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 The advent of 5G technology has markedly accelerated the development of the Industrial 
Internet of Things (IIoT), enabling faster and more reliable connectivity for various IoT devices. 
Many of these IIoT systems rely on sensor-based communication networks to monitor, collect, 
and transmit real-time data for industrial applications such as smart manufacturing, automated 
control systems, and predictive maintenance. However, this increased reliance on 5G networks 
introduces new cybersecurity risks, particularly the threat of rogue base stations that can 
intercept, manipulate, and disrupt data communications. In this study, we aim to identify and 
address the security threats posed by rogue base stations in the IIoT. Our detection approach is 
based on reference signal received power (RSRP) analysis, which allows us to monitor and 
evaluate signal strength variations. Since rogue base stations often transmit stronger signals to 
lure IIoT devices, abnormal fluctuations or inconsistencies in RSRP values can serve as key 
indicators of their presence. We use machine learning techniques, including recurrent neural 
networks, long short-term memory networks, and gated recurrent unit networks, to analyze and 
classify these signal patterns effectively. By leveraging the sequential nature of RSRP data, our 
model detects deviations from normal base station behavior, enabling the real-time identification 
of potential rogue base stations. By enhancing the security of sensor-driven IIoT systems, our 
approach ensures the protection of critical industrial operations that depend on real-time and 
accurate sensor data transmission.

1. Introduction

 The rapid advancement of 5G technology has significantly accelerated the development of the 
Industrial Internet of Things (IIoT), providing fast and reliable connectivity for various IoT 
devices that are essential to modern industrial operations relative to 4th-generation mobile 
communication technology. These devices enhance monitoring, control, and automation across a 
range of sectors, including manufacturing, energy, transportation, and healthcare. They offer the 
potential for unprecedented efficiency, flexibility, and scalability. According to IoT Analytics, 
the IIoT market is expected to reach $145 billion by 2023, with a compound annual growth rate 
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of 17.9% projected through 2030.(1) Furthermore, there are currently over 8.4 billion connected 
devices globally, with projections indicating that this number will reach 75 billion by 2025.(2) 
This growth reflects the significant potential of IoT technologies and their profound impact 
across industries, enabling smart manufacturing, enhancing production efficiency, and boosting 
competitiveness.
 However, the increased reliance on 5G networks introduces significant cybersecurity risks, 
particularly with the emergence of rogue base stations, also known as fake base stations or 
international mobile subscriber identity (IMSI) catchers. These malicious entities can 
impersonate legitimate base stations, intercepting, manipulating, and disrupting data 
communications between IIoT devices and their intended networks. Such attacks have the 
potential to result in a number of significant consequences for organizations, including 
unauthorized access to data, the loss of sensitive information, operational disruptions, and 
severe financial and reputational damage. As the IIoT rapidly develops, cybersecurity has 
become a paramount concern. The extensive connectivity of IIoT devices and systems offers 
considerable convenience but also introduces significant security risks. Many IIoT applications 
rely on real-time sensor data for industrial control, automated decision making, and predictive 
maintenance. If attackers infiltrate these networks, they can manipulate sensor data, leading to 
faulty automation, inaccurate monitoring, and even complete system failure. This could result in 
production downtime, safety hazards, and critical data breaches.
 The large-scale data sharing inherent in IIoT operations gives rise to concerns regarding the 
protection of manufacturing data and intellectual property, which must be robustly safeguarded. 
Additionally, the interconnected global supply chains characteristic of the IIoT require 
comprehensive security measures to prevent supply chain attacks. Implementing encrypted 
communication, regular software updates, and compliance testing for IoT devices can enhance 
security and ensure stable operation in the IIoT environment. Given these challenges, there is an 
urgent need for advanced detection mechanisms to identify and mitigate the threats posed by 
rogue base stations, as traditional security measures often fall short in addressing these 
sophisticated attacks.
 Several methodologies have been proposed to address the detection of rogue base stations. 
Lee et al.(3) explored the cybersecurity issues in 5G-enabled smart healthcare networks, focusing 
on the identification of rogue base stations and proposing targeted detection strategies to 
strengthen network defenses. Huang et al.(4) developed xApps for software-defined radio 
(SDR)-enabled Open Radio Access Network (O-RAN) systems, employing signal stability 
analysis and machine learning algorithms to identify rogue base stations. Saedi et al.(5) created 
realistic signal strength datasets by simulating 5G rogue base station scenarios, thereby 
enhancing the effectiveness of detection techniques. Additionally, Nakarmi et al.(6) applied 
machine learning to analyze reference signal received power (RSRP) characteristics, improving 
false base station detection accuracy. Liu et al.(7) proposed a comprehensive scheme to counter 
fake base stations in 5G-based smart healthcare networks, emphasizing the significance of 
robust mobile network security measures. Finally, Quintin(8) focused on the real-time 
identification of fake 4G LTE base stations, implementing advanced monitoring and alert 
mechanisms to promptly address threats.
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 The following section outlines the methodology employed in this study, including a detailed 
explanation of the rogue base station attack and the detection process. The subsequent section 
presents the experimental results, encompassing dataset preparation, performance evaluation, 
results, and discussion. Finally, the paper concludes with a summary of the key findings.

2. Methodology

2.1 Rogue base station attack

 Rogue base stations pose significant security threats to the IIoT, as they have the potential to 
compromise data confidentiality, integrity, and availability. These malicious entities can perform 
unauthorized access and man-in-the-middle (MitM) attacks, thereby intercepting sensitive data 
such as operational parameters and industrial control commands. Rogue base stations exploit 
network protocol vulnerabilities to manipulate data, leading to incorrect device behavior and 
potential operational failures. Identity spoofing is another critical threat, whereby rogue base 
stations deceive devices into divulging sensitive information. Additionally, they can launch 
denial-of-service (DoS) attacks by overwhelming the network with traffic, disrupting normal 
operations, and degrading the trust and security of the IIoT environment. To investigate these 
threats, we designed an architectural framework to emulate rogue base station attacks in IIoT 
environments, demonstrating how these malicious activities can exploit system vulnerabilities. 
The detailed architecture designed for these attack simulations is shown in Fig. 1.
 There are several steps involved in executing a rogue base station attack, as follows.
•  Configuration of the Rogue Base Station: The initial phase of the attack entails the setup of 

the requisite hardware and software to establish a rogue base station. The attacker configures 
SDR and communication equipment to operate on specific frequencies and emulate the 
parameters of legitimate base stations, including cell ID, mobile network code (MNC), and 
mobile country code (MCC).

Fig. 1. (Color online) System architecture of rogue base station attacks.
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•  Positioning in the Target Area: After the setup phase is complete, the rogue base station is 
positioned in a way that allows it to effectively target the area in question. The attacker 
ensures that the signal strength of the rogue base station is greater than that of nearby 
legitimate base stations, thereby luring user devices into connecting to it. This often requires 
adjusting the location to optimize signal strength and effectively capture the devices in range.

•  Launching Attacks: Once user devices connect to the rogue base station, the attacker can 
execute various malicious activities. These include intercepting and manipulating data 
communications, leading to the exposure of sensitive information. The attacker can also 
perform DoS attacks to disrupt services and MitM attacks to alter data traffic. Furthermore, 
fake messages such as service rejections, emergency alerts, or phishing messages can be sent 
to deceive users into revealing personal information or causing service disruptions.

 A comparison between different parameters is shown in Table 1, and the detailed rogue base 
station attack process is shown in Fig. 2.

2.2 Detection process

 To effectively detect rogue base stations in the IIoT, a structured detection process is 
implemented. This process involves the collection of signal data, the creation of a comprehensive 

Table 1
Comparison between different parameters.
Parameter Description Example value (Global)
cell ID Identifies a specific cell within a sector of a cellular network 186013
MNC Identifies a mobile network operator within a country 01 (for some carriers)
MCC Identifies the country of the mobile subscriber 310 (USA), 440-441 (Japan), 466 (Taiwan)

Fig. 2. Detailed rogue base station attack process.



Sensors and Materials, Vol. 37, No. 4 (2025) 1609

dataset, and the application of advanced machine learning algorithms for classification and 
detection. The detailed rogue base station detection process is shown in Fig. 3.
 The first step in this process is the collection of signal data from all detectable base stations 
in the environment. We employ SDRs to emulate the behavior of various IIoT devices and 
continuously gather data over various time intervals. This approach ensures the generation of a 
dataset that accounts for normal variations in signal strength. The collected data include 
parameters such as timestamp, cell ID, MNC, MCC, and signal strength values.
 Once the data have been collected, it is aggregated into a dataset for subsequent analysis. 
From this dataset, relevant features are extracted, with a particular focus on the RSRP values. 
The RSRP is a crucial measure of the power level received by a device from a reference signal 
transmitted by a base station. This feature is selected for its reliability in indicating signal 
strength and can reveal significant variations that may indicate the presence of a rogue base 
station. Rogue base stations typically emit stronger RSRP signals to overpower legitimate base 
stations and lure user devices into connecting to them. Additional features such as average 
RSRP, signal strength variance, and temporal patterns of signal changes are also extracted. 
These features help in distinguishing between normal base station behavior and anomalies 
indicative of rogue base stations.
 The dataset, which has been augmented with the extracted features, is labeled with both 
known legitimate base station information and potential rogue base station detections. The 
labeled dataset serves as the foundation for training advanced machine learning models, 
specifically recurrent neural network (RNN),(9) long short-term memory (LSTM),(10) and gated 
recurrent unit (GRU).(11) These models are particularly adept at handling sequential and time-
series data,(12) which is essential for analyzing RSRP patterns over time.
 By collecting and analyzing RSRP data using advanced machine learning techniques, the 
detection process aims to accurately identify rogue base stations in the IIoT, enhancing overall 
security and mitigating potential threats.

Fig. 3. Detailed rogue base station detection process.
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3. Experimental Results

3.1 Dataset preparation

 To investigate the issues of rogue base station attacks in the IIoT, we established a 
comprehensive framework that integrates specific hardware and software components 
designed for both legitimate and malicious activities. This configuration entails the 
deployment of two Universal Software Radio Peripheral (USRP) B210 devices, which are 
SDRs utilized for the f lexible generation and reception of wireless signals.
 A single USRP B210 is configured to emulate the 5G connection of an IIoT device. 
This device is set up to operate as a legitimate end-user device, interacting with the 
network in a manner consistent with that of a typical IIoT device. The transmission 
parameters are adjusted to ensure an accurate representation of real IIoT device 
communication.
 The second USRP B210 is configured to operate as a rogue base station.(13) This device 
is specially set up to imitate a legitimate base station by adjusting its transmission 
parameters to match those used in real networks. This allows it to deceive user devices 
into connecting to it instead of a legitimate base station.
 srsRAN(14) is utilized for the configuration of the rogue base station, whereby network 
parameters such as cell ID, MNC, and MCC are set. These parameters must be identical 
to those of a legitimate base station to deceive user devices into connecting to the rogue 
base station. Additionally, Open5GS(15) is employed to establish the core network 
functions of the rogue base station, including the management of subscriber data, session 
management, and other critical network services that are necessary for a fully functional 
rogue setup.
 The data collection process begins by configuring the USRP B210s to operate on the 
desired frequency bands. The initial USRP B210 emulates IIoT device communication 
and collects data to create a dataset for subsequent detection processes. The second USRP 
B210’s transmission settings are adjusted to ensure the accurate mimicry of a legitimate 
base station. Next, srsRAN is configured to define the network parameters (cell ID, 
MNC, and MCC) to match those of a real base station.
 This dataset is then used for machine-learning-based classification, where RNNs, 
LSTM networks, and GRU networks analyze the temporal variations in RSRP values to 
effectively identify rogue base stations. The results demonstrate that our method 
successfully detects rogue base stations by leveraging RSRP-based time-series analysis, 
providing a highly accurate and adaptive security mechanism for IIoT environments.

3.2 Performance evaluation

 To address the security risks posed by rogue base stations in the IIoT, we implemented a 
robust detection process utilizing advanced machine learning algorithms. The primary focus is 
on the analysis of RSRP values, with the objective of identifying anomalies indicative of rogue 
base stations.
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 Three advanced machine learning models were employed in this investigation. The models 
utilized in this study were RNN, LSTM, and GRU. These models are particularly well suited for 
handling sequential and time-series data, making them ideal for the analysis of RSRP patterns 
over time. The RNN model processed sequences of RSRP data, identifying patterns and 
anomalies based on historical data and capturing the immediate signal variations indicative of 
rogue activity. The LSTM model captured long-term dependences in the RSRP data, detecting 
gradual changes in signal patterns. The GRU model, being a variant of the LSTM model, 
enabled the efficient and effective modeling of the RSRP data, balancing performance and 
computational efficiency.
 In our performance evaluation, we focused on four key metrics: precision, recall, F1 score, 
and true-negative rate (TNR).(12) These metrics were selected for their ability to provide a 
comprehensive assessment of the effectiveness of each model in detecting rogue base stations.

3.3 Results

 In this study, we employed a dataset comprising a total of 1000 data points, with an equal 
distribution of 500 data points for legitimate base stations and 500 data points for malicious base 
stations. The data set was split into training and testing sets, with 80% of the data used for 
training and 20% for testing.
 The experiment results are shown in Table 2. The LSTM model achieved the highest TNR of 
0.9712, demonstrating its effectiveness in distinguishing between legitimate and rogue base 
stations. The GRU model also performed well, with a high F1 score of 0.9691 and a TNR of 
0.9615. The RNN model, while still effective, showed the lowest performance among the three 
models, particularly in terms of TNR, which was 0.9327.
 Analyzing the number of parameters, we observed that the LSTM model has the highest 
parameter count at 4385, followed by the GRU model with 3393 parameters, and the RNN model 
with 1121 parameters. This indicates that the LSTM and GRU models, despite having more 
parameters, can achieve higher performance metrics. The enhanced complexity of these models 
contributes to their superior capacity to detect rogue base stations in the IIoT environment, 
emphasizing the trade-off between model complexity and detection.

3.4 Discussion

 The experimental results demonstrate that all three neural network models (RNN, LSTM, 
and GRU) performed exceptionally well in detecting rogue base stations in the IIoT environment. 
Each model exhibited high precision, recall, F1 score, and TNR, with all metrics exceeding 0.9, 

Table 2
Comparison between different peer methods.
Method Precision Recall F1 score TNR Parameter
Simple RNN 0.9314 0.9896 0.9596 0.9327 1121
LSTM 0.9684 0.9583 0.9634 0.9712 4385
GRU 0.9592 0.9792 0.9691 0.9615 3393
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indicating their robustness and reliability in distinguishing between legitimate and malicious 
base stations.
 The LSTM model was particularly effective, achieving the highest performance among the 
three models. The GRU model also showed strong performance, closely following the LSTM 
model. The RNN model was slightly less effective but still provided reliable detection 
capabilities. These results highlight the potential of advanced machine learning models to 
enhance the security of IIoT networks by accurately identifying rogue base stations.
 To better understand how our approach compares to existing methods for detecting rogue 
base stations, we evaluated key features of previous studies. Table 3 provides a comparative 
summary of these methods. While previous works successfully leveraged RSRP characteristics 
and machine-learning-based detection, our proposed method differs by integrating both 
techniques with SDR emulation. This combination enables a more flexible and adaptable 
detection mechanism, especially in IIoT environments where rogue base stations take advantage 
of dynamic network conditions. Furthermore, our models consistently achieve high accuracy, 
matching the best performing previous works, while demonstrating superior adaptability 
through time-series analysis.
 Our method integrates machine learning with time-series analysis, offering significant 
advantages over previous approaches. By emulating IIoT environments using SDR, our system 
effectively detects rogue base stations through temporal signal variations, ensuring dynamic 
detection capabilities while maintaining ease of deployment across various devices. Compared 
with traditional methods, our approach provides higher accuracy, improved adaptability, and 
enhanced security, making it a robust and scalable solution for safeguarding IIoT environments 
against rogue base station threats.

4. Conclusions

 In this study, we designed a framework to emulate a rogue base station attack and 
collected data to represent both legitimate and malicious base station scenarios. Three 
advanced machine learning models (RNN, LSTM, and GRU) were used to classify and 
detect rogue base stations based on RSRP values. Each model demonstrated high 
performance, with all key metrics exceeding 0.9. While our proposed method enhances the 
security of IIoT networks by enabling the real-time detection of rogue base stations, several 
challenges remain. A key limitation is the reliance on RSRP values alone, which can be affected 
by environmental factors such as interference, signal reflections, and obstacles. Future work can 

Table 3
Comparison of rogue base station detection methods.
Feature Huang et al.(4) Nakarmi et al.(6) Liu et al.(7) Proposed method
RSRP characteristic ✓ ✓ ✓
Machine learning ✓ ✓ ✓
Using SDR ✓ ✓ ✓
High precision ✓ ✓ ✓ ✓
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incorporate an additional wireless signal parameter, such as reference signal received quality or 
signal-to-interference-plus-noise ratio, to improve detection robustness. In addition, expanding 
the dataset to include real-world deployment scenarios and testing in different IIoT environments 
will improve the generalizability of the model. In addition, the integration of edge computing 
solutions can enable the faster and real-time detection of rogue base stations at the network edge, 
reducing reliance on centralized infrastructure. By addressing these challenges, our research 
lays the foundation for a more secure and resilient IIoT ecosystem, ensuring reliable 
communications and protecting industrial networks from rogue base station threats.
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