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	 Mango is a fruit that has high economic value for several countries, so it is widely cultivated 
through technological engineering, including the implementation of artificial intelligence 
through vision sensing based on object detection methods. In this study, we proposed a detection 
model by integrating a You-Only-Look-Once version 7 Tiny (YOLOv7-Tiny) detection model 
and U-Net segmentation to detect plant growth through mango leaf diseases. The dataset 
development was carried out through image collection from several resources and image 
augmentation, which resulted in a total of 13004 images consisting of eight classes, namely, 
anthracnose, bacterial canker, cutting weevil, die back, gall midge, sooty mold, powdery 
mildew, and normal. The training, testing, and validation data were set to 70, 20, and 10%, 
respectively. The comparative experiment involved other models, namely, YOLOv4-Tiny, 
YOLOv5n, YOLOv7-Tiny, and YOLOv8n. The experimental results showed that the proposed 
model has outstanding performance compared with the other models with a mean average 
precision of 90.22%, while precision, recall, and F1-score have the percentages of 88.42, 87.93, 
and 88.17%, respectively. In practical applications, the proposed model has significant results in 
detecting mango leaf diseases. Moreover, the proposed model has good performance in terms of 
energy efficiency, which is represented by the model size and inference time generated by the 
model.

1.	 Introduction

	 Mango cultivation has high economic value for several countries and high demand in the 
world market. Several methods have been developed to maintain the supply and demand of 
mangoes, such as the use of pesticides, counseling and training, agricultural engineering, 
infrastructure development, and technology implementation. However, one of the main 
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challenges in optimizing mango production is the limited land area. Thus, the alternatives that 
can be implemented in increasing the productivity of mango cultivation, in terms of both 
quantity and quality, include the implementation of artificial intelligence (AI)-based 
technologies. Several AI-based technologies that can be integrated with the agricultural sector 
include IoT-based monitoring systems, integrated big data, and intelligent video surveillance for 
precision agriculture.(1–3)

	 Mango plant visualization is a representative indicator of how the growth of mango plants 
can be optimized. An intelligent model is embedded into vision sensing to perform detection and 
classification tasks in determining the condition of mango plants, whether they are in optimal 
condition or not, based on the condition of the leaves, fruit, and tree trunk. The results of 
intelligent model detection can be recommendations for users or triggers on actuators to carry 
out certain instructions. Several researchers have developed an intelligent mango detection 
model based on vision sensing, such as machine vision to detect the fruit count and fruit size of 
mango plantations. The proposed model is MangoYOLO, which achieves a mean average 
precision (mAP50) of 98.8%.(4) Wu et al. developed a mango detection and monitoring system 
for greenhouses.(5) The data sources used were the AWS database and a deep learning model 
developed to detect pests in mangoes. The experimental results showed an accuracy of 90% and 
an F1-score of 95%.(5) Huang and Wu constructed GCS-YOLO4-Tiny, which is a group 
convolution aimed at detecting the multiple maturity stages of a mango fruit.(6) The model 
modification was carried out by adding a squeeze-and-excitation module to increase accuracy 
and involve group convolution in order to reduce the computational cost. The evaluation metrics 
of the model’s performance, including mAP, recall, F1-score, and precision, reached 93.42, 
91.00, 90.80, and 90.80%, respectively.(6) On the other hand, Roy and Bhaduri developed the 
real-time growth stage detection model by combining DenseNet and YOLOv4. The evaluation 
metric of experimental results indicated an mAP of 96.20% and an F1-score of 93.61%.(7)

	 The above-mentioned works only focus on the performance of the model; however, in the 
context of a monitoring system based on vision sensing, it is necessary to consider the 
computational cost of the constructed model, especially when it is implemented in practical 
applications such as an edge computing system. The edge computing itself is an intelligent 
computing system that has limitations such as memory storage, but has reliability in data 
transmission, real-time detection, reduced latency, and increased privacy and security.(8,9) Edge 
computing can increase productivity in the agricultural sector, provide real-time data to the 
cultivator, and generate integrated and comprehensive data.(10) Therefore, the intelligent model 
to be implemented must have good adaptability in terms of memory consumption, which will 
ultimately support energy efficiency sustainably.(11)

	 In this study, a mango leaf disease detection model based on YOLOv7-Tiny was developed. 
This model has compatibility with limited resources and less memory consumption so as to 
support energy efficiency. This model was integrated with a segmentation technique that 
increases the precision at the pixel level of each instance object, which will increase model 
performance to detect mango leaf diseases. The practical application of lightweight mango 
object detection was implemented on edge computing devices through multiple evaluation 
metrics including model evaluation metrics, such as accuracy, precision, and recall, and energy-
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efficient analysis metrics, such as model size and inference time. The developed device can 
provide convenient technology in mango cultivation monitoring with low computational cost 
and high accuracy.

2.	 Materials and Methods

	 This section consists of several subsections, including (1) the proposed system, which 
represents the main components integrated into the system; (2) the architecture of the proposed 
lightweight mango detection model that explains the original architecture of YOLOv7-Tiny, the 
segmentation technique, and the modification of YOLOv7-Tiny, which implements the 
segmentation technique; (3) the experimental setup that describes the dataset used in this study, 
experimental area, and evaluation metrics; and (4) the hardware and software used in this study. 

2.1	 Proposed system

	 Figure 1 shows the proposed system containing several elements that are connected. The 
input image in the form of a mango leaf is captured by the vision-sensing device to be processed 
and transmitted to the edge computing system, which is integrated with the cloud system. The 
proposed model is integrated into an edge computing system that combines YOLOv7-Tiny and 
the segmentation method to classify the input image. The classification task was conducted to 
classify the image source on the basis of eight classes, namely, anthracnose, bacterial canker, 
cutting weevil, die back, gall midge, sooty mold, powdery mildew, and normal. The proposed 
system provides real-time plant disease monitoring and diagnosis. With edge computing, the 
system can process images locally, lowering latency and allowing for rapid actions. Furthermore, 
the capacity to categorize various diseases and evaluate overall plant health is useful for 
agricultural cultivators.

Fig. 1.	 (Color online) Proposed system.
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2.2	 State-of-the-art YOLOv7-Tiny
	
	 The foundation model that will be employed in this study is the state-of-the-art YOLOv7-
Tiny as depicted in Fig. 2. The initial You Only Look Once (YOLO) model was designed in 
2016, which is a significant breakthrough in the object detection model, providing more accurate 
and faster detection.(12) Significant developments are found in YOLOv4, where the concepts of 
backbone, neck, and head as the structure of the YOLO architecture are introduced. The 
subsequent versions continued to undergo modifications and improvements until YOLOv7 was 
developed, where there is a key innovation with the presence of an extended efficient layer 
aggregation (E-LAN) network and the integration of several modules in the head structure such 
as SPPCSP, MCB, and CBL in order to achieve multiscale feature fusion.(13) The light version of 

Fig. 2.	 (Color online) Architecture and detailed modules of YOLOv7-Tiny.(13)
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YOLOv7 is YOLOv7-Tiny, which has the advantage of faster detection and can adapt to limited 
memory capacity devices.(14) 
	 The structure of YOLOv7-Tiny consists of the backbone, neck, and head network. The 
backbone network consists of several modules such as CBL, MP, and MCB. The detailed CBL 
modules are shown in Fig. 2(C), which consists of a convolutional 2D layer, batch normalization, 
LeakyRelu, and MP that indicates the MaxPool layer. The MCB module has two branches, 
which are used to gain network efficiency by extracting more features and having the robustness 
of the network. Several CBL modules are involved within the MCB module, which has the final 
CBL module processed as superimposed, which is represented in Fig. 2(B). In the first backbone 
network, there are two CBL modules followed by the combination of MCB and MP. The last 
module in the backbone structure is SPPCSP, which is connected to CBL at the neck structure. 
The neck network consists of CBL, MCB, and Upsample modules. In addition, concatenation 
integrates several modules. The second and third MCB modules in the backbone network are 
connected to the CBL modules at the neck structure, which has a kernel size of 1 and a step size 
of 1 for each CBL. The first Upsampling module is used to balance the feature image after 
feature extraction operation is conducted by the CBL module; then, it is concatenated and 
forwarded into the MCB module. On the other hand, the head network is an integration between 
the MCB in the neck network and the CBL in the head network. The three CBL modules have a 
kernel size of 3 and a step size of 1, where the top, middle, and bottom of the CBL modules have 
dimensions of 80 × 80 × 64, 80 × 80 × 128, and 80 × 80 × 256, respectively. CBL modules aim to 
handle feature extraction and integrate the number of channels generated by MCB modules that 
have extracted the network’s features in different sizes.
	
2.3	 Overview of U-Net segmentation method

	 U-Net segmentation refers to the U-shape architecture that consists of two parts, namely, an 
encoder and a decoder, as depicted in Fig. 3 on the left and right sides, respectively. The encoder 
acts as the contracting path, whereas the decoder acts as the expanding path.(15) The feature 
extraction is conducted in the encoder part of the input image. There are several layers such as a 
series of convolutional layers followed by max pooling layers. Convolutional layers are used to 
identify the image’s features and patterns, and max pooling layers can reduce the feature maps’ 
spatial dimensions. Therefore, the network focuses only on the important information features. 
Moreover, the decoder part handles the upsampling of the feature map and reconstructs the 
image segmentation. The decoder consists of upsampling layers that aim to enhance the feature 
map’s spatial dimensions and convolutional layers that handle the details of the output image by 
refining the segmentation. U-Net has three main features, namely, symmetric architecture, skip 
connection, and the efficiency number of parameters.(16) Symmetric architecture is represented 
by having mirror images of the encoder and decoder parts to enable capturing the context and 
details of a fine grain. Skip connection is the implementation of concatenation between the 
feature maps in the encoder part and the upsampling feature map in the decoder part. The 
efficiency number of parameters indicates the ability of the architecture to employ a limited 
number of datasets because it has an efficient and small network compared with other related 
architectures.
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2.4	 Architecture of improved mango disease detection model
	
	 Figure 4 shows the improved mango disease detection model, which is the integration of the 
lightweight YOLOv7-Tiny model with the U-Net segmentation method. In the initial stage, the 
detection is carried out using YOLOv7-Tiny to determine whether the mango leaf has a disease 
or not. If the leaf does not have a disease, then the leaf is considered normal; otherwise, the 
segmentation will be carried out using the U-Net model. The encoder and decoder mechanisms 
in U-Net are used for feature extraction and upsampling in the segmentation stage. After passing 
the segmentation stage, the next step is conducting the feature map operation with dimensions of 
row, column, and channel of 256 × 256 × 64, respectively. The feature map can capture more 
abstract and semantic information of the processed image to enhance the accuracy of the model 
in performing the disease classification. Then, resampling is applied to align the processed 
image after feature map processing. This aims to ensure that both input and output feature maps 
have proportional dimensions. The two convolutional blocks with sizes of 3 × 3 and 1 × 1 are 
adopted to refine the feature extraction based on the resampling stage. Therefore, the model has 
outstanding performance in defining in detail the diseases of the mango plant, especially mango 
leaf diseases.

2.5	 Dataset

	 The data sources used in developing the dataset come from public and private repositories. 
Public repositories come from Google Image and Kaggle, whereas private repositories are 
home-made datasets captured by a Canon PowerShot S95 digital camera from mango plantations 

Fig. 3.	 (Color online) U-Net segmentation architecture.(15)
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located at coordinates of 24° 08’ 48.0” (north–south position) and 120° 43’ 54.3” (east–west 
position) of Taiping District, Taichung City, Taiwan. The initial number of leaf images collected 
was 4735 from eight classes. Then, image augmentation was performed to enhance the size of 
the dataset by utilizing rotating, flipping, and scaling techniques. After the image augmentation, 
the mango leaf dataset developed in this study contains a total of 13004 images divided into 
training, testing, and validation data with percentages of 70, 20, and 10%, respectively. This 
dataset consists of eight classes, including seven classes of mango leaves with anthracnose, 
bacterial canker, cutting weevil, die back, gall midge, sooty mold, and powdery mildew, and one 
class of healthy mango leaves (normal). Specifically, Table 1 shows a detailed dataset employed 
in this study. 
	 The next stage is image annotation where labeling is conducted for the instance object in the 
entire image. The purpose of image annotation is to allow the model to recognize and locate the 
instance object on the basis of the predicted class. In this study, the tool used in image annotation 
is LabelImg.

2.6	 Evaluation metrics

	 Several evaluation metrics are used to measure the performance of the proposed model, such 
as precision, recall, mAP, and F1-score. Moreover, several indicators are considered to evaluate 
the energy efficiency of the model, which requires data on inference time, memory consumption, 
inference energy, storage consumption, and peak power consumption. Precision is measured to 

Fig. 4.	 (Color online) Architecture of proposed model.
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determine the consistency of the positive prediction that has the correct value, and it is 
represented as 
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	 Recall is used to evaluate how the model can recognize the relevant target object within an 
image or a video. It is measured by dividing true positive by the summation of true positive and 
false negative.(17) 
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	 mAP is used for evaluating the performance of object identification models and F1-score is 
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2.7	 Edge computing configuration

	 The edge computing system implemented in this study consists of three layers, namely, the 
physical layer, edge layer, and cloud layer. The physical layer consists of a vision-sensing device 
in the form of an HD camera that detects the condition of the plant. The image visualization of 
the mango plant’s current condition is then transferred to edge computing on the edge layer, 

Table 1
Detailed dataset employed in this study.
Class Name Training Testing Validation Total
Anthracnose 1183 338 169 1691
Bacterial Canker 1274 364 182 1821
Cutting Weevil 1092 312 156 1560
Die Back 1001 286 143 1430
Gall Midge 910 260 130 1300
Sooty Mold 1274 364 182 1821
Powdery Mildew 1183 338 169 1691
Normal 1183 338 169 1691
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which consists of the network system and the edge computing itself. The proposed intelligent 
model is embedded in edge computing to conduct the task of detecting the images that have been 
captured by the vision-sensing device. The data that has been processed on the edge layer is then 
transmitted to the cloud layer as part of the storage mechanism, which is ultimately accessed by 
the user as real-time data on the condition of the mango plant. Figure 5 shows the configuration 
of the edge computing system. 

2.8	 Hardware and software

	 In this study, there are several devices including hardware and software that support the 
implementation of the proposed model in detecting the conditions of the mango plant in real 
time. Table 2 shows the hardware and software used in this study. 
	
3.	 Results and Discussion

	 The training model stage is performed on a computer with the following specifications: CPU 
is Intel ® Core™ i5-13500 2.50 Gigahertz, GPU is NVIDIA GeForce RTX4070, RAM is 32.0 
GB, and GPU engine is NVIDIA CUDA with 5888 cores. There are several experiments to 
evaluate the proposed model performance such as those involving model evaluation performance, 
comparative experiment, implementation in practical applications, and the analysis of energy 
efficiency. 

3.1	 Model evaluation performance

	 The evaluation metrics indicate the performance of the model based on class name. Table 3 
shows the performance evaluation model using four evaluation metrics, namely, precision, 

Fig. 5.	 (Color online) Configuration of edge computing system.
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recall, AP, and F1-score. In the proposed model, we can see how the model performs on the eight 
classes evaluated. Overall, the four evaluation metrics indicate a percentage greater than 80%. In 
the precision metric, four classes have a percentage greater than 90%, namely, bacterial canker, 
gall midge, sooty mold, and powdery mildew with percentages of 93.52, 91.28, 93.22, and 
92.14%, respectively. In the AP evaluation metric, there are four classes with a percentage less 
than 90%, namely, anthracnose, cutting weevil, die back, and normal with percentages of 86.64, 

Table 2
(Color online) Hardware and software in the system.
Name Detailed Description Visualization

NVIDIA Jetson Nano

The version of NVIDIA Jetson Nano is 
B01 with a 128-core Maxwell™ GPU and 
a Quad-core ARM A57 CPU @ 1.43 GHz. 
There are 9 pins as follows: pin A is the 
DC input, pin B is the monitor port, pin 3 
is the USB connector, pin 4 is the Ethernet 
port, pin 5 is the USB port, pin 6 is the LED 
indicator, pin 7 is the 40-pin header, pin 8 is 
the camera connector, and pin 9 is the main 
storage.

Ameba HD Camera

The Ameba HD camera employs an AI 
camera of the AMB82-MINI type and is 
integrated with Realtek RTL8735BDM SoC. 
There are 4 pins as follows: pin A is the HD 
wide range of the Ameba camera, pins B 
and D represent the device pinout, and pin 
C is the USB port.

Firebase Cloud System

Firebase is provided by Google Cloud that 
has three features, namely, cloud firestore, 
cloud storage, and cloud function. Cloud 
firestore is the database NoSQL platform, 
which has f lexibility in data modeling. 
Cloud storage is the secure and robust 
storing and serving platform, while cloud 
function is the serverless code execution 
platform.

Table 3
Proposed model performance based on class.
Class Name Precision (%) Recall (%) AP (%) F1-score (%)
Anthracnose 82.15 84.62 86.64 83.37
Bacterial Canker 93.52 94.74 95.13 94.13
Cutting Weevil 86.47 87.52 88.39 86.99
Die Back 83.85 80.17 82.24 81.97
Gall Midge 91.28 90.06 95.41 90.67
Sooty Mold 93.22 90.18 94.85 91.67
Powdery Mildew 92.14 93.65 93.36 92.89
Normal 84.75 82.48 85.72 83.60
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88.39, 82.24, and 85.75%, respectively. The lowest value is found in die back with an AP 
percentage of 82.24% and the highest value is found in gall midge with an AP percentage of 
95.41%. In the F1-score metric, the highest percentage is in bacterial canker with an AP 
percentage of 94.13%. Figure 6 shows the losses, including the training and validation losses. 
The training and validation losses are indicated by blue and red lines, respectively. Initially, both 
losses have different starting points, where the initial training loss is 18.26 and the validation 
loss is 19.14; in both models, there is a significant decrease in the first epoch of 2500. In epoch 
2501 to 10000, there is a gradual decrease in loss, where at the end of the training epoch, a 
training loss of 0.048 and a validation loss of 0.052 are obtained.
	 The model performance was also evaluated using a comparative performance experiment 
between the original YOLOv7-Tiny and the proposed model. The results are shown in Table 4, 
where two models are evaluated. The first is the original model of YOLOv7-Tiny and the other is 
the proposed model, which is the integration of YOLOv7-Tiny and the segmentation technique. 
The selection of this comparative model was carried out to determine the significance of the 
detection performance of the proposed model, which is the integration of YOLOv7-Tiny and the 
segmentation technique, compared with the original model of YOLOv7-Tiny. Overall, both 
models show optimal results including the metrics of precision, recall, mAP, and F1-score. 

Fig. 6.	 (Color online) Training and validation losses of the proposed model.

Table 4
Performance comparison of the proposed model and original YOLOv7-Tiny.
Model Name Precision (%) Recall (%) mAP (%) F1-score (%)
YOLOv7-Tiny 82.25 81.54 84.43 81.89
Proposed Model 88.42 87.93 90.22 88.17
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However, the proposed model indicates a higher performance than the original YOLOv7-Tiny. In 
terms of mAP percentage, the proposed model shows an increase of 7.50%, the original 
YOLOv7-Tiny achieves only 84.43%, and the proposed model shows 90.22%. Likewise with the 
metrics of precision and recall where in the proposed model there is an increase in percentage, 
gains of 88.42 and 87.93% are obtained. This increases the F1-score where the original YOLOv7-
Tiny has a percentage of 81.89%, while the proposed model has 8.28% higher than the original 
YOLOv7-Tiny.

3.2	 Comparative experiment

	 To evaluate the proposed model performance, a comparative experiment was conducted, 
which involves other tiny models such as YOLOv4-Tiny, YOLOv5n, YOLOv7-Tiny, and 
YOLOv8n. The selection of the proposed model is based on its characteristics, namely, its use of 
fewer layers and inclusion in the category of tiny model versions. Therefore, the comparative 
experiment conducted provides the objective result. The configuration of the training epoch is 
10000 with a learning rate of 0.01. Table 4 highlights the significance between the original 
model of YOLOv7-Tiny and the proposed model, while Table 5 shows the experimental results 
of the proposed model compared with those of the other models. In the precision metric, all four 
models, namely, YOLOv4-Tiny, YOLOv7-Tiny, YOLOv8n, and the proposed model, have 
percentages above 80%, whereas YOLOv5n has the lowest percentage of 78.65%. By contrast, 
the recall metric indicates that all the models have percentages above 80%, where the highest 
percentage is found in the proposed model. Overall, in the mAP metric, all the models have 
percentages above 80%. There are four models with mAP percentages between 80 and 90%, 
namely, YOLOv4-Tiny, YOLOv5n, YOLOv7-Tiny, and YOLOv8n with mAP percentages of 
84.06, 82.75, 84.43, and 88.35%, respectively. The highest mAP percentage is found in the 
proposed model with a percentage of 90.22%. Figure 7 shows the mAP results of the five models 
compared during 10000 training epochs. Overall, all five models experienced a significant 
increase in mAP during the first epoch of 2000. Then, in the next epochs, there were a slowdown 
in the increase and a tendency to fluctuate. This can be seen in YOLOv4-Tiny, which is indicated 
by the black line where there is a fluctuation during epoch 3000 to 4000. On the other hand, the 
proposed model, which is represented by the purple line, indicates a more stable epoch increase; 
in other words, the mAP produced during the training epoch is more stable. 

Table 5
Performance characteristics of the proposed model and state-of-the-art models.
Model Name Precision (%) Recall (%) mAP (%) F1-score (%)
YOLOv4-Tiny 83.12 82.64 84.06 82.88
YOLOv5n 78.65 80.33 82.75 79.48
YOLOv7-Tiny 82.25 81.54 84.43 81.89
YOLOv8n 85.63 83.27 88.35 84.43
Proposed Model 88.42 87.93 90.22 88.17
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3.3	 Implementation in practical applications

	 From the previous experiment, the proposed model, which is the integration of the 
YOLOv7-Tiny and U-Net segmentation model, has outstanding performance compared with 
other tiny or nanosize YOLO series. The next experiment was conducted by implementing the 
proposed model in practical applications. As mentioned above that the proposed model will be 
implemented in an edge computing system, the NVIDIA Jetson Nano B01 version is utilized for 
testing in real-world data to determine its capacity and flexibility as the edge computing system. 
In the practical experiment, it can be seen how the performance model is based on different 
models including YOLOv4-Tiny, YOLOv5n, YOLOv7-Tiny, YOLOv8n, and the proposed 
model. Table 6 shows the experimental results of the real-world data where there are three input 
images, namely, image A, image B, and image C. The three images have different characteristics; 
image A represents a mango leaf with bacterial cancer, image B a mango leaf with anthracnose, 
and image C a mango leaf with gall midge. All five models can perform detection tasks on 
mango leaf diseases, but some models exhibit misclassification detection or cannot detect all the 
instance objects, especially the tiny objects. The detection task performance of the proposed 
model indicates a significant result compared with that of the other models; that is, the proposed 
model can detect more leaf conditions. For example, in image C, the proposed model can 
correctly detect the leaves with gall midge and normal leaves. In addition, some tiny objects can 
be detected using the proposed model precisely and accurately. When YOLOv4-Tiny and 
YOLOv5n are compared, some object classes cannot be detected by both models. Furthermore, 
in image A, the proposed model can detect more image leaf disease conditions with bacterial 
canker classes than YOLOv8n; that is, the proposed model can detect six diseased leaves, 

Fig. 7.	 (Color online) mAP results of five trained models.
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whereas YOLOv8n can detect only four. In addition, there is only one normal leaf detected in 
YOLOv8n, while there are two normal leaves detected in the proposed model, which also 
represents the actual condition. YOLOv4-Tiny and YOLOv5n only detect two diseased leaves 

Table 6
(color online) Real-world experimental results.
Model Name Image A Image B Image C

Input Image

YOLOv4-Tiny

YOLOv5n

YOLOv7-Tiny

YOLOv8n

Proposed Model
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and one normal leaf, whereas YOLOv7-Tiny has more leaves detected, namely, three diseased 
leaves and one normal leaf. Therefore, on the basis of the experimental results in practical 
applications, the proposed model has optimal performance in terms of detection task in the real-
world data compared with the other models. This indicates that the proposed model is highly 
accurate and precise in detecting mango diseases.

3.4	 Analysis of energy efficiency

	 Energy efficiency in the context of implementing the proposed model on an edge computing 
system is associated with how the generated parameters are represented by the model size. The 
larger the size of the model, the higher the memory consumption or computational cost on the 
edge computing system. Moreover, the smaller the size of the model, the lower the computational 
cost. In addition, the efficiency of the model can be seen from how fast the model performs 
inference, as represented by the inference time. Figure 8 shows the performance of the model in 
terms of how memory is consumed and how the detection performance is based on the five 
models compared, namely, YOLOv4-Tiny, YOLOv5n, YOLOv7-Tiny, YOLOv8n, and the 
proposed model. Figure 8(a) shows the model size with the x-axis being the model name and the 
y-axis being the model size in megabytes (MB). The five models have sizes below 7 MB, and the 
model with the largest size is YOLOv8n (6.4 MB). There are three models with sizes below 
6 MB, namely, YOLOv5n (5.8 MB), YOLOv7-Tiny (5.1 MB), and the proposed model (5.2 MB). 
Of the five models, YOLOv7-Tiny has the smallest size with only 5.1 MB. However, the size of 
the proposed model is not significantly different from that of YOLOv7-Tiny, which is 0.1 MB 
larger with a size of 5.2 MB. Figure 8(b) shows the inference time of each model, where the 
y-axis indicates the inference time in millisecond (ms). YOLOv8n has the longest inference time 
of 34 ms, but the other four models have inference times below 30 ms, namely, YOLOv4-Tiny, 
YOLOv5n, YOLOv7-Tiny, and the proposed model. Of the five models, the proposed model has 

Fig. 8.	 (Color online) (a) Model size result and (b) inference time of each model.

(a) (b)
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the shortest inference time of 20 ms. This result indicates that the size and inference time of the 
proposed model are more efficient and optimal for use in the edge computing system. This can 
be seen in the size of the proposed model, which is included in the low category but has the most 
optimal detection performance in the context of inference time. Therefore, the proposed model is 
recommended to be implemented in an edge computing system that has good energy efficiency 
with fast and accurate detection performance.

4.	 Conclusions

	 In this study, the proposed model has been developed to detect disease conditions in mango 
leaves by integrating the state-of-the-art YOLOv7-Tiny and U-Net segmentation. The proposed 
model has achieved the outstanding performance based on comprehensive experiments, which is 
indicated by the optimal accuracy detection performance and energy efficiency. In practical 
applications where the model is embedded into an edge computing device, the proposed model 
can detect objects in detail in the classification of mango leaf diseases. In terms of energy 
efficiency, which is represented by model size and inference time, the proposed model indicates 
the optimal performance. In the future, the structure of the model can be modified in order to 
achieve the optimal detection task, such as implementing the attention module mechanism or 
optimizing the block module in the structure of the model. In addition, the proposed model is 
suggested for detecting not only mango diseases, but also fruit ripeness or appropriate pest 
management. The comparative experiment can be conducted with the recent YOLO versions, 
such as YOLOv11 and YOLOv12.
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