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 On the basis of the meteorological data in the low-emission representative concentration 
pathway (RCP) 4.5 and high-emission RCP8.5 scenarios from the regional climate model output 
for 2021–2099, spatiotemporal changes in mean annual temperature, annual precipitation, and 
the average daily radiation in Northeast China in the future were analyzed using statistical 
methods in this study. The results are as follows. (1) The mean annual temperatures in the 
RCP4.5 and RCP8.5 scenarios are 6.26 and 7.36 °C, respectively, both showing a trend of 
significant increase. The increase rate in the RCP8.5 scenario is higher; there are more years 
with abrupt change in the RCP4.5 scenario. The temperature in the RCP4.5 scenario has two 
periods of 2 and 4 years, whereas that in the RCP8.5 scenario is composed of two periods that 
fail the significance test. The empirical orthogonal functions (EOFs) of the first feature vector 
fields in the RCP4.5 and RCP8.5 scenarios are 90.26 and 96.61%, respectively. The change types 
are consistent, and the sensitive areas of variation mainly appear in the western and northern 
regions. (2) The annual precipitation in the RCP4.5 and RCP8.5 scenarios are 959.95 and 949.02 
mm, respectively, showing a nonsignificant increase trend. Among them, abrupt changes in 
annual precipitation are more frequent in the RCP8.5 scenario, and there are 2 and 6 years in the 
RCP4.5 scenario and 3 and 5 years in the RCP8.5 scenario. The EOFs of the first three feature 
vectors are 65.66 and 66.77%. (3) The average daily radiation are 8.56 and 8.80 MJ/(m2·d) in the 
RCP4.5 and RCP8.5 scenarios, respectively, both showing a significant increase trend, with a 
higher increase rate in the RCP8.5 scenario. The abrupt changes in the two scenarios show a 
large difference, and radiation in the RCP4.5 scenario has a 4-year period and that in the RCP8.5 
scenario has a 3-year period. The EOFs of the first three feature vectors are 66.47 and 81.38% in 
the RCP4.5 and RCP8.5 scenarios, respectively.
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1. Introduction

 In August 2021, the sixth assessment report of the Intergovernmental Panel on Climate 
Change (IPCC) pointed out that the anthropogenic change in global average surface temperature 
from 2010 to 2019 was 0.8–1.3 °C compared with that from 1850 to 1900.(1) To date, studies have 
shown that in the next 50 to 80 years, the global average temperature will continue to increase. 
Global warming will lead to more serious atmospheric evaporation and drought events in the 
world, with the global temperature increase stabilizing at 1.5 to 2.0 °C (Trustworthy Computing). 
Some areas will experience more frequent and severe agricultural and ecological disasters. 
When the global temperature increase reaches 4 °C, the ecosystems of about 50% of human 
settlements will be affected.(2,3) Therefore, understanding the law of climate change and 
mastering the mechanism are important for people to seek advantages in the future, avoid 
disadvantages, and adapt to climate change.(4) The most direct expression of climate change are 
the changes in meteorological elements such as radiation, temperature, and precipitation. 
Therefore, it is valuable to analyze the law of changes in meteorological elements, the effects of 
climate change, and the ways of solving climate change problems in future scientific research.
 Advances in sensor technology have expanded the capabilities of real-time monitoring and 
climate change detection. Multisource data fusion techniques are increasingly employed to 
integrate data from different sensors, improving the robustness of climate projections. In 
particular, the fusion of remote sensing data with ground station observations enhances the 
accuracy of regional climate models (RCMs), such as those employed in CMIP5 representative 
concentration pathway (RCP) scenarios. This integration not only addresses the limitations of 
individual sensor systems but also reduces uncertainties in predicting future climate changes.
 In the study of changes in meteorological elements, the research methods used vary greatly 
depending on research time. The analysis of climate change in historical time series is mainly 
based on observational meteorological data. Ancient books and documents were usually used for 
mining data from hundreds of years ago;(5,6) items of evidence such as tree rings, ice cores, and 
corals are needed to obtain the final conclusion on climate a thousand years ago or in 
paleoclimate research.(7,8) In the study of future climate change, for which there is no 
meteorological data, climate model simulation is often used for research. From the spatial scale, 
climate models can be divided into the global circulation model (GCM) and the regional climate 
model (RegCM). There is still uncertainty in the simulation results for each model because of 
differences in time and space. Compared with GCM, RegCM performs better in simulating 
specific regions.(9) When predicting future climate change, emission scenarios combined with 
RegCM are adopted, such as the AB series by IPCC AR4 and the RCP series by IPCC AR5. The 
output of multiple meteorological elements (such as temperature and precipitation) is discussed 
and coupled with those of other models (e.g., agricultural and hydrological models) for more in-
depth research to draw a conclusion about the impact of future climate change on all 
aspects.(10–12)

 Northeast China, at the highest latitude in China, is a strategic production base for food 
security and one of the regions most affected by global climate change. At 45° north latitude, 
Northeast China, which includes Heilongjiang, Jilin, and Liaoning provinces and Dongsimeng 
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of Inner Mongolia, is a semi-arid region climate zone called the Golden Corn Belt of the 
World.(13) Research on climate change in Northeast China was carried out earlier, initially using 
the historical observation data for Northeast China to analyze the spatiotemporal variation 
characteristics of climate elements such as temperature, precipitation, and wind speed.(14) A 
separate analysis of different times and spaces was also carried out.(15) There have also been 
many studies on analyzing the impacts of climate change on, for example, ecology, water 
temperature, human activities, and agriculture and responses,(16) among which, agriculture was 
found to be affected most profoundly. In terms of the impacts of agroclimatic resources, extreme 
weather, and disasters on agriculture, different scholars used different research targets such as 
corn, rice, soybeans, and other food crops to study the adaptation and response of Northeast 
China to climate change. Such studies deepen our understanding of climate change in Northeast 
China and will ultimately enable the achivement of the advantages and avoidance of the 
disadvantages.
 Over the past 50 years, the temperature increase rate in Northeast China has been about 0.36 
°C/10a within the background of climate warming; this value is higher than the national 
temperature increase rate. This temperature increase also affects the ecological environment and 
will aggravate the frequency of severe weather in the future and make Northeast China one of 
the regions with the largest fluctuations in grain yield in China.(17) The impact of climate change 
on Northeast China has great uncertainty, such as the impact on agriculture. In the northern 
regions with fewer heat resources, warming may have a positive impact on plant varieties and 
planting areas, whereas, in the southern regions with rich heat resources, it may have a negative 
impact, with food crop yields falling by 24–37% by the second half of the 21st century. The 
increase in the number of excessive heat resources may also lead to a contradiction between the 
supply and demand of water resources, resulting in frequent disasters such as droughts and 
floods, threatening the country’s food security. Therefore, analyzing the characteristics of 
climate change in Northeast China is of great significance for improving the ability to cope with 
risks, ensuring food stability, promoting economic development, and maintaining social 
stability. Existing studies have paid more attention to the historical climate change in Northeast 
China, and there are only a few studies on the future spatiotemporal variations of each 
meteorological element. The changes in meteorological elements are the basis of research in 
various fields. In this research, we use a driven regional climate model of the RCP scenarios 
released by IPCC AR6 to predict future meteorological data and sort out various characteristics 
of annual average temperature, annual precipitation, and surface net radiation in Northeast 
China from 2021 to 2099, and further determine the law of climate change. This research is 
aimed at deepening the comprehensive understanding of high-latitude climate change, and 
providing the scientific basis for ecological security, water resources security, and food security,  
thereby ultimately contributing to the international community’s joint response to climate 
change and global sustainable development.
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2. Data Sources and Research Methods

2.1 Data sources

 The future meteorological data in this study are based on the two emission scenarios of 
RCP4.5 and RCP8.5, and released by the IPCC 5th Assessment Report. The BCC_CSM regional 
climate model is used to simulate daily weather data, such as the daily average temperature, 
daily precipitation, daily net shortwave radiation, and daily net longwave radiation, with a 
spatial resolution of 0.5 × 0.5° from 2021 to 2099. BCC−CSM1.0 is a multisphere climate system 
model developed by the National Climate Center, China, and includes atmospheric, land surface, 
ocean, and sea ice components; each component model is generated by coupled through the 
coupler CPL5. The atmospheric model BCC_AGCM2.2 has 26 vertical levels and a longitudinal 
resolution of T16. The longitudinal resolution of the land surface model BCC_AVIM1.0 is T16. 
The ocean model MOM_L40 has 40 vertical levels and horizontal tripolar grids. The 
longitudinal resolution is approximately 0.33–1° and the sea ice component is generated by the 
Sea Ice Simulator (SIS). The model can well reproduce current and future climate changes, 
especially for the Asian monsoon climate. To facilitate the description of the spatiotemporal 
changes of meteorological elements, in this study, we separately describe the annual average 
temperature, annual precipitation, and daily average net surface radiation.(18) To make the 
simulated value close to the observed value, the original grid data is spatially interpolated in 
accordance with to the location of meteorological observation stations in Northeast China. The 
number of meteorological observation stations is 91, and the interpolation method is the bilinear 
spatial difference. The bilinear spatial difference method is widely used for estimating values at 
unsampled points within a grid by linearly interpolating in two dimensions. It is computationally 
efficient and straightforward, making it ideal for large meteorological datasets with relatively 
smooth spatial gradients. Compared with kriging interpolation, the bilinear spatial difference is 
less computationally intensive and does not require assumptions about the spatial correlation 
structure of the data, making it more practical for large-scale applications or datasets with 
limited spatial continuity information.

2.2 Research methods

 In this study, we intend to analyze and discuss the law of time and space changes in 
temperature, precipitation, and net radiation in RCP4.5 and RCP8.5 to ultimately understand the 
impact of different policies on climate change. Trend analysis, abrupt change test, and periodic 
analysis will be used on each meteorological element to discuss the law of time change, and 
wavelet analysis will be used to discuss the law of spatial change.(19)

2.2.1 Abrupt change test

 The moving T test (MTT) was used to test the abrupt changes in the time series of 
meteorological elements in Northeast China. Since the MTT is an artificially set sliding step, the  
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point of abrupt change may drift. Therefore, in this study, we used the Yamamoto test (YAMA) 
to test the year with abrupt change. Once again, if two results are consistent, the abrupt year can 
be basically determined. The specific method is as follows.
 MTT is conducted by calculating the following:
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where 1 x  and 2x  are the means of variances of the time series n1 and n2, and S1 and S2 are the 
variances of the time series n1 and n2, respectively. Generally, n = n1 = n2 is adopted for 
continuous variables. In this study, n = 20 and RSN > 0.60 exceeded the significance level of 
α = 0.01, which was determined as the abrupt point.(20)

2.2.2 Periodic analysis

 Wavelet analysis decomposes the time series into the time–frequency domain by wavelet 
transform to obtain the significant fluctuation pattern of the time series, namely, the periodic 
change dynamic.

2.2.3 Spatial analysis

 The empirical orthogonal function, which can reduce the degree of freedom or dimensionality 
of data, is used to fully analyze and explore the main and other characteristics of changes in 
meteorological elements. It has been widely used in disciplines such as meteorology and 
geography (see Ref. 21 for specific methods). The annual average temperature, precipitation, and 
average daily radiation in Northeast China are expressed in the matrix Xm×n. After standardized 
processing, a new matrix Nm×n is obtained, where m is the year and N is the number of stations. 
The specific decomposition is as follows:

 m n m p p nN V T× × ×= , (3)

where V is the space eigenvector and T is the time coefficient. When p = n is taken, all 
meteorological information can be fully described. The main variation characteristics of 
meteorological elements can be roughly described by feature vectors.(22)
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3. Results and Analysis

3.1 Climosequence trend analysis

 The mean annual temperature in both scenarios shows a trend of significant increase (Fig. 1). 
The average temperature in RCP8.5 increases faster by 0.34 ℃/10a than that in RCP4.5. From 
2021 to 2099, the temperature in the RCP8.5 scenario is about 1.10 °C higher than that in RCP4.5. 
The precipitation has an increasing trend, being greater in RCP4.5, but the difference between 
the two scenarios is not significant. The annual precipitation in the RCP4.5 scenario is about 2.19 
mm higher than that in RCP8.5. In the future, radiation will show an increasing trend. The 
radiation in the RCP8.5 scenario will increase faster, and the annual average daily radiation will 
be 0.12 MJ/(m2·d) higher than that in RCP4.5.

3.2 Abrupt change monitoring of climosequence

 In the RCP4.5 scenario, the year of the abrupt change in average annual temperature is about 
20 years earlier than that in the RCP8.5 scenario (Table 1). The abrupt change in the RCP4.5 

Fig. 1. Annual variations of climate elements in Northeast China from 2021 to 2099. (― Average value ⁃⁃ ⁃ 5-year 
moving average)
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scenario is more concentrated before the 2060s, whereas that in the RCP8.5 is concentrated after 
the 1960s. The reason for this result may be that people’s energy-saving and emission-reduction 
behaviors in the low-emission scenario will cause the temperature to stabilize or slow down its 
increase, whereas, in the uncontrolled high-emission scenario, the temperature will continue to 
rise. Compared with RCP8.5, the abrupt change in average annual precipitation in the RCP4.5 
scenario starts earlier and ends earlier. The abrupt annual radiation change in RCP4.5 starts 
much earlier, and the abrupt time change is more concentrated before the 1960s. The abrupt time 
change in RCP8.5 occurs after 2064. The MTT and YAMA show the same year of abrupt time 
change.

3.3 Spatial analysis of climosequence

 In the RCP4.5 and RCP8.5 scenarios, the first feature vector field of the annual mean 
temperature in Northeast China has the same sign (positive) in the whole region (Fig. 2). This 
shows that the annual mean temperature variation has good spatial consistency and basically 
represents the main distribution characteristics of the annual mean temperature in Northeast 
China. This characteristic of regional consistency accounts for 90.26 and 96.61% of the total 
explained variance in the RCP4.5 and RCP8.5 scenarios, respectively. The maximum absolute 
value regions are different in both climate scenarios. The maximum absolute value region is 
around Ulanhot–Tongliao in the west in the RCP4.5 scenario, whereas it is in the northern region 
in the RCP8.5 scenario. The time coefficient (Fig. 3) corresponding to the feature vector 
represents the time variation characteristic of the spatial distribution represented by the feature 
vector in this region. The time coefficient of the first feature vector shows an increasing trend in 
both scenarios, with that in RCP8.5 increasing faster. The temperature rises faster in the west in 
the RCP4.5 scenario and faster in the north in the RCP8.5 scenario.
 For annual precipitation, in the RCP4.5 scenario, the cumulative explained variance 
contribution rate of the first three feature vectors is 65.66%, and those of the first, second, and 
third feature vectors are 45.36, 10.89, and 9.40%, respectively. The first feature vector is a typical 
field that can indicate the annual precipitation change, which can roughly indicate the spatial 
variation characteristics of precipitation in the study area. There are positive and negative values 

Table 1
Abrupt change years of climate elements in Northeast China from 2021 to 2099.
Meteorological 
Element Methods Results

Scenario RCP4.5 RCP8.5

Temperature MTT 2035 2049* 2058* 2087* 2064 2069* 2080 2090*
YAMA 2035* 2049 2059 2065* 2087 2065 2071* 2080*

Precipitation MTT 2037* 2047* 2057* 2069* 2043* 2054* 2073* 2080* 2088*
YAMA 2037 2047* 2057 2064 2043 2054* 2075* 2088*

Radiation MTT 2036 2051 2062 2071 2087* 2064 2073* 2080 2088*
YAMA 2036* 2051* 2062 2071* 2064* 2073 2080* 2088

Note: *indicates that the abrupt change year passed the significance test.



1498 Sensors and Materials, Vol. 37, No. 4 (2025)

in the whole region (Fig. 4), with the highest positive value in the southeast and the lowest 
negative value in the north. This shows that the variation trend of annual precipitation in the two 
regions is inconsistent. The time coefficient (Fig. 5) shows an overall increasing trend, indicating 
that precipitation will increase in the southeast and decrease in the north in the future. The 
change type of the second and third feature vectors is similar to that of the first feature vectors, 
both with positive and negative values. The time coefficients of the second feature vector are 
high in the east and low in the west, and those of the third feature vector are high in the north 
and low in the south. The time coefficients show an increasing trend, indicating that the time 
coefficient of the second feature vector of precipitation increases in the east and decreases in the 
west. The time coefficient of the third feature vector increases in the north and decreases in the 
south.
 The explained variance of the first three feature vectors is 66.77% in RCP8.5. The explained 
variances of the first, second, and third feature vectors are 48.90, 9.19, and 8.67%, respectively. 
The explained variances of the first feature vectors are all positive in the region, indicating that 
the annual precipitation change has a spatial consistency and can represent the main 
characteristics of precipitation distribution. The absolute value in the south is the largest, 
indicating that the annual precipitation change is the largest in this region. When the time 
coefficient shows an increasing trend, precipitation will increase in Northeast China and more in 

Fig. 2. (Color online) First feature vector field of annual mean temperature.

Fig. 3. First feature vector time coefficient of annual mean temperature.
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Fig. 4. (Color online) Feature vector fields of annual precipitation. (a, b, and c are the first, second, and third 
feature vector fields in RCP4.5, and d, e, and f are the first, second, and third feature vector fields in RCP8.5, 
respectively; the same below)

Fig. 5. Feature vector time coefficient of annual precipitation.
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the south in the future. The explained variances of the second and third feature vectors are both 
positive and negative. The explained variances of the second feature vector are high in the north 
and low in the south, and line 0 is bounded by Tongliao. The explained variances of the third 
feature vector are high in the southeast and low in the northwest. Line 0 extends from Shenyang-
Changchun to the northeast. When the second feature vector time coefficient shows an 
increasing trend, the precipitation will increase in the north and decrease in the south. When the 
third feature vector time coefficient shows a decreasing trend, the precipitation will increase in 
the northwest and decrease in the southeast.
 The radiation explained variance of the first three feature vectors is 66.47% in the RCP4.5 
scenario. The explained variances of the first, second, and third feature vectors are 42.82, 16.78, 
and 6.86%, respectively. The explained variance of the first feature vector is positive, indicating 
that the radiation changes show consistency in space. The eastern region with the highest value 
is the most sensitive (Fig. 6). The time coefficient shows an increasing trend, and the radiation 
will increase the most in the eastern region in the future. Both positive and negative values of the 
second and third feature vectors show that radiation has opposite variation characteristics in 
different regions under the same general trend. The time coefficient (Fig. 7) of the second 
feature vector shows an increasing trend, so it can be considered that radiation increases in the 

Fig. 6. (Color online) Feature vector fields of daily average radiation.
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south and decreases in the north. When the third feature vector is decreasing, the future radiation 
will decrease in the central part and increase in the south and north.
 The radiation explained variance of the first three feature vectors is 81.38% in the RCP8.5 
scenario. The explained variances of the first, second, and third feature vectors are 69.03, 8.31, 
and 4.23%, respectively. The results of the first feature vectors show that the radiation space 
variation is consistent and the high-value region is the eastern region. The time coefficient shows 
an increasing trend, indicating that the radiation will increase the most in the eastern region in 
the future. The second and third feature vectors have positive and negative values, and the time 
coefficients show a decreasing trend. The second feature vector of radiation will decrease in the 
north and increase in the south. The third feature vector will decrease in the southeast and 
increase in the north.

4. Conclusions

 In this study, we used the data simulated in an RCP scenario with high reliability. The 
scenario is based on the intensity of atmospheric radiation considering the emission policy 
factor, which makes the research results closer to the real situation and the law of climate change 
can more accurately analyzed. In previous studies, the climate changes in the traditional 
Northeastern region were analyzed. For example, with the multimodel data, the temperatures in 
RCP4.5 and RCP8.5 show an increasing trend from 2016 to 2099, which is consistent with the 
results of this study. The temperature increase rates in RCP4.5 and RCP8.5 are 0.22 and 0.53 
°C/10a, which are 0.07 and 0.04 °C/10a higher than the results of this study, respectively. The 
precipitation in both scenarios increases and the increase is faster in RCP8.5, but with different 
rates compared with those in Ref. 23. The factors leading to the above differences may be the 
differences in time, the area of the study, or the climate model adopted. In this study, only three 

Fig. 7. Feature vector time coefficient of average daily radiation.
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meteorological elements of radiation, temperature, and precipitation are considered to analyze 
the law of future climate change. However, in actual production and life, other meteorological 
elements, such as air humidity and wind speed, will also have a non-negligible impact on people. 
If the changes in the above-mentioned factors can be considered, the assessment of the law of 
climate change in Northeast China will be more accurate.
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