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	 A real-time surveillance system is investigated on the basis of hidden Markov models 
(HMMs) using various features extracted from color images, human skeletons, and depth maps 
to sense anomalous behavior. Herein, the spatial and temporal features are included to enhance 
surveillance measurement accuracy by identifying and classifying anomalous activity. Hence, 
the proposed approach detects suspicious behaviors within a short time and achieves a better 
performance than traditional approaches. The HMM-based framework captures the underlying 
patterns or structures in sequential information when a human appears in the predefined 
monitoring area to detect anomalous behaviors. The highlights of the proposed system are its 
efficiency and practicality, balancing computational requirements and detection accuracy, 
making it suitable for real-time applications. For evaluating the proposed approach, a dataset 
collected by a Kinect camera is further divided into training and test data. Furthermore, the 
proposed approach significantly outperforms that based on naïve Bayes networks in precision 
rate according to the experimental results. As a result, evaluating observations demonstrates the 
potential of HMM-based systems to enhance security monitoring, providing reliable and 
effective solutions for instant anomalous behavior detection to ensure the security and protection 
of sensitive information and equipment in monitoring scopes.

1.	 Introduction

	 Surveillance video anomaly detection (SVAD) is a field in computer vision and security 
technology focused on identifying and sensing unusual or suspicious activities automatically 
within video footage. Anomalous behavior detection plays a crucial role in surveillance systems, 
not only serving general security measures such as theft prevention and visitor management but 
also reducing the need for physical guards in many scenarios, thereby lowering security costs 
over time. These systems enable the monitoring of human activities within alarm areas to ensure 
safety and appropriate behaviors. Additionally, remote monitoring systems utilize surveillance 
to observe activities without the need for continuous physical supervision by the Internet. 
Furthermore, cloud storage solutions facilitate the storage and retrieval of extensive video data 
from anywhere in the world, enhancing the flexibility and accessibility of surveillance 
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recordings. The broad potential applications of SVAD have sparked increasing research 
interest.(1) SVAD is designed to detect and locate anomalous events within video footage. In 
general, such anomalous behaviors are rarer than normal activities. To avoid wasting human 
resources and time, there is an urgent need to develop advanced computer vision technologies 
capable of automatically identifying these anomalies. 
	 Traditionally, surveillance relied on manual monitoring, a process prone to human error and 
fatigue. It is usually time-consuming, labor-intensive, and biased owing to subjective judgment. 
Anomaly detection in surveillance video has always been a challenging issue until now. 
Although existing methods(2) have demonstrated promising performance, they still suffer from 
three primary limitations. The first significant limitation is the absence of spatial information. 
Current surveillance systems primarily rely on RGB cameras, which capture images in only two 
dimensions. The lack of depth information often results in the loss of critical 3D data(3) 
especially in approaching and leaving the surveillance area. Furthermore, RGB-based detection 
systems are highly sensitive to varying lighting conditions. Changes in natural light during the 
day or artificial light adjustments can lead to false detections or missed detection.(4) There is an 
opportunity for intruders to take advantage of this. The second limitation concerns real-time 
processing. Immediate processing is crucial for timely anomaly detection in monitoring 
scenarios, enabling prompt responses to potential threats or emergencies. However, surveillance 
footage encompasses a vast array of information, requiring significant computational resources 
and time for processing and analysis. Achieving real-time performance without sacrificing 
accuracy poses a significant challenge. The third limitation involves sparse and imbalanced 
data. Anomalies are intrinsically rare events, which results in a scarcity of adequate training 
examples. Sparse data means that there may not be enough instances of anomalous behavior for 
the model to learn effectively. This can lead to issues such as overfitting or poor generalization, 
ultimately affecting the accuracy of anomaly detection.
	 To address these issues, we propose a real-time system using hidden Markov models (HMMs) 
to detect anomalous behaviors in RGB cameras with depth maps. Aside from the features 
obtained by RGB cameras, depth cameras provide depth information by capturing images and 
measuring the distance between objects and the camera, thereby enhancing the spatial analysis 
capability of surveillance systems. Herein, depth maps are usually generated using sensors that 
do not rely on visible light and are thus not affected by angles and lighting in determining human 
figures. HMMs are utilized as the primary architectural model; HMMs are a statistical-based 
model that describes the relationship between observable events and a series of unobservable 
internal states. Additionally, HMMs excel at handling temporal data, requiring fewer parameters 
and less memory space. This makes them highly suitable for scenarios with limited 
computational power, meeting the needs of surveillance video anomaly detection for real-time 
system monitoring. Additionally, HMMs’ adaptability allows them to automatically adjust 
model parameters on the basis of new observational data, adapting to changes in behavioral 
patterns, and more accurately identifying unknown or evolving anomalous behaviors. HMMs 
are particularly well-suited for dealing with uncertainty or incomplete data often encountered in 
security monitoring contexts.
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	 The main contributions of this study are summarized as follows:
(1)	�Development of a method using depth maps and color images to extract motion features: We 

introduced an innovative approach that utilizes depth maps to extract motion features, 
enhancing the capability of monitoring systems to analyze human behaviors in 3D space. 

(2)	�Real-time system for anomalous behavior detection using HMMs: We developed a real-time 
system employing HMMs to detect anomalous activities. By processing temporal data 
efficiently, the system ensures high accuracy and prompt response in issuing alerts.

(3)	�Creation of a dataset to simulate real-world scenarios: We created a comprehensive dataset 
that simulates various scenarios likely to occur in real-life hospital settings. This dataset 
includes diverse behaviors, from normal to anomalous, enabling the system to be extensively 
trained and validated.

2.	 Related Works

	 Human activities can be categorized into four types: postures, actions, behaviors, and 
interactions. Posture refers to the control, manipulation, or communication performed using 
parts of the body;(5) the body’s posture is described as a schematic of a collaborative manipulation 
task to achieve good performance. An action is any complex movement of the body, which can 
be decomposed into multiple fundamental movements.(6) Zhou and Wu(7) employed specialized 
intelligent machines for automated monitoring technology applied in supermarkets. In their 
study, a new method that focuses solely on moving hands was developed. An accurate 
localization of the palm is achieved by utilizing a linear prediction model to implement object 
tracking. In contrast to the approach adopted by Mor et al.,(8) our methodology extends beyond 
the analysis of hand movements. We utilize joint detection to facilitate the prediction of 
comprehensive human body movements, thereby capturing a broader spectrum of information. 
This enhancement ensures that our model achieves a higher degree of accuracy in the detection 
of anomalous behaviors. Mor et al.(8) discussed the broad applications of HMMs across various 
fields, emphasizing their role in solving detection problems through sequence analysis and state 
estimation. Gámiz et al.(9) utilized HMMs to dynamically analyze and predict the reliability of 
systems with Markovian signal processes, enhancing the understanding of system performance 
changes over time. This method is crucial for improving long-term system reliability and 
maintenance strategies. Feng and Liu(10) proposed a method called attentional temporal You 
Only Look Once (ATYOLO) that utilizes attention mechanisms and convolutional long short-
term memory to detect and track humans and animals in videos. However, their method does not 
detect finer movements or make judgments about actions. Gao et al.(11) proposed a noncontact 
diagnostic system driven by deep-learning visual algorithms. Utilizing four RGB cameras, it 
captures human dynamics and employs a pose estimator to generate comprehensive 3D human 
posture behavior predictions. However, most surveillance systems do not have four RGB 
cameras to monitor the same area to build a 3D model.
	 Compared with traditional machine learning methods such as naïve Bayes, K-nearest 
neighbors, and support vector machines, HMMs demonstrate superior capabilities in handling 
temporal series data.(12) Although long short-term memory networks also excel in addressing 
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time-series-related challenges, convolutional neural networks (CNNs) show remarkable 
performance in pattern recognition. However, these approaches require large models and high 
complexity, and they are difficult to implement in an embedded system, especially in real-time 
applications. Ovhal et al.(13) reviewed how HMMs are used to recognize and predict driving 
behaviors, highlighting their effectiveness and applications in vehicle safety systems. The output 
can be easily affected by slight variations in the application scenarios. 
	 Agarwal et al.(14) used a variant of the slow-fast algorithm to detect and classify the unusual 
activity happening in the surveillance areas. Xue and Liu(15) discussed how HMMs are applied 
to human activity modeling in human activity recognition and fall detection. They concluded 
with a review of notable research works in the fields of smart home technologies and elderly care 
based on HMMs. San-Segundo et al.(16) proposed a human sensing system based on HMMs for 
classifying physical activities such as walking, climbing stairs, descending stairs, sitting, 
standing, and lying down. Liu and Datta(17) proposed a method that uses HMMs integrated with 
contextual information to dynamically predict agent interactions, addressing the challenge of 
establishing trust models in complex dynamic environments.
	 Depth maps provide distance information for each pixel relative to the observer, enhancing 
object identification and scene understanding beyond the capabilities of traditional 2D imagery. 
In environments subject to variable conditions, such as changes in lighting(18) or visual 
obstructions,(19) the information provided by depth maps can assist systems in better adapting 
and responding to these challenges. Lee and Kim(20) proposed a novel algorithm for monocular 
depth estimation using relative depth maps, utilizing CNNs and estimating the relative depths 
between pairs of regions at various scales, as well as the absolute depths. Liu et al.(21) proposed 
an RGB posture-recognition network based on a two-stage CNN architecture. To enhance 
recognition performance from color images, they incorporated a hybrid loss function in the 
generation module for estimating depth posture images. They also introduced a depth estimation 
method applied to spatiotemporal recognition, which is used for dynamic action recognition. 
Meng et al.(22) used a novel neural network architecture to improve monocular depth estimation. 
This method more accurately predicts the depth of a single image by utilizing contextual 
information. This approach is particularly useful in applications where depth information is 
critical, such as in mobile devices or certain types of autonomous vehicle. Naeem et al.(23) 
presented a method of detecting abnormal or anomalous behavior in surveillance videos. The 
method uses human joint motion information from skeletal sequences to model human behavior, 
identifying patterns that deviate from normal activities, which is crucial for security in 
environments such as supermarkets, airports, and public spaces. Urtasun et al.(24) proposed a 
model-based approach that directly utilizes data reconstructed from depth maps. In this study, 
the method we use for reconstructing human posture is built upon this model-based approach.

3.	 Proposed Method

	 For evaluating the proposed approach, the proposed HMM-based system is developed and 
further divided into training and testing phases as shown in Fig. 1. 
	 The system captures both the RGB and depth maps through the 3D camera while 
simultaneously detecting the human skeleton. From the detected skeleton, joint positions and 
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joint orientations are extracted. To integrate these data sources captured from different sensors, 
the color and depth images are aligned to maintain spatial consistency. Subsequently, features 
are extracted from the aligned data using a histogram of oriented gradient (HOG) technology. 
After data processing, the proposed method can be divided into spatiotemporal feature extraction 
and anomalous behavior detection models. The spatiotemporal feature extraction is designed to 
extract both spatial and temporal features and assign the corresponding activity labels. Activity 
labels are employed to differentiate and identify various human motion patterns and behaviors, 
such as knocking, handling a door, and squatting. These labels enable the HMMs to learn the 
characteristics associated with each specific action. In the training of anomalous behavior 
detection models, extracted features and activity labels are used to train the HMMs. The state of 
the previous frame is utilized as a feature for training the model. This approach significantly 
enhances our understanding of sequence behaviors and aids in the prediction of future state 
transitions.

3.1	 Spatiotemporal feature extraction

	 A person’s activities can be recognized by capturing their motion posture and movement 
features over time by utilizing RGB-D images, RGB images, and joint information obtained by 
Kinect. Figure 2 is a summary of the features adopted in the proposed approach. To distinguish 
between the features obtained by data processing and a feature extractor, we denote the features 
obtained by the feature extractor as F. These features are then categorized into two main groups 
on the basis of spatial and temporal concepts. The spatial aspect is further subdivided into three 
subcategories: shape, posture, and behavior. The temporal aspect is divided into two 
subcategories: short time and long time. The shape feature, denoted as FS, is used to identify 
individuals from differences in height, arm length, and leg length. The posture feature represents 
a static action at a key moment in time. In this study, the key action of opening a door is used for 

Fig. 1.	 (Color online) System framework of proposed HMM-based anomalous behavior detection.
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posture judgment. Therefore, posture is subdivided into large and small actions. We denote the 
posture feature as Fp. The behavior feature, denoted as Fb, refers to a series of action changes. 
We define five behaviors, which are opening, unlocking, and knocking on the door, passing by, 
and head turns. The HOG feature here is the same as the feature extracted during the data 
processing stage, and we denote it as Fh. The short-time feature, denoted as Fst, indicates a 
person’s actions within the surveillance area, which is further divided into stay time and door-
opening time. Compared with short-time features, which are measured on a time scale of 
minutes, long-time features are evaluated on a scale of days or weeks. Long-time features assess 
the times of presence and combine this information with frequency metrics. We denote the long-
time feature as Flt. 
	 The Kinect camera can simultaneously capture color images t

cI , human skeletons t
sI , and 

depth maps t
dI . The data flast captured by the last frame are denoted as 1−t

cI , 1−t
sI , and 1−t

dI . 
Moreover, the joint position from the human skeletal data is obtained as shown in Ref. 15. Given 
the joint positions Pn for each n = {1, 2,…, 20}, each point has three spatial values, namely,  X, Y, 
and Z, which indicate horizontal, vertical, and depth positions, respectively. The human skeleton 
position fsp = {P1, P2, ..., P20} is further obtained according to the spatial values. Aside from the 
skeleton position, the joint vectors are formed according to eleven joint positions.(15) Each joint 
vector is a 3 × 3 orthogonal matrix. The rows represent the three vectors for the X-, Y-, and 
Z-axes. Given the 11 orthogonal matrices Mj ∈ R3 × 3 for each joint position j = {1, 2, … , 11},  
each matrix Mj must satisfy the orthogonality condition:

	 T
j jM M  = I,	 (1)

where 𝐼 is the identity matrix ensuring orthogonality and normalization. This representation 
allows for precise calculations of joint angles and the orientation of body parts in various 

Fig. 2.	 (Color online) Feature set including spatial and temporal ones used in the proposed approach.
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activities or movements. Finally, the human skeleton vector fsv = {M1, M2,…, M11} is obtained. 
To simultaneously capture features from color images and depth maps, the enhancement of 
detailed reconstructions and robust object detection, the integration of color images and depth 
maps, followed by the application of HOG are proposed. The formula is 

	 ( ),  x ycdI  = ( )( ,  concat x ycI , ( ),  x ydI ),	 (2)

	 hf  = hog( cdI ).	 (3)

	 To achieve strong robustness against changes in illumination and slight shape variations, the 
HOG is used here. The HOG is a feature extraction algorithm, using the distribution of gradient 
or edge directions, which is robust against multiple postures, complex backgrounds, and varying 
light sources. The gradient at the pixel point Icd(𝑥, y) is calculated as 

	 Gx(Icd(x, y)) = H(Icd(x + 1, y)) – H(Icd(x − 1, y)),	 (4)

	 Gy(Icd(x, y)) = H(Icd(x, y + 1)) – H(Icd(x, y − 1)).	 (5)

	 In the given equations, Gx(x, y), Gy(x, y), and H(x, y) represent the horizontal gradient, vertical 
gradient, and pixel intensity at position (x, y), respectively.

	 G(Icd(x, y)) = ( )( ) ( )( )2 2, ,  x cd y cdG I x y G I x y+ 	 (6)

	 α(Icd(x, y)) = 
( )( )
( )( )

1 , 
tan

, 
y cd

x cd

G I x y
G I x y

−
 
  
 

	 (7)

Here, G(x, y) represents the magnitude of the gradient at pixel (x, y), and α(x, y) represents the 
direction of the gradient at pixel (x, y). These values are essential for constructing the HOG 
features used in object detection and recognition tasks. Actually, many visualization techniques 
for vector signal gradient fields by multivariate data analysis have been proposed to obtain the 
optimal solution.(25)

	
3.2	 HMMs with three stages

	 An extended HMM is adopted to analyze time-series information within surveillance 
scenarios as depicted in Fig. 3. The model architecture incorporates multiple hidden states 
x = {x1, x2, ..., xt} and corresponding observation states y = {y1, y2, ..., yt}. The observation 
sequence is derived from the features obtained during the feature extractor stage. At each time t, 
the feature vector is represented as yt

 = { ,  ,  ,  ,  ,  t t t t t t
s p b st lt hF F F F F f }. Each hidden state affects not 

only its subsequent state but also multiple related observation values, reflecting the complex 
dependences between states and observations.
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	 The transition probabilities for a state sequence x of length t are represented as

	 P( 1 2 1| , ,  ,t tx x x x −… ) = P( 1| t tx x − ).	 (8)

	 The conditional independence of the observation parameter y is 

	 P( 1 2
1 12| , ,  , , ,  ,,  t l

ty y xy y x x −… … ) = P( | )t
ty x .	 (9)

	 ωT represents the weight of anomalous behavior occurring at time T. By combining the 
transition probabilities and the conditional independence of the observation parameters, we can 
obtain the most likely hidden state sequence probability. 

	 P(y, x) = 1
1

( | ) ( | )
T

t
t t t T

t
P x x P y x ω−

=
∏ 	 (10)

	 The proposed HMMs are partitioned into three distinct sections: approaching the surveillance 
area, entering the surveillance area, and leaving the surveillance area. The surveillance area is 
defined as the region within 1.5 m of doors or windows. Segmenting the surveillance process 
into three distinct phases aids in more accurately simulating and understanding the behavior 
patterns of objects in/out of the surveillance area. This segmentation improves the model’s 
sensitivity to specific activities at different stages and allows for the focused allocation of 
computational resources, thereby enhancing the efficiency of the model. To enhance the model’s 
capability to capture the diversity of each state more effectively, the model processes the features 
and information obtained from each section to form the observation sequence. Note that the 
features obtained at each stage vary, with certain features being collected only within the 
surveillance area. These include posture and behavior characteristics, as well as short-term 
features such as the duration of an individual’s stay within the surveillance area. This design 
facilitates the capture of dynamics across time steps and the long-term effects of latent states. 

Fig. 3.	 (Color online) Proposed HMM-based approach with three stages.
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Additionally, the structure of the model accounts for potential nonsequential relationships 
between observation values ​​and hidden states, which is particularly advantageous for handling 
data with high temporal dependence and sparsity. Such a framework significantly enhances the 
model’s predictive capability for anomalous behaviors where anomalies may manifest over 
multiple time steps.

4.	 Implementation and Experimental Results

4.1	 Data preparation

	 To satisfy the requirement of practical applications, a dataset is gathered and labeled by 
utilizing a Kinect v1 depth camera to capture depth and color images with a resolution of 640 × 
480. Actually, videos of the behaviors of two individuals are gathered as training data. They are 
recorded as 1736 frames across 77 video sequences and 2530 frames across 87 video sequences, 
making a total of 164 video sequences used as training data. Because anomaly intruders are 
usually strangers, videos of six other individuals simulating anomaly behavior are gathered as 
test data at the same time. There is basic information about the six individuals that we observed 
for testing data in Table 1. Finally, 4266 and 6894 videos are used as the training and test data, 
respectively, as shown in Table 2. For a more detailed evaluation, four categories of the dataset, 
namely, non-anomalous, thief, sneaky, and anomalous with distributions of 39, 18, 29, and 14%, 
respectively, are obtained by splitting the original anomalous data into the three categories. The 
dataset is designed to thoroughly train and evaluate the model, ensuring that it can accurately 
differentiate between anomalous and non-anomalous behaviors. By including a variety of 
behavior types and a significant amount of data for both training and testing, we developed a 
model that is better equipped to handle real-world scenarios and enhance security measures 
effectively. 

Table 1
Basic information of six individuals for test dataset.
ID High Educational qualification Dominant hand Number of videos
A 177 Undergrad Right hand 44
B 181 Undergrad Right hand 35
C 178 Undergrad Left hand 20
D 171 Undergrad Right hand 30
E 162 Undergrad Right hand 20
F 172 Graduate Right hand 15

Table 2
Numbers of videos of training and test datasets.

Anomalous Non-anomalous
Training data 2502 1764
Test data 4018 2876
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4.2	 Experiments of anomalous behavior detection and anomalous classification

	 Table 3 shows the results of the proposed HMM-based and naïve Bayes-based approaches for 
anomalous behavior detection.
	 According to the observations, the proposed HMM-based approach with the time-series 
analysis capability demonstrates higher accuracy and reliability in detecting anomalous behavior 
than the naïve Bayes-based approaches. It effectively identifies a significant number of actual 
threats, with 186 true positives and only 6 false negatives, ensuring that most anomalous 
behaviors are detected and addressed promptly. The proposed system also distinguishes non-
anomalous behaviors very well, with 61 true negatives, thereby reducing false alarms and 
unnecessary disruptions. The HMM-based approach shows a balanced performance with a 
precision of 76.2%, a recall of 96.9%, and an F1-score of 85.3%, indicating strong overall 
effectiveness. The naïve Bayes-based approaches also perform well, with a precision of 67.6%, a 
recall of 95.8%, and an F1-score of 79.3%. These results suggest that the system is highly 
effective in enhancing surveillance by accurately detecting and differentiating between 
anomalous and non-anomalous behaviors, thereby improving overall safety and security. 
Compared with the deep-learning-based approaches such as the use of the transformer or CNN, 
the proposed HMM-based approach does not lose its correctness significantly and achieves a 
real-time performance, especially for an embedded system with limited computational power. 
This result indicates that the proposed HMM-based approach is practical in real life.
	 For a more detailed analysis, four categories of anomalous behavior classification are used by 
the HMM-based approach proposed here. The confusion matrix reveals several positive aspects 
of the system’s performance shown in Table 4. Notably, the system excels at identifying non-
anomalous behaviors, with 61 correct classifications, highlighting its reliability in recognizing 
normal, nonthreatening actions.
	 It also effectively detects sneaky behaviors, correctly identifying 33 instances, which 
enhances security by catching subtle, potentially suspicious activities. Additionally, the system 
shows a moderate capability to detect thief behaviors, correctly classifying 16 instances, 

Table 3
Performance characteristics of proposed HMM-based and naïve Bayes-based approaches.

Precision (%) Recall (%) F1-score (%)
HMMs 76.2 96.9 85.3
naïve Bayes 67.6 95.8 79.3

Table 4
Confusion matrix of identification results.

Sneaky Anomalous Thief Non-anomalous
Sneaky 33 17 14 3
Anomalous 19 10 34 1
Thief 21 22 16 2
Non-anomalous 20 18 21 61
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indicating a foundational capability in this area. The balanced distribution of misclassifications 
suggests that the system does not exhibit significant bias towards any particular type of error.

5.	 Conclusions

	 We investigated an HMM-based approach that can successfully sense various forms of 
anomalous behavior utilizing RGB-D images with a depth map that can capture intricate motion 
in 3D video details. To obtain human action information, both spatial and temporal features are 
used. The spatial features include shape, posture, behavior, and HOGs. Temporal features 
including short- and long-time observations are also extracted. Short-time observations are for 
behavior time within one day. Long-time observations aim at the haunting time and frequency of 
occurrence. The inclusion of comprehensive training data significantly improved the system’s 
accuracy, ensuring the reliable detection of both subtle and overt suspicious activities. Compared 
with the deep-learning-based approach, the proposed approach can achieve real-time detection 
with acceptable computation complexity. The proposed three-stage HMM-based approach 
provided a balance between computational efficiency and detection accuracy, making the system 
suitable for real-time applications. According to the experimental results, the proposed HMM-
based approach outperforms the naïve Bayes-based approaches for anomalous behavior 
detection. This is particularly important in environments with limited computational resources, 
such as an embedded system. The system accurately detects anomalous behavior in a security-
sensitive environment. 
	 The main contributions of this research are as follows. First, the HMMs with 3D related 
information offer a practical, reliable, and efficient solution to defining three stages according to 
the behaviors, namely, approaching, entering, and leaving the surveillance area. Second, the 
proposed method adopted in this paper can indeed identify anomalous behaviors as a real-time 
application in embedded systems. Finally, the dataset was collected under the premise of single-
person scenarios with simple backgrounds captured by 3D cameras. 
	 In future research, the HMM-based surveillance system should be expanded to more 
applications. By incorporating a broader range of spatial features, such as 3D point cloud data 
and advanced texture analysis techniques, the system can be used to identify and analyze objects 
beyond human figures, including props and weapons, thereby increasing the system’s application 
scope and flexibility. Currently, although the system has achieved the extraction of short- and 
long-term observational features, the analysis of temporal behavioral features remains somewhat 
coarse. Future studies will focus on refining and subdividing temporal features to enhance the 
overall accuracy of behavior identification. Additionally, given the importance of accuracy in 
monitoring security systems operating in environments with limited computational resources, 
we will continue to explore algorithmic optimizations that maintain low computational demands 
while improving accuracy.
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