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	 Urbanization can lead to social and economic progress, but it also inevitably poses a threat to 
the urban environment and ecological systems, especially in a fast-growing metropolis. 
Quantifying spatiotemporal patterns of urban expansion and its impact can help optimize land 
use patterns and promote sustainable urban development. In this study, we propose a novel 
methodological framework that (1) incorporates a spatial statistics approach for extracting built-
up areas and a comprehensive evaluation method for assessing landscape changes, from overall 
trends to detailed internal dynamics, and (2) aims to quantify urban dynamics and investigate 
their impacts on urban green spaces. The time-series National Polar-orbiting Partnership Visible 
Infrared Imaging Radiometer Suites (NPP-VIIRS) imagery and statistical data including 
geographic information system (GIS)-based analysis were used to calculate overall changes in 
urban land expansion speed and movement direction, respectively. The spatiotemporal 
characteristics of urban green landscape patterns (i.e., landscape-level and class-level metrics) 
were monitored with time-series Landsat images. The results indicate that urban areas have 
experienced rapid expansion, and the built-up area increased by 1008.75 km2 in the past 20 
years. The urban expansion indices - including the expansion rate, intensity, and changes in 
urban migration center of gravity -  reveal a distinct spatial structure of urban growth. This 
pattern was marked by both leapfrog development and the contiguous expansion of existing 
urban areas. Between 1999 and 2021, the gravity center of urban land consistently shifted in 
various directions. The area of built-up land decreased by −1.86% from 2014 to 2021, resulting in 
negative growth. Urban expansion has significantly altered the landscape pattern of urban green 
spaces, leading to the increased degree of fragmentation of built-up lands and a reduction in 
landscape diversity. Overall, geospatial monitoring is crucial in understanding how urban 
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expansion affects urban green spaces and can provide more balanced and informed decision-
making in urban growth.

1.	 Introduction

	 Rapid urbanization is coupled with environmental issues, particularly problems affecting the 
vegetation ecosystem.(1–3) The expansion of the urban scale can improve urban capacity and 
promote economic development. However, the expansion of urban construction land will break 
the original ecological landscape pattern and even lead to the fragmentation of the urban green 
landscape and a reduction in biodiversity. Therefore, it is vital to monitor and analyze the 
evolution of urban construction land and urban green landscape patterns for the urban planning 
management and ecological environment protection of megacities. 
	 The rapid development of remote-sensing technology has been widely used in studying urban 
expansion and landscape ecology, significantly advancing urban expansion and landscape 
pattern analysis. Satellite-based artificial nighttime light (NTL) observations provide a unique 
proxy measure for revealing urbanization and regional development, with the advantage of 
large-scale and small storage, which can effectively reflect the intensity of human activities.(4–6) 
The widely used National Polar-orbiting Partnership Visible Infrared Imaging Radiometer 
Suites (NPP-VIIRS) dataset has a spatial resolution of 500 meters and can detect light radiation 
across a broad spectral range from 0.3 to 14 μm.(2,7,8) In addition, imagery such as Landsat is 
widely used in the dynamic change analysis of landscape patterns.(9,10)

	 Urban area mapping and urbanization estimation methods can be summarized into three 
categories on the basis of statistical data: threshold-based methods, and supervised classification, 
and spatial comparison methods.(2,11,12) In threshold-based methods, the threshold can be 
determined on the basis of experience,(13) mutation detection,(14) segmentation,(15) and spatial 
comparison based on auxiliary data.(16) Supervised classification methods map urban areas 
using traditional classification algorithms and machine learning methods.(17,18) The basic idea of 
the spatial comparison method based on statistical data is to use relevant auxiliary and NTL 
remote sensing data to determine the optimal threshold for urban extraction.(16) In China, the 
Ministry of Land and Resources publishes annual urban land statistics. However, statistical data 
that rely on administrative units lack spatial information, making it difficult to meet the 
requirements of large-scale research on the spatial patterns of Chinese cities. Therefore, a 
methodological framework is needed to map urban areas by combining statistical data and 
remote sensing imagery.
	 Studying the correlation between urban expansion and landscape patterns is an effective way 
of exploring the ecological effects of urban expansion.(19,20) Tagil, Gormus, and Cengiz(21) 
explored the relationship between urban expansion, landscape patterns, and ecological processes 
in Denizli, Turkey, using Landsat satellite imagery from 1987 to 2013, which revealed changes in 
habitat and presented the landscape characteristics based on the assessment of landscape pattern 
indicators. Su et al.(22) measured the impact of urban sprawl on natural landscape patterns using 
insulation degree metrics in the western Taihu Lake Watershed, China, and concluded that the 
most critical natural landscape elements for maintaining overall connectivity could be easily 
identified using these metrics. Monitoring and analyzing the change in vegetation landscape 
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pattern in the context of urbanization are instrumental in determining the relationship between 
landscape pattern change and human social activities, and quantifying the impact intensity and 
direction of the factors that lead to the change. Karim et al.(23) investigated urban expansion 
patterns in Lahore between 1998 and 2023 with Landsat imagery. Their analysis revealed rapid 
and unplanned urban sprawl, particularly along major transportation corridors. Messaoud et al.(24) 
investigated changes in land use and landscape patterns in Tunis between 2000 and 2020, and 
explored the relationship between urban expansion and the decline of green infrastructure.
	 In this study, we investigated the evolution of urban expansion and its impact on landscape 
patterns, particularly urban green landscape patterns, using NPP/VIIRS, Landsat imagery, and 
statistical yearbook data from 1999 to 2021 in Beijing, the capital of China. The main purposes 
of this study were to (a) reveal the spatial and temporal characteristics of megacity expansion, (b) 
explore the spatiotemporal evolution of urban green landscape patterns, and (c) analyze the 
relationship between urbanization and the evolution of urban green landscape patterns.

2.	 Materials and Methods

2.1	 Study site

	 The study site is located in Beijing and covers an area of 16410 km2, as illustrated in Fig. 1, 
which is located in the northern part of North China (39°28′–41°05′ N, 115°25′–117°30′ E). The 
terrain is elevated in the northwest and decreases in elevation towards the southeast, with an 

Fig. 1.	 (Color online) Overview of study area.
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average altitude of 43.5 m. It is a political, cultural, technological, and educational center in 
China, with an urbanization rate of 87.5%, classifying it as a megacity. The west, north, and 
northeast of Beijing are surrounded by mountains, and the vegetation cover is dominated by 
natural forests. The central part is an open plain to the southeast and is a well-developed city. 
The vegetation cover is mostly artificial, and farmlands dominate the southeastern part. The 
vegetation is primarily composed of warm-temperate deciduous broadleaf forests and temperate 
coniferous forests.

2.2	 Data and preprocessing

	 The obtained datasets are NPP-VIIRS-like NTL data, Landsat series images, and the data 
from the Beijing statistics yearbook, as shown in Table 1.
	 The “NPP-VIIRS-like” data is a global night light dataset with a resolution of 500 m.(25) It is 
based on the correction of the cross-sensor (DMSP-OLS and NPP-VIIRS) NTL data using an 
autoencoder, making it possible to use the night light data across long time series. We 
preprocessed it by resampling, defining projections, and clipping, and used it to extract built-up 
areas and conduct a study of urban expansion.
	 The Landsat satellites are a series of Earth observation satellite systems launched by the 
United States since 1972 for detecting earth resources and the environment. We obtained 
Landsat satellite images from the Chinese Academy of Sciences Geospatial Data Cloud (http://
www.gscloud.cn). These images were obtained during the period of lush vegetation growth from 
1999 to 2021 at times when there was minimal cloud cover. Each image was obtained using 
systematic radiometric correction, geometric correction, and digital elevation model (DEM) 
terrain correction before being downloaded. Therefore, in this study, we only performed the 
preprocessing of radiometric calibration, atmospheric correction based on the FLASH 
atmospheric correction model, mosaicking, and cropping.
	 The Beijing Statistical Yearbook (http://tjj.beijing.gov.cn) is a book compiled by the Beijing 
Municipal Bureau of Statistics that reflects the development and changing trends of Beijing’s 
major economic and social indicators from multiple fields and industries. It covers the most 
comprehensive and authoritative comprehensive statistical data on Beijing’s development. We 
obtained the built-up area of Beijing from the Beijing Statistical Yearbook and used the statistical 
data comparison method of He et al.(12) to determine the light threshold that needs to be extracted 
from night light remote sensing data and to obtain the geographical distribution of the built-up 
area. We utilized Landsat imagery from 1999 to 2021 and NPP-VIIRS data from 2000 to 2021 
for our analysis. Although the two datasets cover slightly different periods, this discrepancy 
does not affect the results, as the focus is on built-up areas, which remained unchanged over the 
two years according to the statistical yearbook.

Table 1
Description of the remote sensing dataset used.
Data type Acquisition date Resolution (m)
Nighttime Light Imagery 2000/2003/2009/2014/2020 500 (Resampled)
Landsat-7 ETM Images 1999-8-2; 2003-7-28; 2009-8-13 30Landsat-8 OLI Images 2014-8-19; 2021-8-6

http://www.gscloud.cn
http://www.gscloud.cn
http://tjj.beijing.gov.cn
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2.3	 Methods

	 The proposed approach was employed to examine the spatiotemporal evolution of urban 
expansion, and its subsequent influence on urban green landscape patterns within Beijing from 
1999 to 2021 is illustrated in Fig. 2. By leveraging long-term satellite imagery (NPP-VIIRS and 
Landsat), we extracted urban sprawl data and computed expansion indices. In addition, 
landscape metrics were applied to comprehensively assess both overarching trends and intricate 
internal alterations within urban green landscapes, affording insights into the migratory patterns 
of urban centers and the repercussions of urbanization on urban green space configurations.

2.3.1	 Extraction of urban expansion indices

	 The characteristics of urban expansion were analyzed from both temporal and spatial 
perspectives. The indices for urban expansion are the average annual expansion rate, average 

Fig. 2.	 (Color online) Pipeline of the proposed approach in the research.
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annual expansion intensity (UEI), and the center of gravity of urban migration changes, which 
are derived from the built-up lands in Beijing. To accurately capture built-up areas, a new spatial 
comparison approach was proposed and applied to the time-series NPP-VIIRS imagery.(26) NPP-
VIIRS remote sensing images, which reflect the frequency of human activities in a region, 
provide essential information for understanding and studying urban development. Time series 
data on changes in built-up areas can accurately capture shifts in urbanization levels and urban 
development dynamics, allowing for the study of urban growth patterns and the analysis of the 
driving factors behind urban development. Compared with visible light remote sensing data, 
NTL remote sensing data not only reflect the spatial extent of urbanization but also serve as a 
direct indicator of human activities, showing a strong correlation with socio-economic variables. 
Therefore, we first merged the pixels with the same values and calculated their areas. We then 
established the initial threshold by comparing the calculated built-up areas with the reference 
area from the officially published NTL data. This process was repeated until the threshold 
closest to the actual value in the NTL data was identified, establishing it as the critical value for 
urban built-up area extraction. These steps are repeated until the final threshold, which is closest 
to the true value in the NTL data, is determined. This threshold allows for the accurate extraction 
of urban built-up areas.
	 The average annual expansion rate (Vt) reflects the change in urban built-up area expansion 
over time and is commonly used to indicate the speed of spatial expansion across different 
periods, as demonstrated in Ref. 27. The formula used is 

	 b

a
= 1 *100%t

SV T
S

 
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 
,	 (1)

where Sa is the urban built-up area in the early stage, Sb is the urban built-up area in the late 
stage, and T is the time interval.
	 The UEI index can measure the expansion status of countries or cities at different stages 
vertically and facilitate the comparison of expansion intensity at the same stage horizontally, as 
shown in Refs. 28 and 29. UEI refers to the ratio of the expanded built-up area over a certain 
period to the total built-up area.(27) The formula is 

	 b a 1* *100%S SUEI
TLA T
−

= ,	 (2)

where Sa and Sb are the early and current urban built-up areas, and T and TLA are the time 
interval and the total area, respectively.
	 The brightness values of NTLs in built-up areas reflect the level of development within a city. 
By using the grayscale values of NTL imagery pixels in built-up areas as weights, we can 
calculate the city’s center of gravity and plot the trajectory of its shift. This allows us to assess 
trends in regional economic and population changes and analyze their causes. The coordinates 
for the center of gravity in built-up areas are calculated as(28)
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2.3.2	 Landscape metrics

	 With the acceleration of urbanization, urban space constantly expands, dramatically changing 
the landscape patterns of urban land use. To analyze the evolution of landscape patterns, the 
main landscape types were determined to be forest, grassland, farmland, construction land, bare 
land, water, and artificial vegetation on the basis of the actual distribution at the study site. The 
landscape classification map was obtained by the support vector (SVM) method for each time 
interval. 
	 To analyze the characteristics of urban green landscape patterns in the context of urban 
expansion, four class- and landscape-level metrics were selected on the basis of a grid map of 
landscape types in different years (30 × 30 m2) in this study. At the landscape level, Shannon’s 
diversity index (SHDI), patch density (PD-L), and edge density (ED) were used to characterize 
the overall diversity, fragmentation, and complexity of the landscape. The PD-Cs were selected 
at the class level. Spatiotemporal changes in landscape patterns were analyzed using the 
established indicators. Specific descriptions of the landscape metrics are presented in Table 2.

3.	 Results

3.1	 Characteristics of urban expansion from 1999 to 2021 

3.1.1	 Spatiotemporal evolution of urban expansion
	
	 Exploring the spatial characteristics of a dynamic urban expansion is important for regional 
planning and development. In this study, built-up areas were extracted for the years 1999, 2003, 
2009, 2014, and 2021 using NPP-VIIRS images. The spatial distribution and area statistics of 
built-up land for these years are presented in Fig. 3. In addition, the patterns of urban expansion 
were analyzed.
	 The degree of spatial expansion is a key factor in measuring the level of urbanization. 
Therefore, we obtained the built-up area and created five maps of built-up areas at different 
times (1999, 2003, 2009, 2014, and 2021), as presented in Fig. 3. The city has been undergoing 
urban expansion over the past two decades. The built-up area was expanded from 494 km2 in 
1999 to 1502.75 km2 in 2021, while the areas in 2003, 2009, and 2014 were 648.25, 1321, and 
1348.25 km2, respectively. 
	 Moreover, the urban expansion (Fig. 4) was obtained by overlaying the built-up areas from 
1999 to 2021. Built-up areas exhibited a marginal expansion pattern from 1999 to 2003, 
extending outward from the city center in all directions. The well-developed infrastructure in 
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the central urban area facilitated the growth and development of surrounding areas, leading to 
the conversion of other land types into construction land. From 2003 to 2014, urban sprawl was 
characterized by marginal expansion, with an emphasis on infill development. This means that 
the original old urban areas were transformed and replaced to improve the strength of the 
original construction land and enrich urban functions. During the period from 2014 to 2021, 
urban sprawl continued to be primarily driven by marginal expansion, although it was 
accompanied by rapid growth, and the layout of the increased built-up land is relatively scattered.

Table 2 
Multiple landscape metrics were used in this study.
Level Metric (Abbreviation) Range Description

Landscape

Patch Density (PD-L, number/hm2) (0, +∞) The total number of patches in the landscape is 
divided by the total landscape area.

Edge Density (ED, m/ha) [0, +∞) The sum of the lengths of all edge segments in the 
landscape is divided by the total landscape area.

Shannon's Diversity Index (SHDI) [0, +∞)
The negative sum, across all patch types, of the 
proportional abundance of each patch type is 
multiplied by the logarithm of that proportion.

Class Patch Density (PD-C, number/hm2) (0, +∞) The number of patches of the corresponding patch 
type is divided by the total landscape area.

Fig. 3.	 (Color online) Spatial distribution of urban built-up areas from 1999 to 2021.
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3.1.2	 Scale characteristics of built-up area expansion

	 The spatial expansion intensity, the spatial expansion speed of urban built-up areas, and the 
expansion center of gravity are important indicators for measuring the morphological expansion 
of urban built-up areas.
	 Figure 5 reveals that UEI shows distinct differences in eight directions across these periods, 
similar to the conclusion in the previous study.(29) The UEI value in the east was largest from 
1999 to 2003 and from 2003 to 2009, indicating that the UEI mainly occurred in this direction 
before 2009. In addition, the UEI value in the south was high from 1999 to 2003, and the UEI 
values in the south and southeast were high from 2003 to 2009. This illustrates that the city 
expanded primarily to the east, south, and southwest between 1999 and 2009. The intensity of 
urban expansion gradually decreased after 2009, but the urban area expansion occurred in all 
directions from 2009 to 2014, with notable growth in the southeast and southwest regions. From 
2014 to 2021, UEI values showed negative growth in most directions, with the southwest 
experiencing the lowest UEI value and the south the highest. This indicates a reduction in built-
up land across most areas of Beijing, consistent with Beijing’s urban planning policy aimed at 
decreasing construction land and increasing ecological land use.
	 As shown in Fig. 6, Vt is different for the eight directions in the four time periods from 1999 
to 2021. Overall, the Vt of the urban areas first increased and then gradually decreased during 
this period. This illustrates that Beijing was in a stage of rapid urban expansion from 1999 to 

Fig. 4.	 (Color online) Urban expansion from 1999 to 2022.
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(d)

(a) (b)

(c)

Fig. 5.	 (Color online) Urban UEI for eight directions across four time periods.

Fig. 6.	 (Color online) Urban expansion rate (Vt) for eight directions.
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2009. Vt declined gradually from 2009 to 2014, although the urban area was still in the expansion 
stage. The Vt in most directions was negative from 2014 to 2021, demonstrating that the built-up 
land area decreased during this period. The results are consistent with the Urban Master Plan 
and the 3rd National Land Resource Survey,(30,31) both of which aim to reduce the built-up land 
area, with the target of decreasing it to 2860 km2 by 2021. The Vt values were between −5.55 and 
23.00% from 1999 to 2003, and the largest Vt values were in the east and northeast, which were 
23.00 and 17.96%, respectively. The Vt values were the lowest in the southwest and northwest 
directions, and there was negative urban growth in the southwest direction. The Vt values ranged 
from 3.34 to 11.51% between 2003 and 2009. Vt was similar in most directions, and the Vt values 
were low in the south and northwest. From 2009 to 2014, urban expansion rates were high in the 
northwest and southwest, with values of 13.93 and 11.14%, respectively. The urban expansion 
rate in the east was the lowest, with a value of 0.31%. The Vt values were between −1.86 and 
0.72% from 2014 to 2021. The urban area expanded slightly in the east, west, and northwest, and 
the area of built-up land in the other directions decreased.
	 Exploring the migration trajectory of a city’s center of gravity is significant for the strategic 
planning of urban development. Figure 7 shows the migration trajectory of the city’s center of 
gravity. The city’s center of gravity moved to the northeast, and the movement distance was the 
largest from 1999 to 2003. The city’s center of gravity moved southwest from 2003 to 2009. This 
illustrates that the development of Beijing moved mainly towards the east from 1999 to 2009. 
The city’s center of gravity moved to the southwest from 2009 to 2014, before moving to the 
northeast after 2014. Overall, the center of gravity of the city showed negligible change in 
position.

Fig. 7.	 (Color online) Spatiotemporal migration trajectory of urban areas from 1999 to 2021.
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3.2	 Evolution of urban green landscape pattern in the context of urban expansion

3.2.1	 Extraction of urban green landscapes

	 Urban green landscapes, including artificial planting vegetation, forest, grassland, farmland, 
construction land, bare land, and water, were extracted from the Landsat imagery over multiple 
time intervals by the SVM method. The details for each time interval obtained by the SVM 
method are shown in Fig. 8. The overall accuracy was higher than 90%, the kappa coefficient 
was higher than 0.90, and the final urban green landscape map is illustrated in Fig. 9.

3.2.2	 Dynamics of urban green landscape pattern

	 Exploring the characteristics of the urban green landscape evolution is of considerable 
significance for urban planning and development. In this study, the PD-C index at the class level 
for four different vegetation types in 1999, 2003, 2009, 2014, and 2021 was calculated, and the 
ED, PD-L, and SHDI values of the landscape-level index were calculated for the five periods, as 
illustrated in Fig. 10.
	 The PD-C value at the class level reflects the fragmentation of different landscape types. 
This can be observed in Fig. 10, where the PD-C of the artificial planting urban green landscape 
experienced a decline first and was the lowest in 2009 at 5.50 number/hm2, then increased 
slowly and remained relatively high. This indicates that the degree of fragmentation of artificial 
planting in the urban green landscape decreased before 2009 and then gradually increased. The 
distribution of forests had the characteristics of aggregation; therefore, the PD-C value has 
changed negligibly over the past 20 years and was the lowest in the urban green landscape types. 

Fig. 8.	 (Color online) Detailed precision for SVM classification.
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The PD-C value of grassland was the highest among all urban green landscapes, ranging from 
6.38 to 9.97 number/hm2. This indicates that grass was the most fragmented. The PD-C value 
first decreased and then increased from 1999 to 2021. The PD-C value of grassland was the 
lowest in 2003 (6.38 number/hm2) and the highest in 2021 (9.97 number/hm2). The PD-C value 

Fig. 9.	 (Color online) Spatial distribution map of landscape types based on SVM from 1999 to 2021.

Fig. 10.	 (Color online) PD-C value for different vegetation types from 1999 to 2021.
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of farmland fluctuated considerably, but the degree of fragmentation was always below that of 
artificially planted vegetation and grassland. During urban development, the change 
characteristics of the PD-C value for artificially planted vegetation, forest, and grassland with 
ecological service functions were similar. They all experienced a process of having first 
decreased, reaching their lowest levels in 2003, before increasing.
	 Figure 11 shows the ED, PD-L, and SHDI values at the landscape level between 1999 and 
2021. Overall, these indices at the landscape level showed a decreasing trend first, then 
stabilizing for a period before slowly increasing. PD-L was largest in 1999, with a value of 34.06 
number/hm2, and then dropped sharply, showing a slowly increasing trend from 2009 to 2021. 
This suggests that the landscape exhibited the highest degree of fragmentation in 1999, and over 
the 20 years, this highly fragmented landscape pattern in Beijing has improved. However, there 
still exists a relatively high degree of fragmentation. The ED value in Beijing was relatively 
high, initially decreasing before increasing. It was the highest in 1999 at 122.82 m/ha and the 
lowest in 2003 at 96.29 m/ha. Despite the city’s development, the ED value in 2021 remains high 
at 108.1 m/ha. This illustrates that the landscape boundary was highly segmented, the shape of 
the landscape patch was complex, the interaction and effect of the patch edges were evident, and 
the edge effect was strongly pronounced. The high edge and patch densities suggest a high 
degree of landscape fragmentation. In a landscape system, the richer the land use, the higher the 
degree of fragmentation, the greater the information content of its uncertainty, and the higher the 
calculated SHDI value.(32,33) The SHDI values for Beijing ranged between 1.51 and 1.65. On the 
one hand, this signifies that Beijing had a high degree of landscape diversity and rich landscape 
types. However, a high SHDI value was more likely to be affected by a high degree of landscape 
fragmentation.

3.2.3	 Spatiotemporal dynamic characteristics of urban green landscape pattern in built-
up area

	 With the advancement of urban expansion, human activities have altered urban green 
landscape patterns. To investigate the impact of urbanization on urban green landscapes, we 

Fig. 11.	 (Color online) ED, PD-L, and SHDI values of the landscape-level index for different years.
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conducted statistical computations and spatial analysis for ED, PD-L, SHDI, and PD-C at the 
class level of artificially planting urban green landscapes from 1999 to 2021.
	 Figure 12 shows the PD-L, ED, and SHDI values at the landscape level and their changes in 
built-up areas in Beijing from 1999 to 2021. The PD-L and ED indices showed the same trend of 
decreasing first and then increasing, and when PD-L and ED changed significantly, SHDI also 
exhibited a similar trend. From 1999 to 2014, in the urban built-up area of Beijing, the PD-L 
value of the landscape varied between 1.3 and 2.3%; however, in 2021, there was a significant 
increase, reaching as high as 4.399 number/hm2. This indicates that the landscape in the built-up 
areas of Beijing presented a certain degree of fragmentation and was most significant in 2021. 
The ED values in the built-up areas showed the same trend as the PD-L values. From 1999 to 
2014, ED fluctuated between 5.4587 and 8.4981 m/hm2 and reached its highest value in 2021 
(13.3417 m/hm2). The change in ED shows that the degree of segmentation of landscape 
boundaries in the built-up areas of Beijing went from low to high, directly reflecting the 
increasingly fragmented landscape patches. The SHDI value of the landscape in the built-up 
areas of Beijing shows an upward trend, particularly in 2021, when the SHDI value reaches 
1.0753. This change indicates that there is a certain diversity of landscapes in the built-up areas 
of Beijing. As the number of landscape patches increased, SHDI also increased.
	 The spatial distribution of PD-L values in the built-up areas of Beijing in different years is 
illustrated in Fig. 13, where the areas with high PD-L values were mainly distributed on the 
edges of the built-up areas. With the city’s development, areas with high PD-L values appeared 
at the center. By 2021, most landscapes in the built-up areas had high PD-L values, and the 
landscape patches were more fragmented than in previous years. This shows that while the scope 
of urban landscape fragmentation expanded, it also gradually affected the central area of the 
city. Areas with high PD-L values in 1999 and 2003 were mainly distributed in the northern 

Fig. 12.	 (Color online) Values of landscape-level indices in different stages.
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region, whereas from 1999 to 2003, the expansion was mainly from east to north. In 2009, areas 
with high PD-L values were mainly distributed in the east, whereas the expansion speed of the 
eastern area was relatively high from 2003 to 2009. Compared with 2009, the western expansion 
in 2014 was clear, and the PD-L value in the expansion area in 2014 was also high. In 2021, most 
of the built-up areas exhibited relatively high PD-L values. Although the expansion rate of urban 
construction land remained zero between 2014 and 2021, the total size of built-up areas was the 
highest in 2021. This shows that urban sprawl affects landscapes to a certain extent, and as a 
result, the landscape tends to be more fragmented in these areas.
	 The spatial distribution of ED values in the built-up areas of Beijing from 1999 to 2021 is 
mapped in Fig. 14. The ED values around the built-up areas in Beijing were generally higher, 
whilst those in the central area were lower, suggesting that the landscape patches at the edge of 
the built-up areas were small, fragmented, and strongly divided, exhibiting a large total length of 
the landscape edge per unit area. Within built-up areas, the distribution of landscape patches of 
the same type was consecutive and aggregated, and the total length of landscape edges per unit 
area was small. The high ED value phenomenon in the built-up area developed from the 
surrounding area to the city center over time, indicating that in the middle of the built-up area, 
the integrity and continuity of the landscape patches were gradually broken, and landscape 
fragmentation intensified. The edge of the built-up area was located in the suburbs, where the 
impermeable surface transitioned into other landscapes. This region was characterized by 
complex land types, scattered patches, and varying land types. As a result, the density of 
landscape edges was high. The interior of the built-up area was dominated by mature, 

Fig. 13.	 (Color online) Map of PD-L in different years.
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continuous, and densely packed land used for construction, which reduced the degree of 
crosscutting and overlapping of different landscape patches. Thus, the edge density of the 
landscape was low. In 1999 and 2003, because the built-up area of Beijing was relatively small 
and in the early stage of the urban core area, it was dominated by the large-scale and continuous 
distribution of impermeable surfaces, and there were extensive regions of vegetation and other 
landscape patches, high ED values were concentrated in a small part of the edge of the built-up 
area. From 2009 to 2021, the built-up area consistently exhibited high ED values, reflecting the 
maturation of the urban core. Concurrently, the number of vegetation patches within the built-up 
area increased, leading to an expansion of high ED zones toward the interior of the urban 
landscape.
	 Figure 15 shows that the SHDI at the center of the built-up area in Beijing was low, and the 
areas with high SHDI values were mainly distributed at the edges of the original built-up area 
and recently constructed built-up areas. With the expansion of built-up areas, the distribution 
area of high SHDI values expanded from the edge to the center. In 2021, the built-up areas 
recorded the highest SHDI values, with a notable increase in the central built-up zones, as 
observed through spatial visualization. The distribution and changes in landscape SHDI values 
in built-up areas indicate that there were more types of landscape found at the edges of built-up 
areas than in the central areas, and with urban development, the diversity and heterogeneity of 
landscapes inside built-up areas increased. Urbanization connects construction land, making it 
the dominant landscape and reducing diversity in urban centers. Moreover, urbanization at the 
city’s edge causes land type changes and fragmentation, increasing landscape diversity in those 
areas.

Fig. 14.	 (Color online) Spatial distribution map of ED for different years.
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	 With the gradual maturity of urban development, further improvement of urban functions, 
and further balance of various landscape types, particularly the increase in the proportion of 
vegetation, the diversity of urban landscapes has increased.
	 Table 3 shows the areas and PD-C values at the class level for artificially planted vegetation 
in 1999, 2003, 2009, 2014, and 2021. The area of artificially planted vegetation decreased slightly 
from 1999 to 2003 and then increased substantially from 2003 to 2021, especially from 2003 to 
2009. This illustrates that the urban green ecological space was built on a large scale, and the 
ecological environment improved continuously at the study site. The PD-C values for artificially 
planted vegetation ranged from 0.5432 to 1.2994 during this period. The PD-C value showed a 
downward trend from 1999 to 2003, which may have been due to the reduction in the area for the 
artificial planting of vegetation. The PD-C value of artificially planted vegetation increased 
significantly from 2003 to 2009, indicating that the number of patches increased with the 
artificially planted vegetation area, and the degree of landscape fragmentation was higher. These 
values showed a downward trend in 2009 and 2014. Although the area covered by artificially 
planted vegetation has increased, the degree of landscape fragmentation has decreased. The 
PD-C value increased from 2014 to 2021, demonstrating that the degree of landscape 
fragmentation will increase with area.
	 Figure 16 reveals that the PD-C value at the class level for the artificially planted vegetation 
showed a radial distribution. The value at the center of the city was the smallest and gradually 
increased towards the edge of the city. This illustrates that artificially planted vegetation has a 
low degree of fragmentation, good connectivity in downtown areas, and a high degree of 

Fig. 15.	 (Color online) Spatial distribution map of SHDI for different years.
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landscape fragmentation at urban fringes. Additionally, the area of artificially planted vegetation 
in downtown areas will gradually increase from 1999 to 2021, and the degree of fragmentation 
will also increase. However, the PD-C value was lower than that of the urban fringes. The PD-C 
values in the north and northeast were high in 1999 and 2003, indicating that the artificially 
planted vegetation in this area was highly fragmented during this period. The high PD-C value 
was mainly located in the east, and the area of artificially planted vegetation increased 
considerably by 2009. This demonstrates that the degree of fragmentation also increases with the 
number of patches. The PD-C value was high in Southwest China in 2014. This may be because 
the artificial vegetation in this area was newly planted and lacked planning. In addition, the area 
of artificially planted vegetation in downtown areas increased with a low degree of fragmentation 
between 2009 and 2014. The area of artificially planted vegetation further increased from 2014 
to 2021, with a small PD-C value in the downtown area and a large PD-C value at the urban 
fringes, indicating that the degree of fragmentation of artificially planted vegetation is low in the 
downtown area and high in the urban fringes.

Table 3 
PD-C value at class level and areas of artificial planting vegetation in different years.
Year 1999 2003 2009 2014 2021
Area (km2) 25.8102 22.2399 108.7101 145.9197 148.9284
PD-C (number/hm2) 0.8761 0.5432 1.1614 0.8505 1.2994

Fig. 16.	 (Color online) Spatial distribution map of PD-C at class level for artificially planted vegetation.
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4.	 Discussion

	 The long-term monitoring of urban dynamics is critical for understanding urbanization 
processes and their corresponding environmental consequences. Most studies have focused on 
monitoring urban expansion or landscape patterns, and only a few have explored the impact of 
urbanization on landscape patterns, especially urban green landscapes.(29,34) In addition, 
vegetation is a vital component of the ecosystem and essential for human survival. Previous 
research has primarily focused on the spatiotemporal dynamics of urban expansion and 
landscape patterns, along with the qualitative analyses of the negative impacts of urbanization 
on these patterns. However, quantitative studies on how urbanization affects urban green 
landscape patterns, particularly artificial planting, are relatively scarce. Therefore, we developed 
a new framework to monitor the urban expansion dynamics and the impact of urbanization on 
urban green landscape patterns, especially the artificial planting of urban green landscapes in 
megacity Beijing using the time-series remote sensing imagery from 1999 to 2021.
	 The long-term monitoring of urban dynamics is conducive to further understanding the 
urbanization process, optimizing regional patterns, and promoting the sustainable development 
of the environment. Megacities are dynamic and complex systems, and monitoring and 
understanding their urban evolution process are necessary. However, few studies have explored 
monitoring urban expansion, particularly in megacities. In this study, we demonstrated that the 
urban area has been expanding from 1999 to 2021, the Vt and UEI of which were the largest from 
2003 to 2009. This result agrees with that of a previous study,(29) which concluded that the total 
area of urban land increased exponentially by more than three times between 1985 and 2013 and 
that the largest increase in urban area occurred between 2005 and 2010. For a more accurate 
approach to extracting built-up areas, the NTL imagers are used instead of Landsat imagery. The 
NPP-VIIRS remote sensing images can reflect the frequency of human activities in a region and 
provide essential information for understanding and studying urban development. Visible light 
remote sensing data only represent the spatial extent of urbanization, while night light remote 
sensing data can reflect the internal changes of the city through pixel values.(26) Therefore, using 
night light remote sensing data to extract built-up areas plays an irreplaceable role in exploring 
the internal changes of built-up areas. The study of Li et al.(35) also proved that the urban extent 
extracted by the SVM method is overestimated in the suburbs, especially when only using 
Landsat images. The final map of the build-up area is illustrated in Fig. 17.
	 The spatial and temporal dynamics of urban growth in Beijing are compared in Fig. 17 using 
two different image sources (NPP-VIIRS/NTL and Landsat imagery). The build-up areas have 
expanded significantly from 1999 to 2021, particularly along the eastern and southern edges of 
the city. However, the Landsat images indicate a large extent of built-up areas compared with 
NTL data. The NTL data used in the proposed method can capture more detailed urban features, 
leading to a more accurate build-up area extraction.
	 Urban expansion significantly affects the original landscape pattern of a city, particularly its 
urban green landscape pattern. One class-level metric (PD-C) and three landscape-level metrics 
(PD-L, ED, and SHDI) were selected to quantify urban green landscape patterns, and the 
landscape presented spatial geometric heterogeneity in the urbanization process. With the 
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acceleration of urbanization and the expansion of urban areas, the degree of landscape 
fragmentation has increased significantly in downtown and outer suburbs. This is similar to the 
results of Li et al.,(36) who concluded that the significant increase in PD-L in the downtown area 
was due to an increase in the degree of greening and that the increase in PD-L in the outer 
suburbs was mainly caused by the transformation from other land to construction land. Natural 
and seminatural vegetation gradually decreased in downtown areas along with the rapid 
expansion of the city from 1999 to 2009, and the diversity of the urban green landscape 
decreased, although some artificial green plants were planted. The diversity of urban green 
landscapes increased during the subsequent ten years, owing to the reasonable planning of urban 
green landscapes.
	 Studying the relationship between urbanization and urban green landscape patterns is an 
effective means of exploring the landscape ecological effects of urban expansion.(20) Therefore, 
the relationship between landscape patterns and NPP-VIIRS NTL value (NLV), which represents 
the level of urbanization, was explored in Fig. 18.
	 Figure 18 shows that there is a negative correlation between urban green landscape patterns 
and the level  of urbanization, the SHDI of which at the landscape level and NLV had the greatest 
correlation, followed by ED and PD-L. The correlation coefficients between PD-C at the class 
level and NLV were the lowest, demonstrating that urban expansion has a negative effect on 
vegetation ecological landscape patterns. This conclusion is similar to Burak, Dogˇan, and 
Gaziogˇlu’s findings,(37) which concluded that urban expansion has a certain degree of negative 
impact on the ecological environment. The higher the NLV, the higher the level of urbanization 

Fig. 17.	 (Color online) Map of build-up area extraction between NPP-VIIRS (NTL) and Landsat imagery.
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construction, which leads to more fragmented urban green landscapes. This is in good agreement 
with the findings of Boori et al.,(38) who explored the relationship between urbanization and 
urban land use plans and concluded that vegetation patches became more fragmented owing to 
the increase in built-up area over the study period as a general trend at the metropolitan level. As 
the level of urbanization increased, the SHDI value decreased, indicating that urbanization 
negatively impacts regional habitat diversity. Zhang et al.(39) explored the characteristics of 
riparian plant diversity and its change law, and concluded that the more types of construction 
land there are, the greater the stress on biodiversity, especially the emergence of urban 
construction land, which leads to a significant decrease in biodiversity.

5.	 Conclusions

	 In this study, we quantified the spatiotemporal characteristics of urban expansion and urban 
green landscape patterns in Beijing using NPP-VIIRS NTL data and Landsat imagery from 1999 
to 2021. The analysis revealed a significant outward expansion of the urban area, with the most 
rapid growth occurring between 2003 and 2009. This expansion has led to substantial alterations 
in landscape patterns, particularly impacting urban green landscapes.
	 The proposed approach demonstrated that the area of urban green landscapes decreased 
significantly owing to large-scale growth in built-up land. The degree of fragmentation of urban 
green landscapes was initially reduced from 1999 to 2009. Despite the ongoing expansion of 
built-up areas over the subsequent decade, efforts to construct new green spaces led to increases 
in the number of green patches and their degree of fragmentation. Furthermore, the diversity of 
urban green landscapes initially increased but later decreased, reflecting the ecological impacts 
of urban expansion.

Fig. 18.	 (Color online) Correlation coefficients between landscape metrics and NLV.
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	 This research provides valuable insights into how urbanization affects urban green landscape 
patterns, providing a theoretical basis and case reference for promoting sustainable landscape 
planning. By designing and optimizing landscape patterns, urban planners and policymakers 
can enhance the ecological benefits of urban landscapes, thereby promoting urban environments 
that are more sustainable in terms of resource use, resilience, and environmental balance. 
Although this study presents a comprehensive assessment framework, it faces certain limitations 
in the diversity and accuracy of data sources. The inability to fully leverage high-resolution 
remote sensing images (e.g., Sentinel-2 with 10 m resolution or WorldView-3 at 0.3 m) hinders 
the analysis of local dynamic changes. Moreover, the quantitative analysis of socioeconomic 
driving factors is insufficient. In the future, we will refine the analysis by integrating 
multisource, high-resolution remote sensing imagery with robust socioeconomic data. 
Furthermore, we will explore the driving mechanisms of urban expansion in greater depth and 
investigate the long-term impact of various expansion patterns on ecological service functions.
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