sound types: collision 
sounds (labeled: Accident) and braking skid sounds (labeled: Skidding). Of these spectrograms, 
80% (1312 images) were used for training the model, while the remaining 20% (327 images) 
were used for testing the model’s detection ability. Before training the model, several preliminary 

Fig. 2. (Color online) The audio editing tool is utilized for initially screening and categorizing sounds.
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tasks had to be completed. These included creating a new YOLOv7 virtual environment using 
Anaconda Navigator,(16) installing the PyTorch(17) machine learning library, and utilizing the 
torchvision image training tool.(18) After these preparations were completed, the training script 
was executed with a specification to use 1312 spectrograms for training. The training process 
window is shown in Fig. 4. The parameter “epochs” refers to the number of training iterations 
for each spectrogram. Generally, setting this parameter to 50 yields good training results.
 After the YOLOv7 training was completed, the model was tested using 327 spectrograms to 
evaluate its detection accuracy, corresponding to step 5 as shown in Fig. 1. This testing process 
generates various evaluation metrics, including the Confusion Matrix.(19) Figure 5 shows the 
Confusion Matrix for the Accident and Skidding detections made by this car accident detection 
model. The values for True Positives (TP) and True Negatives (TN) are 0.98 and 0.99, whereas 
those for False Positives (FP) and False Negatives (FN) are 0.01 and 0.02, respectively. 
Additionally, the common metrics used for evaluating model performance include precision, 
recall, and the F-score.(20)

 Precision is defined as the ratio of the number of correctly identified targets (TP) to the total 
number of detected targets (the sum of TP and FN). This can be expressed as 

  .TPprecision
TP FP

=
+

 (1)

Fig. 3. (Color online) The audio file is transformed into spectrograms using STFT.

Table 1
Primary hardware specifications employed for this training model.
CPU Intel Core i5, 3.7 GHz, 6 core
GPU NDIVIA GeForce RTX 3070 8GB
RAM 16 GB (8 GB DDR4 2666 MHz × 2)
SDD 1 TB, SATA, read 550 MB/s, write 520 MB/s
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 Figure 6 shows the precision curve of the trained model. This curve is used to evaluate the 
model’s precision at vary levels of confidence. When assessing the model’s performance, points 
that are closer to the top-left corner of the graph indicate higher performance. This implies 
higher accuracy and fewer misdetections.
 Recall is defined as the ratio of the number of correctly identified target objects (TP) to the 
total number of actual target objects (the sum of TP and FN). This can be expressed as

  .TPrecall
TP FN

=
+

 (2)

Fig. 5. Reflection coefficient characteristic of a patch antenna.

Fig. 4. Description window during model training.
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 Figure 7 shows the recall curve of the trained model. This curve is used to evaluate the 
model’s detection accuracy at various levels of confidence. The closer the points on the graph are 
to the upper right corner, the higher the performance of the model. 
 A PR curve is a characteristic curve that plots recall on the x-axis against the corresponding 
precision on the y-axis. The PR curve intuitively displays the model’s precision performance at 
various recall rates. This indicates the model’s ability to distinguish whether an object is present 
in the image. Figure 8 shows the PR curve of this model. As recall increases to 0.83, precision 
slightly decreases. However, after reaching 0.98, it drops sharply. This indicates that the model 
can achieve the highest recall rate while maintaining the highest precision. The blue line in the 
figure represents the model’s mean average precision (mAP). When recall is 0.5, mAP can reach 
0.995, which demonstrates the model’s excellent performance in detection.
 F-score simultaneously considers the precision and recall of the model. Its equation is 
represented as

 ( ) ( )1 1 2

2 1 precision recallF
precision recall precision recallβ β

β− −

⋅
= = + ⋅

+ ⋅ +
. (3)

 When β equals 1, it implies that equal weight is given to both precision and recall. In this 
case, the F-score is also known as the F1-score. An F-score of 1 (or 100%) indicates that the 

Fig. 6. (Color online) Precision curve of the trained model.
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Fig. 8. (Color online) PR curve of the trained model.

Fig. 7. (Color online) Recall curve of the trained model.
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algorithm has achieved optimal accuracy. Figure 9 shows the F1 curve of the model after 
training. The curve’s convex shape indicates an optimal threshold that achieves the best balance 
between precision and recall. Observations from Figs. 5 to 7 suggest that the trained model 
performs well.

3.	 Model	Verification

 In the previous section, we trained a model with 1312 spectrograms and tested its accuracy 
using another set of 312 spectrograms. To ensure the model’s accuracy and generalizability, we 
implemented step 6 of the procedure in Fig. 1, which involved the use of actual car accident 
videos.(21) These videos were recorded using in-car equipment from police vehicles. The audio 
files we used to train the model in the previous section typically had long and clear skidding 
sounds. Even though the collision sounds were brief, they were distinct and clearly characteristic 
of car accidents. In contrast, the skidding sounds in the car accident videos(21) were relatively 
quieter and more blurred, and the collision sounds were also shorter and less distinct, making the 
car accident sound features less prominent and more similar to typical car accident sounds heard 
in real life. Therefore, the audio from these videos was used to conduct a more stringent test of 
the model.
 After the car accident video files were converted into audio files, we analyzed and segmented 
them. We extracted the first 16 s of the car accident audio and divided it into 32 files, each 

Fig. 9. (Color online) F1 curve of the trained model.
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lasting 0.5 s, and numbered them accordingly. The audio from the 12th to 13th seconds contains 
braking sounds, while that from the 13th to 15th seconds contains collision sounds. The rest of 
the audio is background noise. Among the 32 files, the braking sounds correspond to files 
numbered 25 and 26, and the collision sounds correspond to files numbered 27 to 30. We then 
converted these 32 files into spectrograms using STFT and labeled them. Subsequently, these 
spectrograms were used to test the model trained in the previous section, with the test results 
presented in Fig. 10. Figure 10 shows the PR curve for the model trained with default parameters. 
The precision for the braking sounds was 1, but for the collision sounds, it was only 0.341. This 
suggests that the model has a relatively low ability to accurately identify collision sounds. 
Considering that the test car accident audio was less clear, this result is not surprising. However, 
to improve its accuracy, further training of the model is necessary.
 An in-depth understanding of the YOLOv7 model training parameters, which include image 
augmentation parameters, reveals that they can effectively improve the model’s performance.(22) 
The image augmentation parameters encompass image scaling, image flipping, image mixing, 
image copy-pasting, image shifting, image hue adjustment, and image mosaicking. These image 
feature augmentation techniques have been demonstrated to enhance model training for general 
object photos. However, their effectiveness for spectrograms of car accident audio requires 
further verification.
 Therefore, as shown in Fig. 1, we planned step 7, in which the image augmentation parameters 
are assigned numbers as depicted in Table 2. We systematically disabled each of the seven image 

Fig. 10. (Color online) PR curve of the trained model.
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augmentation parameters one by one. Returning to step 4, we used 1312 spectrograms to train 
seven different models. Next, in step 5, we tested these seven models using 312 spectrograms. 
The average precision (AP) results from the tests are shown in the third and fourth rows of Table 
2. Following that, we utilized the spectrograms from the audio of video(21) and performed step 6. 
In this step, we once again disabled each of the seven image augmentation parameters one by 
one, trained seven different models, and individually tested them. The AP results from these 
tests are listed in the fifth and sixth rows of Table 2.
 From the test results, it was observed that the AP values in the third and fourth rows of 
Table 2 remain high owing to the clarity of the audio files used in step 5. However, when tested 
with quieter and more blurred audio files from the video, the AP values in the fifth and sixth 
rows significantly decrease. This is particularly evident in the sixth row, representing the test 
results for short and blurred collision sounds, where each AP value is extremely low. 
Additionally, models trained with the image mosaic parameter disabled demonstrated inferior 
AP performance. Notably, when tested with the audio files from the video,(21) all the resulting 
AP values were zero.
 In an effort to continuously enhance the model’s accuracy, we adjusted the training strategy 
by sequentially disabling seven distinct image augmentation parameters, as outlined in Table 3. 
For example, Item A solely disables the image scaling parameter corresponding to item a in 
Table 2. Item B concurrently disables the image augmentation parameters of items a and b, and 
so forth. Ultimately, Item G disables all image augmentation parameters. In accordance with the 
configurations in Table 3, we carried out the model’s training and testing, as depicted in Table 2, 
repeatedly. The AP values derived from the tests are enumerated in the third to sixth rows of 
Table 3. The outcomes indicate that the best results are achieved when all image augmentation 
parameters are disabled, particularly when testing with the audio file from video.(21) The AP 
values   of the skidding and collision sound models are 0.996 and 0.755, respectively, and the 
overall AP value of the two sound models is 0.875. This AP value signifies an enhancement of 
more than 44% for the collision sound model compared with other configurations. These results 
clearly demonstrate that it is not appropriate to utilize image augmentation parameters when 

Table 2
APs of the training and test models after turning off the image augmentation parameters.

Item Off augmentation 
(parameter)

AP by Ref. 10 
skidding 

spectrograms 

AP by Ref. 10 
collision 

spectrograms

AP by Ref. 21 
skidding 

spectrograms

AP by Ref. 21 
collision 

spectrograms
a Scale (scale) 0.995 0.95 0.998 0.519

b Horizontal/vertical flip 
(fliplr/flipud) 0.982 0.984 0.998 0.094

c Mix (mixup) 0.993 0.993 0.997 0.111
d Copy/paste (cipy_paste) 0.986 0.985 0.997 0.094
e Image shift (translate) 0.99 0.992 0.664 0.023

f Image hue 
(hsv_h, hsv_s, hsv_v) 0.995 0.994 0.747 0.074

g Image mosaic (mosaic) 0.75 0.906 0 0
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training models using spectrograms. Consequently, we opted to disable the image augmentation 
parameters for model training and conducted tests, necessitating annotation only when the AP 
value surpassed 0.65. 
 For reliability testing, we gathered common vehicle horn sounds, which included car horns, 
ambulance sirens, and police car sirens. These horn sounds were segmented, classified into 0.5 s 
intervals, and subsequently stored. Utilizing the STFT transformation spectrogram and training 
the model with Item G, we established the AP threshold at 0.8 for detection. The outcomes are 
presented in Table 4. We observed that the misidentification rate for car horns and police sirens 
was below 22.5%, with zero misidentifications for ambulance sirens. The validation results 
suggest that the accident recognition model developed in this study is both practical and 
dependable.

4. Conclusions

 In this study, we collected 400 accident sound files, which were segmented and classified 
into 1312 training sound files and 327 test sound files. A total of 1639 audio files were 
transformed into spectrograms by the STFT method. We utilized the YOLOv7-tiny deep 
learning technique for training and testing the model. It was found during the testing that the 
image augmentation parameters must be deactivated for the training model. By setting the AP 
threshold to 0.8, the trained model enhanced the recognition capability of vehicle skidding and 
collision sounds in car accidents by more than 44%, while the misjudgment rate for common 

Table 4
Using models to identify vehicle horn sounds.

Item Number of sound clips Number of collision sounds 
identified

Number of skidding sounds 
identified

Car horns 16 0 2
Ambulance sirens 14 0 0
Police car sirens 40 0 9

Table 3
APs of the training and test models after turning off the image augmentation parameter combination.

Item Off Item
AP by Ref. 
10 skidding 

spectrograms 

AP by Ref. 
10 collision 

spectrograms

AP by Ref. 
21 skidding 

spectrograms

AP by Ref. 
21 collision 

spectrograms
A a 0.995 0.995 0.998 0.519
B a + b 0.996 0.996 0.998 0.187
C a + b + c 0.995 0.995 0.998 0.464
D a + b + c + d 0.996 0.996 0.998 0.359
E a + b + c + d + e 0.995 0.996 0.998 0.358
F a + b + c + d + e + f 0.995 0.99 0.998 0.426
G a + b + c + d + e + f + g 0.99 0.986 0.996 0.755
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traffic horn sounds remained below 22.5%. The model verification results suggest that the car 
accident sound recognition model trained in this study is both practical and reliable.
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