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	 In this study, we address the critical challenge of enhancing energy efficiency in existing 
long-term care centers in Taiwan, aligning with the nation’s 2050 net-zero emissions goal while 
accommodating an aging population. We present a novel framework integrating the Building 
Energy Simulation and Analysis platform (BESTAI), a user-friendly building performance 
simulation tool, with JMP software for experimental design and statistical analysis. The 
methodology was applied to a case study of a typical Tier C long-term care facility in southern 
Taiwan. BESTAI demonstrated high accuracy with a deviation of less than 3% from metered 
energy consumption. Four key factors were investigated: air conditioning efficiency, window-to-
wall ratio, window U-value, and shading coefficient. The comparative analysis of full factorial, 
Taguchi, definitive screening design (DSD), and custom design experimental methods revealed 
that air conditioning efficiency and window shading coefficient were the most significant factors 
affecting building energy consumption. The DSD and Taguchi methods proved to be the most 
cost-effective, requiring only 11 and 9 trials, respectively, to achieve optimal solutions, compared 
with 81 trials for full factorial design. Regression models consistently identified the air 
conditioning system’s coefficient of performance as the most influential factor. The optimized 
configuration achieved a 47% reduction in electricity usage. This research provides a replicable 
model for rapid, accurate building energy analysis and optimization, which is crucial for 
Taiwan’s sustainable development in the face of climate change and demographic shifts. The 
findings offer valuable insights for policymakers and building managers in prioritizing energy 
efficiency measures in the long-term care sector. Future research can enhance this study’s 
optimization framework through sensor technology integration. Smart sensors can validate 
BESTAI simulation results in real time, with temperature and humidity sensors verifying 
heating, ventilation and air conditioning (HVAC) performance, occupancy sensors capturing 
usage patterns for demand-based control, and IoT power meters providing equipment-level 
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consumption data. Thermographic imaging systems can monitor building envelope performance. 
This sensor-integrated approach can create a feedback loop between simulation predictions and 
actual performance metrics, enabling the continuous optimization of energy-saving strategies in 
long-term care facilities.

1.	 Introduction

	 The Industrial Revolution in the 1800s was propelled by coal, petroleum, and natural gas as 
critical energy sources. Coal and fossil fuels have since become the dominant global sources of 
energy; during the 1950s, coal and fossil fuels accounted for more than 70% of global electricity 
generation.(1) However, the emission of greenhouse gases from the burning of biofuels has 
contributed to the increase in Earth’s surface temperature and led to climate change. Espousing 
such estimate, the Sixth Assessment Report of the United Nations Intergovernmental Panel on 
Climate Change released in February of 2022 noted that global climate hazards are likely to 
occur over the next two decades if the average temperature increases to 1.5 °C above pre-
industrial levels.(2) According to the World Meteorological Organization, the global mean near-
surface temperature in 2023 was 1.45 ± 0.12 °C above the pre-industrial 1850–1900 average.(3) 
The abovementioned reports underscore the importance of reaching net-zero emissions, which is 
integral to sustainable development as well as critical to limiting the destructive forces brought 
on by extreme weather events. 
	 Achieving net-zero global carbon dioxide (CO2) emissions by 2050 has reached worldwide 
consensus; many countries have established different carbon neutrality timelines while 
maintaining economic growth.(4) It is important to note that reaching net-zero emissions requires 
efforts from all industries. The International Energy Agency (IEA) pointed out that more than 
85% of buildings should be zero-carbon-ready.(5) Taiwan has undertaken its net-zero building 
transformation by adopting concepts outlined by the IEA, EU, US, and Japan. By 2050 (Fig. 1), 
100% of Taiwan’s new buildings will be zero-carbon-ready, with more than 85% of existing 
structures being nearly zero-emission buildings.(6) Renovating existing private buildings relies 
on protecting ownership rights and providing incentives and subsidies, while state-owned 
buildings rely on timely enforcement. Furthermore, investment and research should be devoted 
to developing novel building energy-saving approaches, as well as carbon reduction technologies.
	 Common strategies for achieving net-zero carbon buildings encompass enhancements in the 
thermal insulation of building envelopes, improvements in equipment energy efficiency, the 
adoption of smart energy management systems, and the integration of additional renewable 
energy sources. Energy-saving technologies for building envelopes are well-established today, 
especially in their comprehensive application in passive buildings.(7) This encompasses various 
components such as roofs, doors, windows, and walls, each with its applicable technologies. For 
instance, advanced energy-efficient roofs include modern green roofs, photovoltaic roofs, and 
radiation-penetrating barriers. The application of phase-change materials in building walls 
enhances thermal mass effects, providing an energy-efficient solution for environments with 
significant day–night temperature fluctuations. Different window types also yield varying 
energy-saving effects, which can be evaluated using building performance simulation tools.
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	 On the other hand, Taiwan is concurrently grappling with the challenges of an aging 
population and declining birth rates. Taiwan officially entered the aging society in 2018 and is 
on course to become a hyper-aged society by 2026 (Fig. 2). This has brought about a 
corresponding rise in the number of people who need long-term care. However, the shifts in 
family structure have led to a reduction in the number of caregivers within the family unit. The 
average fertility rate in Taiwan is 1.18 persons, and the number of members per household stands 
at 2.77 persons. To adapt to this enormous need and mitigate the burden of family caregivers, the 
Taiwanese government launched the 10-year Long-term Care Plan 2.0 in 2017. One of the goals 
of saving-engaging these policy goals is “aging in place.” To provide the public with integrated, 
flexible, and convenient care services close to home, a three-tier system consisting of 
community-based integrated service centers (Tier A), combined service centers (Tier B), and 
long-term care stations in alleys and lanes (Tier C) is established in this plan.(8)

	 In 2022, a total of 680 Tier A, 6852 Tier B, and 3686 Tier C centers were established. 
However, the design development of long-term care buildings in Taiwan has traditionally 
prioritized creating accessible spaces, with limited attention given to improving the living 
environment and energy usage for the elderly. Consequently, with the rapid changes in 
demographic structure and the increasing number of long-term care centers, it is crucial to 
create comfortable living environments tailored to the characteristics of elderly users and 
simultaneously reduce energy consumption to achieve energy efficiency. This is particularly 
relevant to the quality of care for the aging population.
	 BPS tools have become a popular way to support the design decisions of architects or 
engineers in various stages of energy-efficient buildings. These instruments first build up an 
energy model, with inputs for local weather, building geometry, building envelope 

Fig. 1.	 (Color online) Taiwan’s pathway to net-zero emissions in 2050.
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characteristics, internal heat gains from lighting, people, and plug loads, heating, ventilation and 
air conditioning (HVAC) system specifications, operation schedules, and control strategies. 
Next, mathematical models are used to depict building systems and their interactions in order to 
calculate thermal loads, system responses to those loads, and holistic energy use, along with 
related metrics such as occupant thermal comfort, energy use, and carbon emissions. On the 
basis of a referencing book review,(9) an overview of BPS tools indicates that the current fourth-
generation tools tend to be fully integrated concerning different aspects of building performance, 
with new developments concerned with intelligent knowledge-based user interfaces, application 
quality control, and user training. These approved programs, which are applied to the green 
building rating system in the Leadership in Energy and Environmental Design (LEED), have at 
least ten programs among them.(10) These program tools were, moreover, widely used in the 
United States and include DesignBuilder, DOE-2, eQuest, Ecotect, Energy-10, Green Building 
Studio HEED, and IES VE. Among these, Ecotect, Energy-10, and eQUEST are often used in 
academia.(11) On the other hand, IES VE, DesignBuilder, and Ecotect are popular commercially 
available simulation tools that are widely used among architects.(12)

	 Developed in 1996, EnergyPlus was one of the best-known energy simulation software tools. 
It has become a tool used to evaluate building energy performance and is highly recommended 
by the U.S. DOE.(13) The development of EnergyPlus allowed the Building Loads Analysis and 
System Thermodynamics (BLAST) to integrate mutual functions with the DOE-2 in 1998. It is 
DOE’s open-source whole-building energy modeling (BEM) engine, the successor to DOE-2.1E. 
EnergyPlus embodies state-of-the-art BEM knowledge in a comprehensive and robust engine 
that is continuously maintained, thoroughly documented, and fully supported. Thus far, it has 
been most widely used according to the annual growth of global users (shown in Fig. 3). 
However, the lack of a free comprehensive graphical user interface (GUI) has prevented 
EnergyPlus from becoming widely adopted by practitioners.(14) The release of other GUI editors, 

Fig. 2.	 (Color online) ABC HCBS network design.
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such as IDF editor, DesignBuilder, Comfen, OpenStudio, Simergy, Sefaira, DIVA, and 
AECOsim, can simplify the building model assembly process for energy simulation to make 
EnergyPlus accessible to architects and other professionals. 
	 Existing studies aimed to identify executed criteria and requirements of BPS tools, as well as 
rank and compare BPS tools, have been conducted over the past two decades. Hong et al. set up 
a decision-making system to select a BPS tool and suggested four selection criteria, namely, 
computing capability, usability, data exchange capability, and database support.(15) Attia et al. 
identified architects’ and engineers’ requirements and selection criteria for BPS tools; their 
research indicated that architects prioritized the integration of intelligent design knowledge 
based on five criteria.(12) On the other hand, engineers agreed to prioritize the accuracy of tools 
and the ability to simulate detailed and complex building components. The developers of the 
BPS tool can use the survey results to improve or create a BPS tool.
	 Note that some buildings require systemic improvement to reach optimal energy 
conservation. BPS is not easy to use because it requires professionals in engineering professions 
who are familiar with energy performance diagnosis. Therefore, in this study, we aim to 
integrate an appropriate BPS tool along with experimental design and statistical analysis to 
create an easy-to-operate platform. The application of this platform should yield varying 
strategies specific to the building under analysis.

2.	 Methodology

	 In this study, we propose an integrated platform to implement the existing building 
improvement program. In this proposed platform, Building Energy Simulation and Analysis 
platform (BESTAI) was adopted to conduct simulations of energy consumption in the existing 
building. BESTAI has an integrated GUI suitable for conducting an EnergyPlus building energy 
consumption analysis. Considering that those who use statistical software in the field of 
architecture may not be well-versed in statistics, our research adopts JMP to perform the 

Fig. 3.	 (Color online) Statistical quantity for using building performance tools as published in academic journals.
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necessary statistical analysis because it can generate optimal building energy-efficiency 
improvement plans visually, which would otherwise be overlooked when presented in numbers.
	 Figure 4 outlines the steps required to implement the existing building energy-saving 
improvement program. First, a target structure needs to be ascertained at Step A, and relevant 
information is collected, which may include but are not limited to the building location and 
orientation, the number of floor levels, building material, and electrical equipment. Obtaining a 
building’s past electrical record is also critical because such data can be used to verify simulation 
results. The more comprehensive the data collection process, the more accurate the building 
energy modeling will be. In Step C, the accuracy evaluation of the proposed BPS tool needs to 
be conducted on the basis of the building’s existing power usage. The fourth step involves the 
JMP software, which is used to execute the experimental design; BESTAI is then used to 
simulate the energy consumption of various experimental conditions, and the main factors for 
building energy consumption can be determined. Finally, the JMP software is used to obtain the 
optimized energy-saving improvement plan.

2.1	 BESTAI

	 The methodology employed in the development and implementation of BESTAI, a web-based 
building energy simulation and optimization tool, is designed to address the specific needs of the 
Taiwanese built environment. BESTAI utilizes a client-based web application architecture, 
enabling users to access the system via various devices, including computers, laptops, and 

Fig. 4.	 Schematic of proposed building energy consumption optimization program.
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mobile devices. This architecture facilitates real-time building simulation analysis, the 
optimization of energy consumption for existing buildings in Taiwan, and customized analysis 
and reporting functions. A key methodological component of BESTAI is its extensive set of 
preassembled parameters, which are organized into editable and exchangeable libraries. These 
libraries cover four main areas: location-specific data for Taiwan, HVAC equipment 
specifications, building materials and assembly templates, and energy-efficient product data 
aligned with Taiwan’s Energy Label Program. The system incorporates two primary simulation 
methodologies. The first is a rapid modeling analysis, which employs a simplified modeling 
interface for quick analysis. Users input basic building information through a web-based 
interface and specify internal load settings, including air conditioning, lighting equipment, and 
scheduling operations, and the system performs real-time simulations based on these inputs. The 
second method is Input Data File (IDF) simulation, which allows for a more detailed analysis by 
enabling users to directly upload building model files (IDFs) and climate files (EnergyPlus 
Weather Files), utilizing cloud-based high-speed computing services for simulation. The user 
interface is designed for accessibility and ease of use, featuring a web-based spreadsheet 
application for data input, a Chinese language interface to remove language barriers for 
Taiwanese users, and a mobile-responsive design for smartphone access. BESTAI’s analysis and 
reporting methodology includes Return on investment (ROI) assessment, annual energy 
consumption calculation, and electricity bill estimation, with reports generated automatically 
based on simulation results. The implementation process follows a structured approach, 
beginning with user authentication, followed by the input of building information (including 
name, the number of floors, orientation, space dimensions, and window-to-wall ratios), the 
selection of parameters (such as building façade, internal loads, operational schedules, HVAC 
equipment, and climate zone), simulation execution, and finally, the generation and presentation 
of results. This comprehensive methodological approach enables a rapid, accessible, and context-
specific building energy analysis tailored to the unique characteristics of Taiwan’s built 
environment. The combination of comprehensive preset libraries, user-friendly interface, and 
cloud-based simulation capabilities distinguishes BESTAI as an efficient tool for building 
energy optimization in Taiwan, allowing users to perform complex analyses without the need for 
high-performance computing equipment or extensive technical expertise.

2.2	 Statistic and analytic tool 

	 From the 1920s, when the breeding scientist Ronald Fisher first introduced the concept of 
Design of Experiments (DOE) in agricultural experiments, DOE has undergone a century of 
development and has found wide-ranging applications in both academia and industry. In the 
context of building energy efficiency, DOE has been utilized in the literature. For instance, 
according to Filfli’s 2006 study,(16) this method was employed to reduce traditional building 
energy consumption. To further apply the DOE methodology to achieve low-energy buildings, 
Chlela et al. used it to enhance the energy efficiency of office buildings.(17) In their research, a 
partial factorial design based on the Taguchi method was adopted. Process variables of interest 
included characteristics of the building envelope structure, indoor lighting heat gains, and 
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nighttime ventilation, while the response variable was energy consumption. The empirical 
model established in the study quantified the impact of each factor on the final energy 
consumption of office buildings and identified the factor settings that minimized energy 
consumption. In recent years, Jankovic et al.(18) have conducted research using various DOE 
methods to identify the main effects and interaction factors affecting the overall thermal 
performance of building façades. They transformed the conclusions from different DOE 
responses into a universal decision tree, providing recommendations for selecting the optimal 
DOE, thereby significantly reducing the number of experimental designs required.
	 JMP is a powerful statistical analysis program with interactive data visualization capabilities. 
It originally stood for “John’s Macintosh Project”(19) and was first released in October 1989. It 
empowers scientists and engineers to explore data visually.(20) JMP enables researchers to 
perform a wide range of statistical analyses and modeling, such as creating interactive graphs 
and charts, discovering patterns of variation across many variables at once, and developing 
powerful statistical models.(2) It was used mostly by scientists and engineers for the DOE.

2.3	 Experimental design for improving building energy consumption 

	 A designed experiment is a controlled set of tests designed to model and explore the 
relationship between factors and one or more responses. JMP includes a variety of methods, 
such as full factorial, Taguchi, screening, response surface, definitive screening design (DSD), 
and custom design (CD), which enable energy auditors to create efficient experimental designs 
that work for their situation. JMP has a prediction profiler feature, which allows for accurate 
predictions without the use of data yielded from actual experiments. Thus, the user can directly 
render the response surface using one input factor, X, and one output response, Y. The higher the 
number of factors and responses, the more difficult it is to predict. Figure 5 is an example of the 
JMP prediction profile, which is based on an existing building that uses the Taguchi experimental 

Fig. 5.	 (Color online) Example of the JMP prediction profile of the annual energy consumption response of 
buildings with different combinations of factors.
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design method to obtain a combination of nine factors. The annual power consumption of the 
building simulated by BESTAI is input into the JMP software. Users can adjust parameters 
accordingly (e.g., COP_AC is changed from 2.7 to 4.0), and the predicted response value (e.g., 
annual power consumption) can be obtained in time.
	 The factors affecting building energy consumption range from the structure’s exterior to the 
installed indoor electrical equipment. Walls, roofs, windows, lighting, and air-conditioning 
systems are also influential. However, not all owners have the resources to make improvements. 
Therefore, it is essential to identify how the aforementioned factors may interact with one 
another in an experimental setting so that an improvement proposal can be proposed accordingly. 
The computing capabilities of JMP yield high estimate accuracy, but it also provides the optimal 
combination of response factors even when DOE is scaled down.

3.	 Case Study

	 In this case study, the selected long-term care building for evaluation is located in downtown 
Kaohsiung, an area with extremely high real estate values. This building is representative of 
typical Tier C long-term care buildings in Taiwan, thereby presenting an exemplary retrofitting 
case study for potential wide applications in the Taiwanese context.
	 Retrofitting this Tier C long-term care building faces challenges owing to its climate and site 
conditions, which are characterized by dynamic and variable weather patterns in a humid 
subtropical climate. The location of the building is situated just above 22.4° north latitude, 
slightly south of the Tropic of Cancer in Kaohsiung, Taiwan. This region experiences 
temperatures ranging from an average low of 10 °C (50 °F) in January to an average high of 
33 °C (91 °F) in July, with a consistent daytime length throughout the year—approximately 
13.5 h of daylight on the summer solstice and 10.5 h on the winter solstice. With over 2210 h of 
bright sunshine, the city is among the sunniest areas in Taiwan. The noon temperature reaches 
35 °C in summer and 25 °C in winter. The high summer sun angles underscore the necessity for 
a sheltering roof to control light levels, solar gains, and indoor temperatures. Despite enjoying 
about 225 bright sunny days per year, there is still a monthly rhythm of overcast or rainy days, 
including an average of two to three typhoons per month during the summer. The annual mean 
solar irradiation and precipitation are 3896 MJ/m2 and 1968.2 mm, respectively.
	 According to the proposed framework, the standard operating procedure for assessing energy 
efficiency improvements in this Tier C long-term care building is outlined as follows:

Step A: Description of target building
	 Tier C: Long-term care stations around the blocks are designed to offer respite services in the 
neighborhood and implement primary prevention programs, including social participation, 
health promotion, communal dining services, as well as preventive and disability-delaying 
services. To comply with the regulations for accessible spaces, the majority of Tier C long-term 
care stations are located on the ground floor of buildings. Therefore, a building of this type is 
selected in the case study to explore a retrofitting approach to improve its energy efficiency.
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	 As shown in Fig. 6, this existing building facing east–south is a 13.45-m-tall reinforced 
concrete structure comprising four floors, with an arcade extending from the roof to the ground 
floor with a window-to-wall ratio of 90% on the ground floor. This large window-to-wall ratio 
design ensures an even distribution of natural light. However, it leads to a strong greenhouse 
effect throughout the day. This building has a rectangular floor plan of 9.01 m length and 3.97 m 
width (Fig. 7). The area of each floor is about 35.77 m2 and the floor-to-ceiling height of each 
story is 3.3 m. The care activity space for the elderly in this station is 18.71 m2.
	 The ground floor of this building serves as a Tier C long-term care station. From Monday to 
Friday, between nine a.m. and five p.m., healthy or sub-healthy elderly individuals engage in 
rehabilitation sessions and social activities and have lunch and dinner at this station. Two staff 
members are responsible for the day-to-day operations of the Tier C long-term care station, and 
there is one external teacher for each hourly session. The staff’s working hours are from eight 
a.m. to six p.m. The maximum capacity for elderly individuals is 15 people.

Step B: Data collection
	 The initial task in this step is to identify the energy sources and uses of the target station. In 
this case study, the primary energy source is electricity. A successful energy efficiency 
retrofitting plan in the existing Tier C station relies on accurate and appropriate data to develop a 
profile of its energy situation. Utility bills are typically the first consideration and the most 
easily collected data. The monthly electricity consumption of this target station is shown in 
Fig. 8. The annual energy consumption of this Tier C station is 411.02 kWh/(m2·a). The peak 
electricity consumption primarily occurred during the air conditioning period in the summer 
months of July and August when the air conditioners operated for extended periods, resulting in 
substantial electricity consumption. Throughout the remaining transitional periods, electricity 
consumption was primarily attributed to lighting systems and electrical equipment. 

Fig. 6.	 (Color online) Building appearance of a long-term care station façade facing east–south.
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	 Subsequently, concerning energy uses, we should identify the equipment and systems that 
consume the majority of energy in this target station. After an on-site inventory, this target 
station is equipped with a 7.4 kW split-type air conditioner, a refrigerator (180 W), a water 
dispenser (500 W), a desktop computer (200 W), a laser printer (430 W), a 70-inch LED 
television (90 W), and a broadcasting system (500 W).
	 For computer simulation and modeling, the physical parameters include the window, the 
external wall structure, and the window-to-wall ratio. The number of occupants, the heat gain of 
appliances, and the lighting for each floor are listed in Table 1. Generally, the air conditioner, 
lighting equipment, computer, and appliances in this Tier C station have identical operating 
periods corresponding to the staff’s work shifts from eight a.m. to six p.m.

Fig. 7.	 Floor plan of long-term care station.

Fig. 8.	 (Color online) Comparison of monthly electricity consumption with metered and simulated tools.
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Step C: Accuracy evaluation of BPS tool
	 The accuracy and efficiency of the BESTAI building performance simulation (BPS) tool 
were evaluated through a comprehensive analysis of its performance against actual energy 
consumption data. The results demonstrate the tool’s high accuracy and time efficiency, 
positioning it as a valuable asset for rapid building energy modeling and optimization in Taiwan.
	 Weather data play a crucial role in building energy simulation. In this study, we utilized the 
latest typical meteorological years (TMY3) data for Taiwan, provided by the Architecture and 
Building Research Institute (ABRI).(21) This dataset, sampling 15 standard years from 1998 to 
2012, ensures that the simulations are based on reliable and representative climatic conditions. 
The ability of BESTAI to automatically generate power consumption analyses based on user-
selected locations significantly streamlines the simulation process. Our accuracy evaluation 
revealed that BESTAI’s estimations fall within a 5% margin of error when compared with actual 
utility bills (Fig. 8). This high level of accuracy is particularly noteworthy given the complexity 
of building energy systems and the variability in user behavior. The breakdown of simulated 
electricity consumption provided valuable insights into the energy use patterns of the studied 
building. Air conditioners accounted for 20% of the total consumption, lighting systems 
accounted for 19%, and personal computers (PCs) and electric appliances accounted for a 
substantial 61%. This distribution highlights the significant impact of office equipment on 
overall energy consumption, a finding that can inform energy-saving strategies in similar 
buildings. The consistency in monthly electricity demand, particularly for PCs and electric 
appliances, suggests a relatively stable baseline energy consumption. However, the seasonal 
variation observed in HVAC system usage can be attributed to external loads, primarily heat 
conduction through the building envelope and solar heat gain. This observation underscores the 
importance of considering building envelope performance and solar shading strategies in energy 
optimization efforts.
	 In terms of modeling efficiency, BESTAI demonstrated superior performance compared with 
other commercially available BPS tools. The shoe-box model generation, which typically 
requires only a few minutes of user input, represents a significant time-saving feature. This 
efficiency was further exemplified in our experimental design stage, where 81 cases were 
simulated. The entire annual building energy simulation process for these cases was completed 
in just 6 h using BESTAI. This rapid simulation capability enables extensive parametric studies 

Table 1 
Physical parameters for long-term care building.
Parameters Values
U-value @ exterior wall 3.495 W/m2K
U-value @ roof 1.0 W/m2K
Window-to-wall Ratio 0.9 (façade)
U-value @ window 5.5 W/m2K
Clear glass U = 5.97 W/m2K, SHGC = 0.83, Visible light transmittance = 0.88
No. of people 1st Floor: 2 staff (8 a.m.–6 p.m.) + 15 persons/h (9 a.m.–5 p.m.)
Lighting 1st Floor: 660 W (10 W/m2)
Appliance 1st Floor: 1900 W
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and optimization processes that would be time-prohibitive with conventional tools. The 
efficiency of BESTAI opens up new possibilities for building energy optimization. Allowing a 
larger number of simulations in a shorter time frame enables a more comprehensive exploration 
of design alternatives and energy-saving strategies. Furthermore, the suggestion that appropriate 
experimental design methods can further reduce the number of required simulations points to 
potential future enhancements in the tool’s efficiency. However, note that while BESTAI’s 
accuracy and efficiency are impressive, the tool’s performance should be continuously validated 
across a diverse range of building types and climatic conditions. Future studies can focus on 
expanding the validation to include different building categories, such as residential, commercial, 
and industrial structures, to ensure the tool’s versatility.

Step D: Experimental design
	 We propose to adjust the following four factors critical to this target station’s energy 
consumption in Taiwan: air conditioning efficiency, window-to-wall ratio (WWR), window 
U-value, and shading coefficient (Sc). Every factor contains three tiers. The air conditioner can 
be replaced with a high energy efficiency type to increase the coefficient of performance (COP) 
(from 2.7 to 3.2 or 4.0, which signifies energy conservation). A reduction in window area can 
decrease solar radiation heat entering the interior (WWR from 0.9 to 0.7 or 0.5). The window 
U-value can be adjusted on the basis of whether it is double-glazed or Low-E double-glazed 
glass. In addition, improving the shading factor of windows with a thermal insulation film is 
also effective for reducing solar heat gain. Therefore, the Sc factor is set to 0.35, 0.55, and 0.99 
owing to different visible light transmittances. 
	 Initially, a complete factorial design was considered, which would require 81 (34) 
experimental trials. However, recognizing the time and computational constraints often present 
in building energy simulations, we explored more efficient experimental design methods. The 
Taguchi method was investigated as an alternative, offering two options: 27 (33) trials or nine 
(32) trials. This method provided a balance between the comprehensive coverage of the factor 
space and the experimental efficiency. Table 2 in our study illustrates the factor combinations 
using the Taguchi method. 

Table 2 
Taguchi method showing the experimental factors' combination.
Test No. AC_COP* WWR (%) U-value Sc
1 4.0 0.9 1.64 0.55
2 2.7 0.5 1.64 0.35
3 4.0 0.5 3.31 0.86
4 4.0 0.7 5.97 0.35
5 3.2 0.9 3.31 0.35
6 2.7 0.9 5.97 0.86
7 3.2 0.5 5.97 0.55
8 3.2 0.7 1.64 0.86
9 2.7 0.7 3.31 0.55
*air conditioning system’s coefficient of performance
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Table 4
Custom design showing the combination of experimental factors with main effects.
Test No. AC_COP WWR (%) U-value Sc
1 3.2 0.9 5.97 0.86
2 2.7 0.5 5.97 0.35
3 4.0 0.9 1.64 0.35
4 3.2 0.5 1.64 0.55
5 3.2 0.7 3.31 0.35
6 2.7 0.7 1.64 0.86
7 2.7 0.9 3.31 0.55
8 4.0 0.5 3.31 0.86
9 4.0 0.7 5.97 0.55

	 To further optimize our experimental approach, we also utilized the JMP software to 
implement two additional design methods: DSD and CD. The DSD, particularly suitable for 
early-stage experimentation with four or more factors, allowed us to investigate quadratic model 
terms for continuous factors. Our DSD resulted in 12 experimental trials, as shown in Table 3 of 
our case study. 
	 The CD platform in JMP offered the most flexible approach. We use the CD platform to 
construct optimal designs that are custom-built for the researcher’s specific experimental setting. 
Generally, a CD is more cost-effective than a design obtained using alternative methods. If the 
building energy diagnostician only wants to identify the main effects affective building energy 
efficiency, the number of experiments generated by CD in JMP software is the same as that in 
the Taguchi method, as shown in Table 4. If considering the interactions of quadratic terms, JMP 
increases the number of experiments to 11. Note that the experiments designed by JMP directly 
omit the second (middle) level and use the highest and lowest levels as the configuration design, 
as shown in Table 5. However, such a design may overlook identifying the optimal factor 
combinations.

Step E:	Identification of main factors of DOE testing 
(1)	Effects of main factors
	 Our study began with a comprehensive, complete factorial experimental design, conducting 
81 building energy consumption simulations to identify the main factors affecting building 

Table 3
Definitive screening design showing the experimental factors' combination.
Test No. AC_COP WWR (%) U-value Sc
1 2.7 0.7 5.97 0.55
2 2.7 0.9 1.64 0.35
3 2.7 0.9 3.32 0.55
4 2.7 0.5 1.64 0.86
5 3.2 0.5 5.97 0.86
6 3.2 0.5 3.32 0.35
7 3.2 0.7 5.97 0.35
8 3.2 0.9 1.64 0.55
9 4.0 0.9 5.97 0.86

10 4.0 0.5 3.32 0.55
11 4.0 0.7 1.64 0.35
12 4.0 0.7 3.32 0.86
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Table 5
Custom design showing the combination of experimental factors with main effects and interactions.
Test No. AC_COP WWR (%) U-value Sc
1 4.0 0.9 5.97 0.35
2 2.7 0.9 5.97 0.35
3 4.0 0.5 5.97 0.35
4 2.7 0.5 5.97 0.86
5 4.0 0.5 5.97 0.86
6 4.0 0.9 1.64 0.86
7 2.7 0.9 5.97 0.86
8 4.0 0.9 1.64 0.35
9 4.0 0.5 1.64 0.86

10 2.7 0.9 1.64 0.86
11 2.7 0.5 1.64 0.35

energy consumption. The results, as illustrated in Fig. 9, revealed that the primary factors 
affecting building energy consumption are air conditioning efficiency, Sc, and WWR. 
	 Air conditioning efficiency emerged as the most significant factor impacting building energy 
consumption in Taiwan’s climate. Our analysis, based on the experimental conditions shown in 
Table 6, demonstrated that increasing the air conditioning system’s COP from 2.7 to 4.0 can 
reduce the annual building energy consumption by up to 47% (Fig. 10). This substantial 
reduction underscores the critical role of HVAC system efficiency in building energy 
performance.
	 Window Sc, which is related to the amount of solar radiation entering, was identified as the 
second most influential factor. A higher Sc value allows more natural light to enter the interior, 
resulting in reduced indoor lighting power consumption. However, it can also lead to excessive 
solar radiation heat entering the interior, increasing air conditioning power consumption. Table 7 
represents the experimental conditions selected from the 81 experiments conducted, with 
window Sc as the variable factor, in the full factorial experimental design. Our experiments 
showed that varying the Sc can yield energy improvement benefits ranging from 5 to 11% 
(Fig. 11). The experimental results from the full factorial experimental design also demonstrate 
that choosing air conditioning systems with different energy efficiencies does not significantly 
impact the energy consumption improvement benefits of installing energy-efficient glass 
(Sc = 0.35). However, when simultaneously using high-efficiency air conditioning systems and 
low U-value windows, there is a significant impact on the improvement in building energy 
consumption benefits. This finding highlights the delicate balance between natural lighting and 
solar heat gain in building design. Interestingly, our results also indicated significant interactions 
between Sc, air conditioning efficiency, WWR, and window U-value, suggesting a complex 
relationship between these factors in determining overall building energy performance. 
	 While WWR was identified as a main effect factor, our analysis (Table 8) showed that its 
impact on building energy consumption was relatively minor compared with those of air 
conditioning efficiency and Sc. This finding suggests that, while important, adjustments to 
WWR may offer less substantial energy savings than improvements in HVAC efficiency or 
window shading.
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Fig. 10.	 (Color online) Comparing the energy consumption of trial tests with AC_COP as the main effect factor.

Table 6
Trial tests with AC_COP as the main effect factor.
Test No. AC_COP WWR (%) U-value Sc
17 4.0 0.5 1.64 0.35
19 2.7 0.5 1.64 0.35
30 4.0 0.5 5.97 0.35
33 2.7 0.5 5.97 0.35
43 2.7 0.5 5.97 0.86
74 4.0 0.5 5.97 0.86

Fig. 9.	 (Color online) Total building energy consumption experiments by the full factorial experimental design.
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Fig. 11.	 (Color online) Comparing the energy consumption of trial tests with Sc as the main effect factor.

Table 7
Trial tests with Sc as the main effect factor.
Test No. AC_COP WWR (%) U-value Sc
30 4.0 0.5 5.97 0.35
74 4.0 0.5 5.97 0.86
56 4.0 0.7 1.64 0.55
80 4.0 0.7 1.64 0.35
33 2.7 0.5 5.97 0.35
43 2.7 0.5 5.97 0.86
61 4.0 0.7 1.64 0.86
80 4.0 0.7 1.64 0.35

(2)	Interaction effects
	 In JMP software, through a full factorial experimental design, the two-way interaction 
factors between the four factors obtained are the main factors for improving building energy 
consumption, which are air conditioning system’s coefficient of performance (AC_COP)*Sc, 
U-value*Sc, and WWR*Sc.
	 Table 9 shows the two-way interaction factor (AC_COP*Sc) between air conditioning 
efficiency and window Sc on changes in building energy efficiency, and using the highest 
efficiency air conditioning and low-Sc (high solar insulation) windows results in a 54% reduction 

Table 8
Comparing the energy consumption of trial tests with WWR as the main effect factor.
Test No. AC_COP WWR (%) U-value Sc Annual electricity consumption (kWH)
11 4.0 0.9 3.31 0.35 11597
46 4.0 0.5 3.31 0.35 11404
13 2.7 0.5 3.31 0.35 16763
15 2.7 0.9 3.31 0.35 17048
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in building electricity consumption (T30) compared with using the lowest efficiency air 
conditioning and high-Sc (poor solar insulation) windows (T43). The results of the full factorial 
experimental design for energy efficiency improvement in existing buildings emphasize the 
potential for synergistic effects in energy-saving strategies, particularly when air conditioning 
efficiency and window Sc can maximize energy savings in existing buildings. 

(3)	Comparison of experimental design methods
	 In this study, we compared four experimental design methods: full factorial, Taguchi, DSD, 
and CD. The results, summarized in Table 10, revealed both consistencies and differences across 
methods.
	 All methods identified air conditioning efficiency and window Sc as the main effect factors, 
confirming their critical role in building energy performance. The full factorial and DSD 
methods also identified WWR as a main effect factor, while in the case of Taguchi experimental 
design, we found that the main effect factors for improving energy efficiency in existing health-
caring buildings are air conditioning efficiency and window Sc. The CD method considered all 
four variables (including U-value) as the main effect factors, potentially overestimating the 
importance of some factors.
	 Significant differences were observed in the identification of two-way interaction factors 
across methods, with CD identifying the most interactions and Taguchi the least. Taguchi’s 
experimental design only considers the interaction between air conditioning efficiency and 
window Sc. In contrast, the DSD method includes the interactions between window U-value, 
which was not included as a main effect factor, and the third main effect factor, WWR, as part of 
the two-way interaction factors. As for the CD method in JMP software, it selects five two-way 
interaction factors. These differences highlight the importance of method selection in 
experimental design, as it can significantly impact the identification of key factors and their 
interactions.

(4) Implications for building energy efficiency in Taiwan
	 Over the past decade, the Taiwanese government has consistently encouraged the replacement 
of incandescent bulbs and inefficient appliances with LED light bulbs and high-efficiency home 
appliances through subsidy policies. This policy has led to an approximate 90% market share for 
LED light bulbs and the widespread adoption of high-efficiency air conditioning systems. Our 
findings align with and support Taiwan’s recent policy initiatives promoting the adoption of 
LED lighting and high-efficiency appliances. The identification of air conditioning efficiency as 
the primary factor for improving building energy efficiency validates these policy directions.

Table 9
Trial tests that include the interaction factor between AC_COP and Sc.
Test No. AC_COP WWR (%) U-value Sc Annual electricity consumption (kWH)
5 4.0 0.5 5.97 0.55 11776

33 2.7 0.5 5.97 0.35 17109
30 4.0 0.5 5.97 0.35 11636
43 2.7 0.5 5.97 0.86 17929
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	 Looking forward, our results suggest that focusing on reducing window Sc and optimizing 
WWR can be the most effective strategies for further improving energy efficiency in existing 
buildings. These approaches offer a balance between energy efficiency improvements, cost-
effectiveness, and ease of implementation, making them particularly suitable for retrofitting 
existing structures.

Step F: Optimizing energy efficiency solutions
	 Analysis of variance (ANOVA) is typically used to identify main effect factors, with decisions 
about factor significance based on P-values. However, for building diagnosticians who may lack 
extensive statistical training, the Prediction Profiler feature in JMP software proves to be an 
invaluable tool. It allows for the quick visualization and understanding of individual factors and 
interaction effects on building energy efficiency. This aligns with one of the primary objectives 
of conducting DOE through JMP software, that is, to uncover optimal solutions for enhancing 
energy efficiency in existing structures.
	 Our analysis, as illustrated in Fig. 12, reveals that the optimum yearly electricity consumption 
was approximately 11,384 kWh. This optimal result was achieved with a combination of factors: 
AC_COP at 4, Sc at 0.35, WWR at 0.5, and U-value at 1.64. The 95% confidence interval for 
yearly electricity consumption ranged from 10,866 to 11,901 kWh, providing a robust estimate of 
the potential energy savings.
	 The Prediction Profiler graphs offer valuable insights into the desirability of the regressive 
model. A notable observation is that increasing AC_COP from 2.7 to 4.0 resulted in a substantial 
increase in desirability from 0 to 0.76. In contrast, adjusting the WWR had minimal impact on 
desirability. This visual representation clearly indicates that enhancing the efficiency of the air 
conditioning system is the most significant approach to improving energy efficiency in existing 
buildings. Furthermore, the Prediction Profiler tool demonstrates that yearly electricity 
consumption reaches its optimum level when AC_COP is at its highest level, while Sc, WWR, 
and U-value are at their lowest levels. Specifically, to achieve optimal energy efficiency, the 
COP of the air conditioner should be 4.0, WWR should be 0.5, Sc should be 0.35, and the thermal 
transmission of windows should be 1.64 W/m²-K.
	 Following the estimation of main effect factors and the visual evaluation of relationships 
between response variables and predictors, we fitted regression models to the data generated by 
BESTAI using various DOE methods. Table 11 presents these regression models, considering 
regression coefficients and effects. The models derived from full factorial, Taguchi, DSD, and 

Table 10
Main effect and interaction factors from four different DOE methods.
DOE Main effect factor Interaction factor

AC_COP Sc WWR (%) U-value
Full factorial V V V X AC_COP*Sc, U-value*Sc, WWR*Sc
Taguchi V V X X AC_COP*Sc
DSD V V V X U-value*WWR

CD V V V X AC_COP*Sc, U-value*Sc, WWR*Sc, 
AC_COP*U-value, AC_COP*WWR
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CD methods each offer unique insights into the relationships between factors and energy 
consumption.
	 To validate the accuracy of these models, we compared their predictions with the results 
obtained from BESTAI simulation under optimal energy-saving conditions (Table 12). The DSD 
experimental design method demonstrated the highest accuracy, with a remarkably low 
prediction error of approximately −0.15%. This was closely followed by the Taguchi 
experimental design method, with a prediction error of 1.22%.
	 Interestingly, despite using 81 experiments, the full factorial method’s predicted values also 
fell within a reasonable range, with an error of −2.07%. The CD experimental design method, 
while including main effect and interaction factors, paradoxically showed the highest prediction 
error at −6.35%. This unexpected result underscores the complexity of energy efficiency 
modeling and the importance of selecting appropriate experimental design methods.
	 These findings have significant implications for both researchers and practitioners in the 
field of building energy efficiency. The superior performance of the DSD method suggests that it 
may be a more efficient approach for optimizing building energy consumption, potentially 

Table 11
Predicted regression models by various DOE methods.
DOE Regression model

Full 
factorial

14632.76 − 2812.86*((AC_COP − 3.35)/0.65) + 584.19*((WWR − 0.6)/0.3) + 
568.41*((Sc − 0.67)/0.32) + ((AC_COP − 3.35)/0.65)*(((Sc − 0.67)/0.32)*(−132.884)) + 
((WWR − 0.6)/0.3)*(((Sc − 0.67)/0.32)*389.74) + ((U-value − 3.81)/2.17)*(((Sc − 0.67)/0.32)*(−154.15))

Taguchi 14822.39 − 2923.34*((AC_COP − 3.35)/0.65) + 718.90((Sc − 0.67)/0.32) 
+ ((AC_COP − 3.35)/0.65)*((Sc − 0.67)/0.32)*(−550.03)

DSD 14765.12 − 2765.54*((AC_COP − 3.35)/0.65) + 386.98*((WWR − 0.7)/0.2) 
+ 587.23*((Sc − 0.67)/0.32) + ((WWR − 0.7)/0.2)*(((U-value − 3.81)/2.17)*358.70)

CD

15076.71 − 2888.76*((AC_COP  − 3.35)/0.65) + 712.74*((Sc − 0.67)/0.32) + 423.33*((WWR − 0.7)/0.2) + 
15.33*((U-value − 3.805)/2.165) + ((AC_COP − 3.35)/0.65)*(((Sc − 0.67)/0.32)*(−113.24)) + ((AC_COP 
− 3.35)/0.65)*((WWR − 0.7)/0.2*(−77.58)) + ((AC_COP − 3.35)/0.65)*(((U-value − 3.81)/2.17)*59.43) + 
211.93*((Sc − 0.67)/0.32)*((WWR − 0.7)/0.2) − 106.08*((Sc − 0.67)/0.32)*((U-value − 3.81)/2.17)

Fig. 12.	 (Color online) DSD model optimization using profiler tool in JMP software.



Sensors and Materials, Vol. 37, No. 4 (2025)	 1635

reducing the number of required simulations without compromising accuracy. The Taguchi 
method’s strong performance also indicates its viability as a robust tool for energy efficiency 
optimization.
	 The regression models derived from these DOE methods provide valuable insights into the 
relative importance of different factors in determining building energy consumption. Across all 
models, the AC_COP consistently emerged as the most influential factor. This underscores the 
critical role of HVAC system efficiency in overall building energy performance and suggests 
that upgrading or optimizing air conditioning systems should be a priority in energy retrofit 
projects.
	 The interaction effects identified in these models, particularly between AC_COP and Sc, as 
well as between WWR and U-value, highlight the complex interplay between building envelope 
characteristics and HVAC system performance. These interactions emphasize the need for a 
holistic approach to building energy optimization, considering both active and passive energy-
saving strategies.
	 In conclusion, our study demonstrates the efficacy of various DOE methods in optimizing 
building energy efficiency. The DSD method, in particular, shows promise as a powerful tool for 
accurately predicting and optimizing energy consumption with minimal experimental runs. The 
consistency in identifying AC_COP as a critical factor across all models underscores the 
importance of focusing on HVAC system efficiency in energy retrofit strategies.

4.	 Discussion

	 In this study, we present a unique framework that integrates the BESTAI simulation tool with 
statistical experimental design methodologies to enhance energy efficiency in long-term care 
(LTC) facilities. While previous research has focused on optimizing energy consumption in 
residential and commercial buildings, limited studies have specifically addressed LTC centers, 
which have unique operational characteristics and occupancy patterns. By targeting Taiwan’s Tier 
C LTC centers, we provide a practical and scalable approach to achieving the nation’s 2050 net-
zero emissions goal. The combination of high-accuracy BPS and efficient experimental design 
techniques distinguishes this work from existing studies. Several prior studies have explored 
energy efficiency in healthcare and residential buildings using BPS and optimization techniques. 
For example, Peng et al.(22) applied a genetic algorithm to optimize energy efficiency in hospitals, 
demonstrating significant energy savings but requiring extensive computational resources. 
Similarly, Vergés et al.(23) utilized an artificial neural network to predict HVAC energy 

Table 12
Optimal annual electricity consumption by various DOE methods.

AC_COP Sc WWR U-value Predicted annual electricity consumption (kWH) Error (%)
BESTAI

4.0 0.35 0.5 1.64

11401 —
Full factorial 11165 −2.07
Taguchi 11540 1.22
DSD 11384 −0.15
CD 10677 −6.35
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consumption, but the models’ accuracy is challenging, and the inability to analyze variable 
refrigerant volume in nursing homes increased the tendency to overestimate cooling consumption. 
Unlike these studies, our research employs the BESTAI tool, which is user-friendly and 
accessible, making it suitable for practitioners without advanced simulation expertise. 
Furthermore, our comparative evaluation of full factorial, Taguchi, DSD, and CD approaches 
contributes to methodological advancements in energy efficiency research. While full factorial 
designs are comprehensive, they are often computationally expensive, as shown in a previous 
study.(24) In contrast, we demonstrate in this study that Taguchi and DSD methods provide 
equally reliable results with significantly fewer trials, offering a more practical and cost-effective 
solution for LTC facility managers.

5.	 Contributions and Policy Implications

	 The findings of this study have direct implications for policymakers and facility managers. 
The identification of air conditioning efficiency and window Sc as the most influential factors 
aligns with previous research on passive and active energy-saving strategies.(25) However, our 
research provides a more targeted analysis for LTC centers, emphasizing rapid implementation 
and cost-effectiveness. By achieving a 47% reduction in electricity consumption through 
optimized configurations, we underscore the potential for substantial energy savings without 
extensive structural modifications. Moreover, the proposed methodology can be replicated and 
adapted to different regions, contributing to global sustainable development efforts. Future 
research can explore additional factors, such as renewable energy integration and occupant 
behavior modeling, to further enhance energy efficiency in LTC facilities.

6.	 Conclusions

	 In this paper, we presented a novel framework for enhancing energy efficiency in existing 
long-term care centers in Taiwan, addressing the dual challenges of climate change mitigation 
and an aging population. Our integrated approach, combining the BESTAI simulation tool with 
JMP software for experimental design, offers a robust methodology for optimizing building 
energy performance. The integration of BESTAI and advanced experimental design methods 
enables the precise analysis and optimization of energy usage, similar to how microactuators and 
energy harvesters enhance energy management in various applications. By improving air 
conditioning efficiency, window insulation, and shading strategies, our study contributes to 
reducing overall energy demand, aligning with the broader goal of sustainable energy utilization. 
Key findings of this research include the following:
(1)	�The BESTAI tool demonstrated high accuracy in simulating building energy consumption, 

with less than 3% deviation from metered results, validating its reliability for energy audits 
and retrofitting strategies.

(2)	�Among the four factors investigated (air conditioning efficiency, WWR, window U-value, and 
Sc), air conditioning efficiency emerged as the most significant factor affecting building 
energy consumption, followed by window Sc.
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(3)	�The DSD and Taguchi methods proved to be the most cost-effective experimental design 
approaches, requiring only 11 and 9 trials, respectively, to achieve optimal energy-saving 
solutions, compared with the full factorial design’s 81 trials.

(4)	�The regression models derived from these methods consistently identified the air conditioning 
system’s COP as the most influential factor, underscoring the critical role of HVAC system 
efficiency in overall building energy performance.

(5)	�Interaction effects, particularly between COP and Sc, as well as between WWR and U-value, 
highlight the complex interplay of building envelope characteristics and HVAC performance, 
necessitating a holistic approach to energy optimization.

	 These findings have significant implications for policymakers and building managers in 
Taiwan’s long-term care sector. They provide a scientific basis for prioritizing energy efficiency 
measures, focusing on upgrading HVAC systems and improving window shading as primary 
strategies for reducing energy consumption.
	 The framework developed in this study, integrating user-friendly simulation tools with 
statistical analysis, offers a replicable model for energy efficiency optimization in other building 
types and geographical contexts. It addresses the need for rapid, accurate, and accessible 
methods for building energy analysis, crucial for meeting Taiwan’s ambitious net-zero emissions 
targets by 2050. Future research can significantly enhance this study’s energy optimization 
framework by incorporating sensor technology. Smart sensors can provide the real-time 
validation of the BESTAI simulation results while enabling the granular monitoring of the 
identified critical factors. Occupancy sensors can further refine the energy consumption models 
by capturing the actual usage patterns in different zones of the long-term care facility, enabling 
more precise HVAC control strategies. The integration of IoT-enabled power meters can provide 
equipment-level energy consumption data, allowing facility managers to verify the reduction in 
electricity usage predicted by simulation. Additionally, thermal imaging sensors can monitor the 
building envelope’s performance. This sensor-enhanced approach will create a feedback loop 
between simulation predictions and actual performance metrics, enabling the continuous 
optimization of the energy-saving strategies identified in this research.
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