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	 For the historical archives of time-series image resources from different sensors, the original 
photos often go unnoticed because of the lack of ground control points (GCPs). In this paper, we 
propose a GCP-free intelligent processing methodology for time-series archived historical aerial 
photos, which is based on cloud control photogrammetry and leverages airborne light detection 
and ranging (LiDAR) point cloud data. The key technologies discussed include the acquisition 
and accuracy evaluation of reference data, image matching, and aerial triangulation for 
subsequent three-dimensional (3D) modeling utilization. To validate our proposed method, we 
conducted experiments within the Fourth Ring Road area of Beijing’s Plain District, covering 
approximately 320 km2, using LiDAR data, the digital aerial photos obtained by AMC in 2017, 
the digital aerial photos obtained by UCXP in 2015, and the aerial films obtained by RC-10 in 
1975–1990. On the basis of experimental results, it was concluded that a robust network of cloud 
control points with an interval of at least 1000 pixels could be established to replace traditional 
field GCPs, enhancing both the effectiveness and reliability of automated processing. 
Furthermore, experimental results demonstrated that this method allowed for the relaxation of 
orientation accuracy requirements for cloud control points from 0.35 to 0.6 pixels while 
maintaining the same level of accuracy. Even in cases where significant differences exist 
between the reference data and the archived photos, effective control can still be achieved by 
cloud control photogrammetry, with a threshold for eliminating gross errors set at 2–3 times the 
root mean square error.

1.	 Introduction

	 Conventional methods for acquiring ground control points (GCPs) typically involve fieldwork 
that requires an extended timeframe to achieve a complete coverage of the research area.(1) 
Zhang and Tao from Wuhan University introduced the concept of cloud control 
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photogrammetry,(2) which leverages image-matching technology to automatically derive a 
substantial number of high-density control points from referenced geographic information data 
instead of GCPs. This process is termed cloud control because it generates exceptionally dense 
point clouds. The sources of cloud control data for this approach include a variety of datasets, 
such as satellite laser altimetry data, light detection and ranging (LiDAR) data from different 
sensors including airborne and mobile vehicles, aerotriangulation results, digital orthophoto map 
(DOM), digital elevation model (DEM), and digital line graphic (DLG) data. Currently, DOM- 
and DEM-based cloud control photogrammetry finds widespread applications in the unattended 
intelligent processing of satellite remote sensing imagery, including satellite calibration, digital 
orthophoto production, the three-dimensional (3D) modeling of real scenes in China, and 
mapping uninhabited regions.(3–6) In contrast, the utilization of aerotriangulation parameters 
and LiDAR data within cloud control photogrammetry is infrequent but holds a significant 
potential value.
	 LiDAR data has gradually become a new standard geospatial information product. With its 
high density, uniform distribution, and high absolute accuracy (up to 10 cm for both plane and 
elevation), as well as consistent relative accuracy, the point cloud acquired by LiDAR sensors 
can be utilized as high-precision geometric control information to achieve large-scale aerial 
photogrammetry without field GCPs.(7) Many countries around the world, including Canada, 
Denmark, Finland, the Netherlands, Poland, Spain, Sweden, Switzerland, the United States, the 
United Kingdom, and New Zealand have established national LiDAR datasets as a basic data 
framework.(8) From 2015 to 2017, LiDAR data acquired for DEM production could be explored 
as archived aerial data processing sources for cloud control photogrammetry.
	 In the historical archives of time-series image resources acquired from different sensors, 
traditional DOM products are preserved and widely used. However, original aerial photos often 
go unnoticed because of the lack of GCPs, their large quantity, and inconsistent coordinate 
systems.(9) In recent years, there has been a growing recognition of the importance of archived 
historical aerial photographs as a means of restoring historical 3D models.(10) Therefore, in this 
study, we attempt to develop an intelligent processing methodology that is free of GCPs for time-
series archived historical aerial photos, which is based on cloud control photogrammetry and 
leveraging LiDAR point cloud data. The key technologies discussed include the acquisition and 
accuracy evaluation of reference data, image matching, and aerial triangulation. This 
methodology aims to provide a reference for subsequent 3D modeling utilization.

2.	 Methodology

2.1	 Workflow

	 The workflow for processing time-series archived historical aerial photos based on cloud 
control photogrammetry is illustrated in Fig. 1. It primarily consists of five components: the 
evaluation and selection of cloud control sources, the organization of cloud control sources, 
cloud control aerial triangulation with LiDAR and reference data, cloud control aerial 
triangulation using digital control photos (DCPs) for archived photo processing, and time-series 
photogrammetry result output.
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2.2	 Methods

(1)	Cloud control source evaluation and selection
	 Considering the density of available control points and cloud control accuracy, the priority 

sequence for selecting cloud control sources is as follows: LiDAR data from airborne sensors, 
aerotriangulation results, DOM with DEM, and DLG with DEM. It is preferable to choose 
LiDAR data as the cloud control source after removing noise and correcting intertrip 
systematic errors,(11) ensuring that its coverage contains or matches that of the processed 
photos. The accuracy of the control source should exceed the result accuracy requirements of 
the data to be processed. Considering matching errors, it is recommended that the data 
acquisition times be as close as possible to minimize changes in the entire test area to less 
than 50%, such as the same season, similar solar elevation angles, and so on.

(2)	Organization of cloud control sources
	 The organization of the cloud control sources should follow a unified format and content to 

facilitate automated processing in later stages. In cases where a single control source is 
insufficient, multiple control sources can be utilized. Boundary errors must not exceed twice 
the error margin in the results. Metadata information for various control sources, including 
coordinate projection, point cloud density, spatial resolution, and data acquisition time, 
should be compiled.

(3)	Cloud control aerial triangulation with LiDAR and reference data
	 In the selection of reference data, resolution and acquisition time are considered, with 

preference given to aerial photos that closely match the average point density and the timing 
of LiDAR data acquisition for the subsequent processing of historical aerial photos. Cloud 

Fig. 1.	 (Color online) Workflow chart.
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control points are matched between LiDAR and reference data, ensuring and an even 
distribution within the block with an average interval of less than 1000 pixels and a root mean 
square  adjustment of less than 1 pixel. Following block adjustment, DCPs(12) are generated 
from original photos, orientation parameters, and coordinates of matching cloud control 
points.

	 The process of cloud control aerial triangulation based on LiDAR point cloud and reference 
data is illustrated below in Fig. 2.
	 Positioning and orientation system (POS)-assisted aerial triangulation (AT) technology is 
utilized for preprocessing the reference images and extracting sparse feature points and feature 
lines.(13) Subsequently, point cloud segmentation technology is employed to process LiDAR 
points to obtain segmentation surfaces. Following this, the iterative closest point (ICP)(14) or 
iterative closest line (ICL)(15) algorithm is applied iteratively to optimize image orientation 
parameters using the distance least squares method. On the basis of LiDAR point-constrained 
block adjustment, the object and image coordinates of the cloud control points are updated. 
Throughout this process, the adaptive determination of weight for LiDAR points and surface 
feature control information is based on local point coplanarity.
	 Proposed by Besl and Mckay in 1992,(14) the iterative closest point (ICP) algorithm is a 
classical geometric registration method used in cloud control photogrammetry. Its enhanced 
version is widely applied directly or indirectly to the geometric registration of images to 3D 
point clouds. The primary objective of the ICP algorithm is to address the issue of inconsistent 
coordinate systems between two distinct point clouds, aiming to merge them into a unified 
coordinate system. The ICP algorithm imposes certain requirements on the initial alignment 
accuracy of two sets of point clouds. In this study, we employ the principle of point-to-plane 
nearest distance, as illustrated in Fig. 3. For any sparse feature point ( ), , , 1

T
ix iy izp p p=iP  with 

Fig. 2.	 Process of cloud control aerial triangulation with LiDAR point cloud and reference data. 
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, ,ix iy izp  p p  representing the 3D coordinate values of the point Pi, a spatial plane 
0 i i i ia x b y c z d+ + + = (depicted as the red line segment in Fig. 3) is obtained by fitting it to the 

nearest point set in the LiDAR point cloud. The parameters of the plane are denoted as 
( ), , ,i i i i ia b c dPl , and its “control point” in the LiDAR point cloud refers to its foot point on the 

fitting plane.
	 The objective of the ICP algorithm is to determine the optimal transformation matrix  OM  
that minimizes ( )E OM :

	 ( ) ( )2
1 ,pn

i iiE dis P
=

=∑O OM M Pl .	 (1)

	 Here, ( ) dis ⋅ represents the calculation function for determining the spatial point and surface 
distance. OM  denotes the 4×4 spatial similarity transformation matrix that maps image sparse 
feature points to LiDAR point clouds, and pn  indicates the total number of points involved. The 
minimization problem described by this equation can be effectively addressed through nonlinear 
least squares optimization. Upon obtaining the optimal matrix, it can be utilized to transform the 
projection matrices of all images (comprising internal and external orientation parameters, 
excluding camera distortion factors).
	 LiDAR control surface features are interpolated from the LiDAR point cloud using the ICP 
algorithm and then integrated into the self-checking adjustment of the area network as a 
constraint to solve for camera distortion parameters, image internal orientation elements, and 
external orientation elements. At a local level, this optimization could effectively mitigate local 
distortions in the image area network caused by camera distortion, inconsistent image 
connection strength, and resulting error accumulation.
(4)	Cloud control aerial triangulation using DCPs for archived photo processing
	 On the basis of the generated DCPs, historical image aerial triangulation for cloud control is 

re-conducted. Image registration techniques such as the scale-invariant feature transform 
(SIFT) or fast point feature histogram (FPFH) algorithm(16,17) are primarily utilized to match 
cloud control points between DCPs and archived photos. For archived images with POS 
information, direct utilization for registration is possible; however, in cases where POS image 
data is unavailable, geodetic coordinates of each line’s start and end need to be provided first, 
and the initial geodetic coordinates of intermediate photos can be automatically calculated 

Fig. 3.	 (Color online) Point-to-plane distance in ICP algorithm.



1454	 Sensors and Materials, Vol. 37, No. 4 (2025)

from overlap degrees. Time-series archived photos can undergo iterative processing, whereby 
those processed by cloud control photogrammetry with original DCPs are selected as new 
DCPs for subsequent photo processing; all DCPs should be standardized and exported for 
archiving purposes.

(5)	Time-series photogrammetry result output
	 Time-series DCPs are generated from the cloud control aerial triangulation mentioned above, 

enabling the production of traditional DOM, DEM, DLG products and real-scene 3D 
models(18) with temporal information, which can be utilized for historical change analysis.

3.	 Experiment

3.1	 Experimental area

	 To validate the aforementioned method, experiments were conducted within the Fourth Ring 
Road area of Beijing’s Plain District, which spans approximately 320 km².

3.2	 Data sources

(1)	Reference LiDAR data
	 LiDAR point cloud data, acquired using Optech equipment in 2017, had a point cloud density 

of 6–10 points per square meter. 
(2)	Reference oblique photos
	 The 86402 oblique photos captured by AMC, including images from five lenses, with a 

ground sample distance (GSD) of 0.05 m, were all captured in 2017.
(3)	Checkpoints
	 Fifty field points were obtained through RTK measurements with an RMS of 5 cm. 
(4)	Time-series archived aerial photos
	 Digital aerial photos were obtained by UCXP in 2015 with a GSD of 0.2 m. Aerial films were 

obtained by RC-10 in 1975–1990 with a GSD ranging from 0.07 to 0.5 m.

3.3	 Results and Discussion

(1)	The LiDAR data from 2017 was chosen as the reference data source, and the point cloud data 
underwent de-noising to eliminate noise points and mobile ground object points, as well as 
correction for system errors. Following the correction process, the accuracy was assessed 
using checkpoints, revealing an elevation error of ±0.14 m. The results were based on the 
China Geodetic Coordinate System 2000 (CGCS2000) within a 1 km x 1 km block storage.

(2)	Aerial triangulation for cloud control was carried out using the LiDAR point cloud and 
nonsynchronous oblique photos acquired in 2017. The interval of matched cloud control 
points was set at 250 pixels, with an adjustment RMS error of 0.6 pixels. Fifty checkpoints 
were utilized to verify that the inspection accuracy meets the mapping requirements for a 
scale of 1:500, with a planimetric accuracy of ±0.19 m and an elevation accuracy of ±0.24 m. 
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Following the block adjustment, the reference DCPs were generated from the original oblique 
photos, orientation parameters, and coordinates of the matching cloud control points.

(3)	Aerial triangulation or cloud control was carried out using reference GCPs and archived 
photos, which included the 2015 digital aerial and 1975–1990 RC-10 scanned photos. Despite 
a change of more than 50% between the RC-10 photos and those from 2017, it was still 
possible to align them with the main road network. The statistical error results indicate that 
the accuracy of the checkpoints meets mapping standards for both planimetry (±1.5 m) and 
elevation (±0.44 m) at a scale of 1:5000 for the photos with a resolution of 0.5m.

(4)	From the results of cloud control aerial triangulation conducted in 1975–1990, 2015, and 2017, 
a time-series real-scene 3D model can be effectively generated using Context Capture tools. 
The 3D modeling results for the Tonghui River section and Forbidden City are respectively 
presented in Figs. 4 and 5.

(a) (b)

Fig. 4.	 (Color online) 3D modeling results for Tonghui River section of Grand Canal in (a) 1975 and (b) 2015.

Fig. 5.	 (Color online) 3D modeling results for Forbidden City in (a) 1990 and (b) 2017.

(a) (b)
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4.	 Conclusions

	 In this paper, an intelligent processing technology for time-series archived historical aerial 
photos based on cloud control photogrammetry is proposed. From the experimental results, the 
following conclusions were drawn:
	 This approach enhances the effectiveness and reliability of automated processing. Compared 
with the traditional GCP controlled method, it acquires a larger number of GCPs. By utilizing 
cloud control photogrammetry, we can establish a robust network of cloud control points with an 
interval of at least 1000 pixels utilizing both LiDAR and reference data, thereby replacing 
traditional field GCPs. Additionally, the experimental results demonstrate that this method 
allows for the relaxation of orientation accuracy requirements for cloud control points from 0.35 
to 0.6 pixels while achieving the same level of accuracy.
	 Time-series archived photos can be iteratively processed, whereby those processed by cloud 
control photogrammetry with original DCPs are selected as new DCPs for subsequent photo 
processing. To ensure accuracy, the original DCPs were typically selected from those with the 
highest resolution and processed using LiDAR point cloud data. All the DCPs can serve as a 
novel form of output data that is readily reusable in the future.
	 For the aforementioned method, as the time interval between the image to be processed and 
the reference image increases, there are corresponding increases in the occurrence of changes 
and automatic matching point errors, thereby affecting the method’s usability. From the 
experimental results, when significant changes occurred in the images between 1990 and 2015, 
more than 50% of the survey areas did not align with the image control points. By setting the 
threshold for eliminating gross errors at 2–3 times the standard value, it was possible to align 
them with the main road network, facilitating cloud control photogrammetry for long-period 
archived image data without the need for field GCPs.
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