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	 Accurately identifying bleeding sources during minimally invasive surgery (MIS) is crucial 
for patient safety, faster discharge, and reducing operative time and postoperative complications. 
Although advances in imaging and bleeding segmentation have improved detection, pinpointing 
precise hemorrhage origins remains challenging owing to high variability in surgical 
environments. To address this, Bleeding Alert Maps (BAMs) were initially generated using a 
fixed Gaussian distribution; however, this static assumption was insufficient to capture the full 
range of bleeding variability. In this study, we systematically investigate kurtosis as a key factor 
in BAM construction, evaluating uniform (low kurtosis), Gaussian (moderate kurtosis), and 
exponential (high kurtosis) ground truth distributions. We apply a generative adversarial 
network (GAN) to produce BAMs from these distributions, each tested across multiple spread 
parameters (σ for Gaussian and s for exponential). Our results show that while Gaussian-
distribution-based BAMs improve up to σ ≈ 40 and then plateau, exponential-distribution-based 
BAMs continue to yield accuracy gains beyond this threshold, demonstrating a clear 
distributional advantage. Notably, the best exponential model (s = 50) achieved a ~92% bleeding-
point detection rate (137 true positives out of 150), ~85% accuracy, 88% precision, and an F1 
score of 0.898. These findings underscore how refining the distribution shape, particularly 
increasing its kurtosis, significantly enhances the reliability, applicability, and clinical value of 
automated bleeding source localization in MIS. 

1.	 Introduction

	 Minimally invasive surgeries (MISs), including endoscopic procedures, are increasingly 
adopted across various specialties—abdominal, thoracic,(1) pelvic, and breast(2)—owing to 
improved patient recovery and reduced complications.(3) However, endoscopic surgeries 
introduce risks not encountered in open surgeries. Intraoperative bleeding is a critical 
determinant influencing patient prognosis during these procedures.(4) While inserting an 
endoscopic camera and forceps into the abdominal or thoracic cavity enables the removal of 
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lesions such as tumors without making large incisions, it also presents distinct challenges.(5) The 
narrow, limited field of view increases the likelihood of instrument interference, and because of 
this restricted visibility, there is a considerable risk of damaging organs beyond the visual field 
or at its periphery. Bleeding can further reduce visibility, complicating the procedure.(6,7) 
Additionally, the limited number of instruments that can be introduced restricts the methods 
available for managing bleeding.(8,9) Consequently, locating the origin of bleeding—the site 
requiring hemostasis—is often difficult. As a result, the patient’s blood volume may not be 
maintained, leading to worsened postoperative recovery and potential complications. In such 
cases, surgeons may ultimately need to convert to open abdominal or thoracic surgery, increasing 
the patient’s burden. 
	 Thus, several systems for bleeding recognition were proposed in previous studies. For 
example, Okamoto et al.(10) proposed a real-time method for segmented blood regions to support 
hemostasis during laparoscopic surgery. Jiang et al.(11) developed an AI system that uses 
bounding boxes to indicate bleeding areas. While these methods accurately estimate bleeding 
regions, they do not provide information about the specific sites where hemostasis is needed. 
This limitation arises as obtaining precise information about the bleeding origin is challenging. 
Chang et al.(12) introduced a method using particle swarm analysis and García-Martinez et al.(13) 
introduced a method using computer vision to estimate bleeding sources; however, introducing 
these previous approaches for precise bleeding point detection is difficult. In a recent study, a 
multitask convolutional neural network (CNN) was applied in a BLAIR system(14) for bleeding 
detection in robotic prostatectomy, using semantic segmentation and classification to detect 
blood accumulation, but it lacks precise localization of bleeding origins and only provides 
regional alerts rather than pinpoint accuracy​. Similarly, Hua et al. (15) employed a Faster R-CNN 
with optical flow analysis for bleeding detection in laparoscopic surgery, but their approach is 
constrained to bounding-box-based segmentation, making it incapable of identifying exact 
bleeding points or differentiating between minor and critical hemorrhages​.
	 In response, Sogabe et al.(16) proposed a new method called the Bleeding Alert Map (BAM) 
for estimating bleeding origin information using the generative adversarial network (GAN)-
based method. This technique employs a silicone-based data acquisition device known as a 
mimic organ system to obtain both bleeding origin information and images during bleeding. By 
formulating this information as a dataset, they enabled an AI system to learn the relationship 
between accurate bleeding point coordinates and bleeding image information. Recognizing that 
navigating surgeons towards the bleeding point using only the point information could lead to 
unexpected hazards owing to reasons such as AI prediction failures, surgical errors, or positional 
deviations caused by patient movement, they proposed presenting the bleeding origin 
information as an alert map. This map indicates the risk level of the bleeding origin’s presence, 
enhancing safety during practical applications. 
	 The initial heat map was generated by assuming a normal distribution centered at the 
bleeding origin. However, issues arose regarding this approach because areas with a high 
likelihood of bleeding are not expected to follow a normal distribution, exposing a limitation in 
the previous work. Therefore, in this study, we aim to improve the accuracy of the BAM by 
verifying the BAM framework using various model-based ground truths (GTs) of alert map 
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information. We will examine the optimal distribution and its parameter design for this GT 
information to enhance the precision of the BAM system.
	 The selection of an appropriate distribution for generating GT data in alert maps is critical for 
accurately capturing the spatial characteristics of bleeding risk during endoscopic surgery. The 
normal distribution(17) is one of the most widely used statistical models for representing spatial 
data, owing to its simplicity and symmetric properties. In the context of alert maps, it is assumed 
that risk levels decrease symmetrically with distance from the bleeding point. This model is 
computationally efficient and serves as a baseline for comparison with more complex 
approaches. The exponential distribution models the time or distance between discrete events,(18) 
such as the interval between two bleeding points. This model is useful for sequential risk 
assessments or predicting the proximity of bleeding events to specific locations. 
	 In this study, the above-mentioned distribution models are employed as representation 
methods to evaluate the effect of kurtosis differences on BAM accuracy. By systematically 
varying their respective parameters, we identify the ground truth configuration that most 
precisely delineates the bleeding source. Ultimately, this approach aims to enhance the precision 
of the BAM-based navigation system, thereby contributing to the development of a safer and 
more effective surgical navigation framework. We hypothesize that the kurtosis of the latent 
distribution significantly influences the quality of GAN-based BAM generation

2.	 Data, Materials, and Methods

2.1	 Dataset

	 The dataset used in this study was derived from the mimic organ dataset by Sogabe et al.(16) 
To more closely replicate intraoperative bleeding conditions, this dataset was generated using a 
simulated vascular perfusion system. It comprises a 3% agar layer to mimic soft tissue, within 
which silicone tubing (3–5 mm in diameter) is embedded to represent blood vessels. Blood flow 
is regulated by a peristaltic pump (MP-3N, Eyela Tokyo Rikakikai Co., Ltd., Japan) at a 
controlled rate of 0.3–0.5 mm/s. In addition, to capture a wide range of hemorrhagic events, 
bleeding was induced using a precisely controlled 18G needle. The needle punctured the vessel 
surfaces at varying angles, thereby simulating diverse severities of vascular injury, from 
capillary-level microbleeds to arterial-scale hemorrhages.
	 Figure 1 illustrates one of the images included in the dataset. From 200 different video 
scenes, 3000 images from 150 scenes were used as the training data, and 200 images extracted 
from 50 scenes were used as the test data. Both sets comprised 75% images with bleeding 
occurring and 25% images without any bleeding. To ensure a fair comparison of the alert map 
performance, the same data augmentation methods were applied across all groups. The data 
augmentation included scaling (0.72 to 1.5), cropping, and rotation (−180° to +180°). 
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2.2	 GT map

	 Formulas for Gaussian (1), exponential (2) and uniform distributions are provided below.
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μ represents the coordinates of the bleeding point in Eqs. (1) and (2) above. Three types of BAM 
distribution represent different kurtosis levels: uniform distribution is an example of platykurtic 
distribution with a nearly flat profile, Gaussian distribution is the conventional mesokurtic 
distribution used in prior work,(16) and exponential distribution represents a leptokurtic 
distribution characterized by a sharp peak at the bleeding point and heavier tails. 
	 We conducted evaluations using 10 different patterns by varying the parameters as specified 
in Table 1. The intensity threshold is set to 0.1 because it is meaningless if the intensity is too 
small when estimating the bleeding point based on BAMs. Uniform BAMs were generated by 
replacing all intensity values greater than 0.1 in Gaussian distributions (σ = 40) with 1.0. Figure 1 
shows the distribution method used for BAM in this study, along with the GT alert map 
generated by this method.

Fig. 1.	 (Color online) Distributions for GT BAMs. BAMs are generated on the basis of the original image. BAMs 
on the upper row were generated based on Gaussian and uniform distribution, and those on the lower row were 
generated based on exponential distribution. The parameter σ or s becomes larger in images further to the right. 
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2.3	 BAM generation

	 The whole BAM generation system structure is shown in Fig. 2. The BAM generation AI was 
developed by refining previous frameworks and utilizing the Pix2PixHD architecture,(19) a high-
resolution conditional GAN designed for image-to-image translation tasks. Compared with 
Pix2Pix,(20) Pix2PixHD incorporates a multiscale generator and multiple discriminators, 
enabling higher-resolution outputs (e.g., 512 × 512) and better handling of fine-grained details. In 
this setup, bleeding scene images are input into the generator trained to produce the 
corresponding BAMs. Adversarial learning, facilitated by multiscale discriminators, ensures 
spatial coherence and reliability, enhancing the accuracy and quality of the generated BAMs. 
Previous reliable studies show Pix2PixHD strengths in medical use with accurate predictions 
and better correlative learning.(21–23) 
	 All training parameters were carefully selected to balance computational feasibility, model 
stability, and output quality. We employed the same configuration across all training, with an 
initial learning rate of 3 × 10−5 and a batch size of 5, and the model was trained for a total of 200 
epochs to ensure the progressive refinement of the generated BAMs. Both input and output 
resolutions were maintained at 512 × 512 to support detailed feature representation. Feature-
matching losses were introduced to enhance perceptual fidelity, and instance normalization 
provided stable training conditions. A multiscale discriminator enabled comprehensive spatial 
discrimination, while the chosen number of generator and discriminator filters ensured a 
practical balance between model complexity and training efficiency.

2.4	 Evaluation

	 The evaluation was conducted using 200 data samples (150 bleeding and 50 nonbleeding 
images) from scenes that were not included in the training set. For each sample, the presence or 
absence of BAM generation within the correct bleeding onset coordinates and other areas were 
examined. Key metrics such as accuracy rate (AR), recall rate (RR), precision rate (PR), and 
other related parameters were calculated using the following equations:
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where TP, FP, TN, and FN represent the numbers of true positives, false positives, true negatives, 
and false negatives, respectively. Additionally, for 150 images where bleeding occurred, the 

Table 1
Threshold and bleeding point coordinate parameters for Gaussian and exponential distributions.
Distribution μ σ|s Threshold
Uniform Bleeding Point Coordinate {40} 0.1
Gaussian Bleeding Point Coordinate {20, 30, 40, 50} 0.1
Exponential Bleeding Point Coordinate {20, 30, 40, 50, 60} 0.1
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variation was analyzed on the basis of two criteria: whether the generated BAM exists and 
covers the bleeding points and the ratio of overlapping area between the GT alert maps and the 
generated BAMs (Fig. 3). The threshold here for the overlapping ratio was set to 50%. The 
indicators Correct Alert Rate (CAR) and Incorrect Alert Rate (ICAR) are also calculated.(16)

2.5	 Experiments

	 The comparison of the evaluated results was conducted in two ways, kurtosis comparison 
and parameter comparison. In the kurtosis comparison, the accuracy of the generated BAMs 
was compared, and three types of distributions, uniform, Gaussian and exponential distributions, 
were utilized. The parameter was set to 40 for all distributions to make the BAM size almost the 
same as the BAM size used in the research by Sogabe et al.(16) In the parameter comparison, 
referring to the results of kurtosis comparison, two types of distributions, Gaussian and 
exponential, were used with different parameters.

3.	 Results

3.1	 Kurtosis comparison

	 Figure 4(a) presents a few examples of GAN-generated BAMs, while exponential 
(leptokurtic) distribution showed sufficient performance, and uniform (platykurtic) distribution 
generated BAM at a position away from the bleeding point. Figure 4(b) shows that AR rates 
improved as the distribution became steeper: 0.485 in uniform distribution and 0.795 in 
exponential distribution.

Fig. 2.	 (Color online) Framework overview showing dataset preparation, GAN-based training, and inference 
stages for Bleeding Attention Map (BAM) generation, highlighting Ground Truth (GT) and Predicted (Pred) BAM 
outputs for real-time surgical bleeding localization.
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3.2	 Parameter comparison

3.2.1	 Generated BAMs

	 Figure 5 shows examples of BAMs generated by GANs. The leftmost example illustrates a 
GAN-generated BAM with sufficient performance. BAMs with larger s-parameter values, 
especially exponential distributions with s = 40 and 50, demonstrated better performance than 
the smaller parameter cases, accurately capturing the bleeding regions in all listed examples.
	 Table 2 shows that both Gaussian and exponential distributions benefit from increasing BAM 
size, although their performance trajectories differ. Gaussian models exhibit early improvements: 

Fig. 3.	 (Color online) Original GT BAM and the generated BAM, highlighting the overlapping regions. The 
bleeding origin is indicated by "X". The degree of overlap is utilized to evaluate the BAM model's performance. 
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Fig. 4.	 (Color online) (a) Examples of generated BAMs and (b) accuracy of generated BAM for three distributions.
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F1 rises from 0.573 at σ = 20 to 0.849 at σ = 40 (~48% increase), but plateaus by σ = 50, indicated 
by a slight drop in TP (127 to 125) and a decrease in F1 (0.833 from 0.849). Conversely, 
exponential models sustain progress more consistently: between s = 20 and s = 40, F1 increases 
from 0.680 to 0.857 (~26% gain), and at s = 50, both TP and F1 continue to improve (TP from 
123 to 137 and F1 from 0.857 to 0.898), demonstrating persistent benefits at larger scales. 

3.2.2	 Accuracy of generated BAMs

	 Figure 6, for which we employed row normalization for clearer comparison, illustrates the 
effect of varying the BAM size on TP detection. For Gaussian distribution, TP rises from 43% at 

Fig. 5.	 (Color online) BAMs generated by GANs from the input images. 

Table 2
Performance metrics for Gaussian and exponential distributions across varying parameters.
Distribution σ|s CAR ICAR TP FN FP TN AR RR PR F1

Gaussian 

20 0.377 0.008 65 85 12 38 0.515 0.433 0.844 0.573
30 0.630 0.013 105 45 12 38 0.715 0.700 0.897 0.787
40 0.744 0.021 127 23 22 28 0.775 0.847 0.852 0.849
50 0.736 0.035 125 25 25 25 0.750 0.833 0.833 0.833

Exponential 

20 0.497 0.008 86 64 17 33 0.595 0.573 0.835 0.680
30 0.637 0.012 108 42 10 40 0.740 0.720 0.915 0.806
40 0.713 0.017 123 27 14 36 0.795 0.820 0.898 0.857
50 0.783 0.029 137 13 18 32 0.845 0.913 0.884 0.898
60 0.787 0.047 131 19 20 30 0.805 0.873 0.868 0.870
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σ = 20 to 83% at σ = 50, and for exponential distribution, from 57% at s = 20 to 91% at s = 50. 
This confirms a strong proportional dependence on BAM size, as larger BAMs generally yield 
higher TP ratios. Although increasing σ or s may slightly raise the FP ratio for most 
configurations, the Gaussian distribution at σ = 50 notably does not exhibit this FP increase, 
marking a unique exception.
	 Figure 7(a) shows that AR and TP rates improve with larger BAM sizes. While Gaussian 
distribution saturates beyond σ = 40, consistent with insights gained from accuracy data and the 
confusion matrix, exponential distributions display a more sustained, nearly logarithmic growth 
in both AR and TP, maintaining a positive learning trajectory even beyond s = 40. In the case of 

Fig. 6.	 (Color online) Row-normalized confusion matrices for comparing for Gaussian and exponential methods 
across sigma values for classification performance analysis.

Fig. 7.	 (Color online) (a) Accuracy rate and (b) precision vs recall graph for σ|s values of the two distributions. 

(a) (b)
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exponential distribution with s = 60, the AR rate dropped, showing a similar pattern to Gaussian 
distribution. 
	 Figure 7(b) enables another layer of understanding by examining precision and recall. Both 
distributions achieve higher recall as σ or s increases, reflecting enhanced detection capabilities. 
However, the precision gains of Gaussian distribution stall and decrease at higher σ, meaning 
that further improvements in recall do not translate into notable precision increases. Exponential 
distributions, on the other hand, not only preserve higher recall at larger s values but also 
maintain or improve precision, which is clearly visible in the graph. This balanced progression 
enables exponential models to approach a more optimal precision–recall combination at larger 
scales.

4.	 Discussion

	 The results of the kurtosis comparison indicate that a steeper distribution is a better option 
for GT of GAN generation of BAMs. Additionally, the results of the parameter comparison 
confirm that larger BAM sizes generally improve model performance. Initially, it was anticipated 
that increasing BAM coverage would raise accuracy and TP rates since a larger mask can 
encompass more potential bleeding areas. While Gaussian-distribution-based models achieve 
substantial early gains, their σ-performance plateaus around σ = 40 to 50, due in part to broad 
high-intensity regions that do not necessarily correspond to actual bleeding sources. This 
saturation explains why Gaussian distribution with σ = 40 outperforms that with σ = 50 in some 
metrics, since enlarging the BAM further disperses the model’s focus without offering precise 
location cues.
	 In contrast, the exponential distribution leverages its intensity decay to progressively refine 
spatial focus. The incremental improvements in CAR and ICAR under exponential distribution 
conditions signify that as the model grows, it becomes better at distinguishing crucial bleeding 
regions from irrelevant areas. The stable improvements noted in both accuracy and the 
precision–recall balance highlight the exponential distribution’s capacity for sustained learning, 
even as s surpasses thresholds where Gaussian-distribution-based models stagnate. However, 
like the Gaussian-distribution-based model, the accuracy plateaus after s = 50, strengthening our 
observation that larger BAMs lead to false attention to nonbleeding areas. This difference in 
behavior underscores the importance of distribution choice: exponential-distribution-based 
BAMs continue to enhance detection accuracy and maintain an advantageous precision–recall 
profile at larger scales, effectively pushing the precision–recall frontier outward.
	 This study has several limitations. First, only two types of distribution, Gaussian and 
exponential, were examined. While effective, this limited scope may restrict the model’s ability 
to generalize to some surgical environments. Additionally, although the model did use color 
images as input, allowing it to learn some color-based features indirectly through its feature 
layers, explicit methods to leverage color and texture information were not implemented. In 
future research, advanced techniques might be explored, such as explicit color segmentation or 
multimodal input integration, to enhance the model’s ability to distinguish bleeding and 
nonbleeding regions. Furthermore, investigating more complex, nonuniform distributions like 
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anisotropic Gaussian or Poisson models could provide deeper insights into optimizing BAM 
generation for various surgical scenarios. Among the tested configurations, the exponential 
distribution with s = 50 yielded the best overall performance, achieving the highest recall (0.913) 
and F1 score (0.898). This result underscores the advantage of larger BAMs in covering bleeding 
regions and enhancing detection sensitivity. However, when s is 50, the configuration introduced 
challenges, such as increased overlap with nonbleeding areas, which could reduce precision and 
create visual clutter in surgical applications. In contrast, the BAM whose s is set to 40 offered a 
more compact representation, maintaining high recall (0.820) and precision (0.898). This makes 
s = 40 a more balanced and practical choice for real-world usage in effectively localizing 
bleeding points while minimizing unnecessary distractions.
	 Moving beyond accuracy metrics, the visibility and usability of BAMs from a surgeon’s 
perspective are critical for practical implementation. Effective surgical navigation requires 
BAMs that integrate seamlessly without causing visual or cognitive overload. Future research 
could be focused on refining BAM designs to balance sensitivity, precision, and usability more 
effectively. Adaptive BAM configurations that dynamically adjust their size in accordance with 
the surgical context or user preferences could address these issues. Additionally, incorporating 
user-end parameters, such as the type of surgery and surgeon expertise, will be crucial for 
tailoring the BAM system to diverse clinical scenarios. 

5.	 Conclusions

	 Our approach uniquely leverages the impact of distribution kurtosis on GAN performance, 
moving beyond traditional static Gaussian distribution assumptions, to systematically optimize 
GT designs for BAM generation. This innovation refines spatial accuracy and provides a robust 
framework for tailoring surgical navigation systems, setting our work apart from previous 
studies. In this study, we compared distribution‐based GT designs for BAM generation, 
demonstrating their significant impact on GAN-driven bleeding localization. Our results 
indicate that a more sharply peaked distribution yields more effective BAMs: an exponential 
distribution with s = 40 provides a balanced performance by maintaining high recall and 
precision while minimizing overlap with nonbleeding regions, whereas a larger exponential 
BAM (s = 50) offers superior sensitivity but introduces challenges in precision and usability. 
Overall, exponential BAM models outperformed their Gaussian counterparts; notably, the best 
exponential model (s = 50) achieved a bleeding point detection rate of ~92% (137 TP out of 150), 
with ~85% accuracy, 89% precision, and an F1 score of 0.898. These outcomes underscore the 
importance of GT distribution design in enhancing bleeding source detection in MIS and 
contribute to the development of safer, more efficient surgical navigation systems. Future 
research could include refining this framework by incorporating surgeon feedback, exploring 
more complex distribution models, and adapting BAM parameters to specific surgical scenarios, 
ultimately evolving the approach into a robust tool for real-world clinical applications.
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