
1639Sensors and Materials, Vol. 37, No. 4 (2025) 1639–1656
MYU Tokyo

S & M 4010

*Corresponding author: e-mail: eric_chang@ncut.edu.tw
https://doi.org/10.18494/SAM5419

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Real-time Fall Detection and Reporting System
Using the AlphaPose Model of Artificial Intelligence

Yuh-Shihng Chang* and Guan-Yu Lin

Department of Information Management, National Chin-Yi University of Technology,
No. 57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 411030, Taiwan (R.O.C.)

(Received October 28, 2024; accepted April 9, 2025)

Keywords: fall detection, artificial intelligence, human activity recognition and behavior understanding,
reporting system, AlphaPose model

 Falling is a prevalent and hazardous event that can lead to severe injuries, such as limb
fractures or spinal damage, especially for elderly individuals in hospital care. In this study, we
aim to develop a machine-learning-based system for effective fall detection and prompt
intervention. We applied deep learning techniques, particularly the AlphaPose + Spatial
Temporal Graph Convolutional Network (ST-GCN) model, to enhance human activity
recognition and behavior analysis. These advanced machine learning models allow for the real-
time monitoring of fall events by accurately identifying abnormal movements and behaviors
associated with falls. In this study, we employed a web camera as a sensor to capture the human
pose, and the AI-powered system achieved an accuracy rate exceeding 96% in training results,
showcasing its robustness in detecting falls. Upon detection, the system sends immediate alerts
via communication software, ensuring timely notifications to healthcare providers or family
members. This machine learning approach significantly improves the safety of elderly
individuals by reducing response time and minimizing the risk of fall-related injuries.

1. Introduction

 Falls are a common and serious problem among the elderly population. When older adults are
waiting for treatment or receiving care in hospitals, falls can lead to severe consequences,
including fractures, internal bleeding, trauma, and even life-threatening situations. Falls are the
second leading cause of unintentional injury-related deaths worldwide. According to the World
Health Organization, an estimated 684000 people die from falls each year, with more than 80%
of these fatalities occurring in low- and middle-income countries. Among fatal falls, adults aged
60 and above represent the largest proportion. Each year, there are approximately 37.3 million
falls that are severe enough to require medical attention. Globally, falls result in more than 38
million disability-adjusted life years lost, contributing to life loss due to disabilities.(1) When
nurses or family members are unable to constantly supervise elderly patients, the risk of falls

mailto:eric_chang@ncut.edu.tw
https://doi.org/10.18494/SAM5419
https://myukk.org/

1640 Sensors and Materials, Vol. 37, No. 4 (2025)

increases significantly. Many elderly individuals may be unable to call for help in time,
potentially worsening their injuries.
 As the history of computer vision illustrates, the availability of larger datasets, combined
with advancements in computing power, frequently leads to paradigm shifts. In this context,
convolutional neural networks (CNNs) have emerged as the de facto standard in the field. Owing
to their exceptional feature extraction capabilities, CNNs excel in various visual tasks,
particularly in fall detection applications. In recent years, numerous studies have focused on the
application of CNNs within AI technology for fall detection. Key literature includes the
following:
 Li et al. proposed a fall detection method based on CNNs, utilizing video sequences to
identify fall events by sorting images of various actions.(2) They applied CNNs to each frame of
the video to extract human poses. As part of the data preprocessing, the average image of all
training and test images is calculated, and then this average image is subtracted from each
training and test image to achieve uniform brightness. The advantage of this study is its ability
to capture time series characteristics with high accuracy. However, it has limited adaptability to
different environments or lighting conditions and is highly dependent on specific datasets.(2)

 Butt et al. employed deep learning technology by combining CNNs and long short-term
memory (LSTM) networks for fall detection.(3) For comparative analysis, the performance
characteristics of two deep learning architectures—LSTM and CNN-based transfer learning—
were evaluated. Notably, they found that CNN transfer learning achieved the highest quantitative
performance, reaching an accuracy of 98%. The advantage of this study lies in its consideration
of both LSTM and CNN architectures, which enhances detection accuracy and improves the
understanding of action continuity. However, a notable drawback is that deep learning models
require substantial computing resources and lengthy training times.(3)

 Benoit et al. conducted a comparative study of nine neural network models applied to fall
detection in the elderly.(4) The models examined included Dense, CNN, LSTM, Gated Recurrent
Unit (GRU), BiLSTM, Bidirectional GRU (BiGRU), CNN Dense, CNN LSTM, and CNN GRU,
all aimed at predicting falls prior to impact with the ground using accelerometer data. The
models were optimized using Keras Tuner and the TensorFlow backend, a leading deep learning
framework. The results indicate that deep learning approaches demonstrate a higher
classification accuracy and a more streamlined software architecture, although this comes at the
cost of energy efficiency and reduced inference speed.(4)

 Wang et al. demonstrated that the back-propagation neural network can effectively avoid
local optimal solutions and converges more rapidly.(5) The fall detection accuracies achieved
with the German Aerospace Center, Smart Fall, and University of Rzeszów Fall (URFall)
datasets were 98.3, 92.0, and 96.1%, respectively. This research provides technical support for
portable, low-power wearable fall detection systems that can adapt to various environmental
conditions. The integration of multiple data sources enhances the accuracy and robustness of
detection. The high accuracy in recognizing fall behaviors paves the way for portable, multi-
application scenarios with low power consumption for future fall detection systems.(5)

 Overall, CNN-based fall detection techniques show strong potential but also face several
challenges. Our research aims to enhance the adaptability and generalization ability of the model

Sensors and Materials, Vol. 37, No. 4 (2025) 1641

through machine learning technology and integrate web cameras as sensors to detect human
body movements, thereby improving the accuracy and reliability of fall detection.
 The main goal of this study is to develop an instant fall detection and notification system
based on the AlphaPose artificial intelligence model to address the urgent need for fall detection
among the elderly. This system is designed to build upon previous research and achieve the
following objectives:
1. accurately detect fall events using web cameras, with an accuracy of more than 96%,
2. establish a notification system that can promptly transmit fall incident information to medical

staff or family members within 0.5 s, and
3. enable real-time sensing to ensure that the elderly can receive timely assistance after a fall,

thereby minimizing potential injuries.

2. Theoretical Foundation

 In this section, the image recognition technology of AI open sources and human motion
classification methods will be discussed. This discussion aims to facilitate a better understanding
for readers of the Lightweight AlphaPose(6) model proposed in this study and the human motion
classification model. These are crucial for real-time detection capabilities, as the aforementioned
AI algorithms and models help ensure that fall events can immediately trigger notification
processes, providing prompt responses and reducing potential harm.

2.1 Skeleton pose detection

 Skeleton pose detection is a crucial task in the field of computer vision, focusing on accurately
identifying the posture and movements of human bodies in images. This technology finds
applications in various domains, including but not limited to medical image processing,(7)
motion analysis,(8) virtual reality,(9) and security surveillance.(10) Skeleton pose detection
methods are primarily categorized into bottom-up and top-down approaches. In the top-down
approach, algorithms first identify the potential locations of humans in the input image using
object detection techniques. These locations are then marked using bounding boxes.
Subsequently, the image regions within these bounding boxes are fed into networks for human
pose estimation, aiming to detect joint points and body segments of humans. Methods such as
DeepPose(11) and AlphaPose(12) adopt this approach.
 Another bottom-up approach involves first identifying possible joint locations in the image
and obtaining feature maps for each key point through a bottom-up network. Subsequently, on
the basis of relationships and positions of each key point, the human pose is gradually assembled.
Methods such as OpenPose(13) and DensePose(14) operate similarly in this manner. AlphaPose’s
skeletal pose detection system focuses on real-time multiperson pose estimation. It consists of
four components: a Spatial Transformer Network (STN) responsible for extracting each person’s
image and optimizing bounding box positions, two Single-Person Pose Estimation (SPPE)
modules for individual keypoint prediction, cross-matching to obtain possible joint positions, a
Spatial Deformer Transformer Network (SDTN) for transforming predicted keypoint locations

1642 Sensors and Materials, Vol. 37, No. 4 (2025)

back to original image coordinates, and Pose Non-maximum Suppression (Pose NMS) to
address duplicate predictions caused by multiple bounding boxes. AlphaPose achieves 75 mAP
on the Common Objects in Context dataset (COCO dataset) and 82.1 mAP on the MPii dataset.
Compared with OpenPose and the method of Newell et al.,(15) AlphaPose’s skeletal pose
detection effect demonstrates superior accuracy and operates at 23 frames per second.(16)
Therefore, we selected AlphaPose as the skeletal pose detection method.
 AlphaPose is based on deep learning techniques, specifically leveraging CNNs. CNNs are
particularly suited for tasks in image processing and computer vision, as they excel at learning
hierarchical representations of visual data. Key algorithms and components associated with
AlphaPose include the following:
1. Residual Network (ResNet): This is a deep CNN architecture renowned for its ability to

effectively train very deep networks using residual blocks. AlphaPose utilizes ResNet as part
of its backbone to extract features from input images.

2. Region-based CNN (R-CNN): R-CNN is a family of object detection algorithms, including
Faster R-CNN, which is used by AlphaPose. Faster R-CNN integrates a Region Proposal
Network (RPN) with CNN to efficiently generate region proposals and classify objects
within these proposals.

3. Multiperson Pose Estimation: AlphaPose focuses on estimating poses for multiple
individuals, involving the detection of multiple persons in images or video frames and
accurately localizing their body joints (keypoints) such as shoulders, elbows, wrists, hips,
knees, and ankles.

4. Keypoint Localization: A specific task in AlphaPose involves predicting the coordinates of
these keypoints for each person detected in the image. This is achieved through a combination
of CNN-based feature extraction followed by keypoint regression or classification.

 AlphaPose integrates these deep learning technologies, including CNNs (such as ResNet for
feature extraction) and object detection frameworks (such as Faster R-CNN for person detection),
to perform real-time and accurate multiperson pose estimation. These algorithms and
frameworks collectively enable AlphaPose to achieve robust pose estimation from visual data.

2.2	 Classifier

 A classifier is a model or algorithm in machine learning used to categorize data into different
classes on the basis of their features. This classification process spans various fields, from image
recognition, natural language processing,(17) financial forecasting,(18) and medical diagnosis (19)
to social media analysis(20) and product recommendations.(21) The core objective of classifiers is
to automatically identify data features through analysis and learning patterns in the data,
assigning them to appropriate categories for practical applications. Classifiers commonly include
Support Vector Machines,(22) Random Forests,(23) CNN,(24) and Recurrent Neural Networks,(25)
although these methods may not necessarily discern motion features in human pose.
 Traditional CNNs are widely applied in processing image data with regular structures, such
as static pictures. However, their performance may be limited for nonregular image data. In
contrast, Graph Convolutional Networks (GCNs)(26) excel in handling data with non-Euclidean

Sensors and Materials, Vol. 37, No. 4 (2025) 1643

structures, especially irregular image data. GCNs effectively capture complex relationships in
data, making them an ideal choice for processing irregular image data. Additionally, GCNs
demonstrate stronger generalization capabilities, which contribute to improving model training
efficiency. GCNs operate on graph-structured data and involve a convolution operation aimed at
learning node representations. The basic theoretical equation describing GCN is as follows:
 Given a graph G = (V, E), V is the set of vertices (nodes) representing entities or feature points
in the graph. E is the set of edges, representing connections between nodes. We assume that each
node vi ∈ V has a feature representation xi, which denotes the feature vector of the node.
1. Adjacency Matrix: Each node aggregates information from its neighboring nodes for graph

representation learning. In typical usage, matrix A is employed to represent a |V| × |V| matrix,
where Aij indicates whether there is a connection from node vi to node vj (usually represented
as 1 or 0).

2. Node Feature Matrix: In notation with X, it represents a |V| × d|V| matrix, where d is the
dimension of the node feature vectors. Xi denotes the feature vector xi of node vi.

3. Graph Convolution Operation: The convolutional operation on node vi takes into account the
features of its neighbors and possibly its own features to compute an updated representation.
The core operation of GCNs convolves the node feature matrix X with the adjacency matrix
A.

 ()(1) 1/2 1/2 () () l l lH D AD H Wσ+ − −= (1)

 Here, H(l) is the node representation matrix at layer l. W(l) is the weight matrix at layer l.
Ã = A + I is the adjacency matrix A with added self-loops to ensure each node has at least one
connection. D is the degree matrix of Ã. σ is a nonlinear activation function, such as ReLU. This
equation describes how GCNs leverage the structural information of the graph (via the adjacency
matrix A) to update node feature representations. By stacking multiple layers of such graph
convolution operations, high-level node representations can be progressively extracted for
various tasks involving graph-structured data, including node classification, link prediction, and
graph classification.(26)

 Yan et al. proposed the Spatial Temporal GCNs (ST-GCNs) for Skeleton-Based Action
Recognition in 2018.(27) One of the main reasons for choosing ST-GCNs in their study is their
capability in action recognition, which is commonly applied to recognize human body poses
during motion; considering the need for real-time action detection, especially in dynamic
environments where the human body is typically in motion rather than stationary, it is essential
to develop efficient and accurate detection methods. Spatial graph convolution is a technique
that extends traditional convolution operations to handle graph-structured data. This method
generalizes convolution from regular 2D grid images to irregular graph structures, where nodes
represent entities (such as human joints) and edges represent relationships between nodes. This
allows for effective feature learning on graph data, capturing complex relationships between
nodes in a graph.
 In the 2D convolution described by Yan et al.,(27) the sampling function p(h, w) defines
neighboring pixels relative to a center pixel, with a fixed spatial order on a regular grid. This

1644 Sensors and Materials, Vol. 37, No. 4 (2025)

fixed spatial arrangement allows the weight function to be implemented by indexing a tensor of
fixed dimensions. In contrast, graphs do not have such a fixed grid structure for nodes and
edges, necessitating a redefinition of sampling and weight functions to fit the graph structure.

2.2.1 Sampling function

 In graph convolution, the sampling function p is used to define the neighbor set of a node. For
a node vti, its neighbor set B(vti) includes all nodes connected to vti. Specifically, the sampling
function p(vti, vtj) can be expressed as p(vti,vtj) = vtj. This means that for each neighbor vtj of vti,
the sampling function directly maps to these neighboring nodes.

2.2.2 Weight function

 The weight function in graph convolution is challenging to design because nodes in a graph
lack a fixed spatial order, unlike grid-structured data such as images, where convolutional filters
operate on a consistent neighborhood structure. To define the weight function, we typically
partition the neighbor set B(vti) into several subsets, each with a numerical label. This allows the
weight function to be implemented by indexing a (c, K) dimensional tensor, where K is the
number of subsets and c is the feature dimension. Specifically, the weight function w can be
expressed as w (vti;vtj) = w0(lti(vtj)), where lti is a function that maps node vtj to its subset label,
and w0 is the corresponding weight tensor.

2.2.3 Graph convolution equation

 Combining the above sampling and weight functions, Yan et al. proposed the graph
convolution operation,(27) which can be rewritten as

 ()
1() ((,)) (,)
()tj ti

out ti in ti t j ti t jv B v
ti tj

f v f p v v w v v
Z v∈

= ⋅∑ , (2)

where B(vti) is the neighbor set of node vti, Zti(vtj) is a normalization factor used to handle the
weight of node vtj, which is typically the reciprocal of the number of neighbors, fin(p(vti;vtj)) is
the input feature obtained from node vtj, and w(vti;vtj) is the computed weight.
 The spatial graph convolution extends traditional convolution operations to graph structures.
This method redefines the sampling and weight functions to accommodate the unique
characteristics of graphs. The sampling function defines the neighbor set of nodes, whereas the
weight function determines the weights by mapping to subset labels. The resulting graph
convolution equation combines these elements to perform the weighted aggregation of features
for each node, capturing relational and structural information in the graph.
 The ST-GCN is particularly effective in dynamic environments, meeting the demands for
efficiency and accuracy in action recognition. The integration of the aforementioned models and
methods enables this research to achieve superior performance when handling irregular action

Sensors and Materials, Vol. 37, No. 4 (2025) 1645

image data, while ensuring that human body movements, particularly in fall scenarios, are
successfully detected. These considerations contribute to the applicability of our system,
especially in dynamic and variable scenes. Therefore, we adopted ST-GCN as the theoretical
foundation for the system.

3. System Construction Planning

3.1 System development

 As previously mentioned, AlphaPose is a powerful multiperson pose detection system that
focuses on the real-time detection and recognition of human poses in complex scenes. Its main
steps and technologies include the following:
 STN: The STN is a module capable of learning spatial transformations on input images. Its
purpose is to automatically learn appropriate transformations to standardize the space so that the
subsequent pose estimation network can learn more effectively. In practical applications, STN
extracts the regions of each person from the image and optimizes each person’s bounding box
position by performing spatial transformations such as cropping, scaling, and rotating. This
helps to reduce background noise and focus on the areas of interest, thereby improving the
accuracy of subsequent pose detection.
 SPPE: The SPPE module in AlphaPose is responsible for predicting the pose of each person,
generating keypoint heatmaps, and returning the keypoint positions for each person. These
networks typically use CNNs to predict the keypoints. AlphaPose usually employs two single-
person pose estimation networks to predict the keypoint positions of each person separately.
These two networks provide redundancy and cross-validation to enhance the accuracy of
keypoint prediction.
 SDTN: SDTN converts the predicted keypoint positions from the transformed coordinate
system back to the original image coordinate system. This allows the single-person pose
estimation results to be mapped back onto the original image, accurately displaying the
keypoints’ positions in the original image.
 Pose NMS: Pose NMS is a postprocessing technique used to address the issue of duplicate
predictions due to overlapping bounding boxes. This step helps to remove redundant bounding
boxes and ensures that each person’s pose is detected correctly and uniquely, avoiding repeated
detections caused by multiple overlapping bounding boxes.
 In this study, we integrated AlphaPose with ST-GCN to further develop a fall detection and
real-time notification system. When obtaining the raw image through a computer’s webcam,
AlphaPose is used to detect each person’s pose, which is then processed by the ST-GCN
classifier to predict each person’s actions (standing, lying down, or falling). If a fall is detected,
the system sends a notification to Line Bot via the IFTTT communication service. The Line Bot
then informs the user about the fall situation. The system architecture is shown in Fig. 1.
 We use AlphaPose, which was developed on the basis of the YOLOv3 model, to detect the
positions of individuals within the webcam view and obtain each person’s skeletal pose. Then,
we employ the ST-GCN model to predict each person’s actions (standing, lying down, or falling).

1646 Sensors and Materials, Vol. 37, No. 4 (2025)

If a fall occurs, the system will notify the user of the fall situation through Line Bot (see the
system flow chart in Fig. 2).

3.2 Environment setup

 The model training and testing equipment used in this study is a laptop with an Intel Core i7-
8565U 1.80 GHz processor and an NVIDIA GeForce MX230 graphics card. Additional
information regarding the related hardware and software versions of the development
environment is shown in Table 1.

4. Experimental Phase

4.1 Dataset normalization

 In this study, we utilized the Le2i Fall Dataset, which is designed for fall detection and
prevention research, focusing on using machine learning and computer vision techniques to
identify and analyze fall events. This dataset was developed by the Laboratoire d’Informatique
en Robotique et Vision laboratory in France, with the primary goal of improving the accuracy
and effectiveness of fall detection systems. Its main features include the following:
 The dataset primarily consists of video clips captured in a controlled environment. These
clips capture various human activities, including falls and normal activities. Each video clip is
annotated in detail, including the start and end times of falls, as well as annotations for other
activities. This allows researchers to accurately label fall events and conduct analysis. The video
clips in the dataset are typically recorded in a laboratory setting, which allows for control over
lighting and background conditions, facilitating feature extraction and model training. The Le2i
Fall Dataset includes a variety of fall types and human activities, making it useful for training
models to recognize different fall patterns and distinguish between falls and non-falls. This
dataset is widely used in fall detection system research, particularly in the fields of elderly health
care and safety monitoring. By analyzing video data, researchers can develop more effective fall
detection and warning systems.
 However, using the Le2i Fall Dataset for research involves addressing several challenges,
such as how to accurately extract human posture and motion features from the videos and how
to handle variations in different environments and backgrounds. The Le2i Fall Dataset is an

Fig. 1. (Color online) System architecture in this study.

Sensors and Materials, Vol. 37, No. 4 (2025) 1647

important tool for fall detection and prevention research, helping researchers improve the
accuracy and reliability of related systems. The Le2i Fall Dataset may also be stored in academic
databases or data sharing platforms such as Kaggle, University of California Machine Learning

Table 1
Hardware and software version information for AI model training in this study.

Version, Model, or Specification

Software
Information

Integrated Development Environment (IDE): Anaconda 3 + PyCham 2023.1.2
Python Version: 3.7.2

PyTorch Version: 1.11.0
cuDNN Version:8,2,1

Hardware
Information

Processor: Intel(R) Core(TM) i7-8565U CPU @ 1.80 GHz
Memory: 12 GB/ Hard drive: SSD 250 GB + HDD 1 TB

Graphics Card: NVIDIA GeForce MX230

Fig. 2. (Color online) System flow chart of this study.

1648 Sensors and Materials, Vol. 37, No. 4 (2025)

Repository, or GitHub. The dataset contains a total of 191 videos, with actions classified into
seven categories: Standing, Walking, Sitting, Lying Down, Stand Up, Sit Down, and Fall Down.
Initially, the dataset is converted from videos to comma-separated value (CSV) files, with
columns for video name, frame number, and action label, representing the video’s name, the
specific frame number, and the action classification for that frame, respectively, with actions
annotated for each frame (see Fig. 3).
 Next, the 39 key joints of the person in each frame are labeled and recorded in a CSV file.
The CSV file is then converted into a dataset Pickle (PKL) file. Once the dataset is prepared and
split into training and validation sets, the ST-GCN model is trained for skeleton-based pose
recognition. Upon successful training, the model weights will be saved in a ‘.pth’ file. We use
create_dataset_1.py to determine the total number of frames for each video and use this frame
count to differentiate each row of data. Then, we add a label column and manually annotate the
human actions (based on the array of actions, such as 1 = Standing, 2 = Walking, and so forth).
The Python syntax for human action classification is defined as follows:

class_name = {’Standing’, ’Walking’, ’Sitting’, ’Lying Down’, ’Stand Up’, ’Sit Down’, ’Fall
Down’} # label.

 To normalize the Le2i Fall Dataset, we start by using the Python script (create_dataset_1.py)
to determine the total number of frames for each video and categorize the data based on frame
count. We add a label column and manually annotate human actions, such as ‘Standing’,
‘Walking’, and ‘Sitting’, according to the actions included in the array. Next, we use the Python
script (create_dataset_2.py, see Fig. 4) to identify the positions of each human keypoint and
manually remove rows where keypoints could not be detected to generate a dataset of human
joint coordinates (as illustrated in Fig. 5). Finally, we employ the Python script (create_dataset_3.
py; see Fig. 6) to convert the resulting CSV file (Fig. 5) into a PKL file, paying special attention
to smoothing functions that might merge label categories (e.g., combining ‘Standing’ with
‘Stand Up’).

Fig. 3. (Color online) CSV file of dataset.

Sensors and Materials, Vol. 37, No. 4 (2025) 1649

4.2 Training dataset

 In the AI training, the data normalization phase is crucial to ensure data consistency and
accuracy. During this phase, we convert CSV files into dataset PKL files to facilitate subsequent
processing and model training.

4.2.1 Data normalization phase

1. CSV File Conversion: Initially, we convert the raw CSV files into dataset PKL files. This
step involves organizing, cleaning, and transforming CSV-format data into Python’s PKL
format. The PKL file format offers efficient storage and retrieval methods, making it suitable
for handling large datasets. Converting CSV files to PKL files is a common data processing
step, especially when dealing with large volumes of data. PKL files are a Python-specific
serialization format designed for storing and rapidly retrieving Python objects. This step
enhances the efficiency of subsequent data processing.

Fig. 4. (Color online) Python script (create_dataset_2.py).

Fig. 5. (Color online) Output of Python script (create_dataset_2.py): human joint coordinates.

Fig. 6. (Color online) Python script (create_dataset_3.py).

1650 Sensors and Materials, Vol. 37, No. 4 (2025)

2. Handling Multiple Datasets: When dealing with multiple datasets, we need to repeatedly
perform the CSV-to-PKL file conversion to ensure that each dataset undergoes a consistent
processing workflow. This guarantees compatibility between all datasets and maintains
overall data consistency.

4.2.2 Entering the training phase

1. Model Selection: After completing data normalization, we proceed to the training phase as
shown in Fig. 2. In this stage, we use AlphaPose for training (see Fig. 7). YOLOv3 is a
popular real-time object detection model, and AlphaPose extends and modifies it. AlphaPose
is an open-source pose estimation tool developed on the basis of the YOLOv3 model,
focusing on efficient and accurate human pose estimation. AlphaPose provides an accurate
identification of human keypoints, which are the foundation for subsequent action recognition
and analysis.

Fig. 7. Dataset training process in this study.

Sensors and Materials, Vol. 37, No. 4 (2025) 1651

2. ST-GCN Model: ST-GCN is a deep learning model designed to process spatiotemporal graph
data, capable of learning spatial and temporal features. It is specialized for extracting spatial
and temporal features of human actions from video or sequence data.

 This training process aims to optimize the performance of human pose estimation and action
recognition models through the deep learning and analysis of data in PKL files. By using
AlphaPose for keypoint estimation and ST-GCN for action classification and analysis, we
achieve the precise understanding and prediction of human movements.

4.3 Training results

 After the training process depicted in Fig. 7, it is evident that accuracy improves significantly
with an increasing number of training epochs. Around the 10th training epoch, the accuracy
consistently exceeds 96% [see Fig. 8(a)]. Similarly, the loss rate shows a notable decrease with
more training epochs, dropping below 0.18 after approximately the 11th training epoch [see
Fig. 8(b)]. Analyzing the confusion matrix results (see Fig. 9), we observe that the probability of
accurately identifying each category is very high, except for the “walking” category, which
sometimes overlaps with the “sitting” category.

4.4 Execution results

 After running it in this study, the program begins detecting human bounding boxes and
skeletal poses. On the basis of the recognized actions from the skeletal poses, labels are
annotated above the bounding boxes. The text information displayed above includes the
confidence level of the recognition and the interpreted result. If the action detected is “Lying
Down,” the action label is displayed in orange [see Fig. 10(a)]. If the action is “Fall Down,” the
action label is shown in red [see Fig. 10(b)]. Additionally, for “Fall Down” actions, a notification
is sent every 30 frames using IFTTT, which forwards the message to Line Bot to alert the
relevant personnel.

Fig. 8. (Color online) (a) Accuracy obtained from training using Le2i fall dataset in this study. (b) Loss rate
obtained from training using Le2i fall dataset in this study.

(a) (b)

1652 Sensors and Materials, Vol. 37, No. 4 (2025)

 In this study, the Real-time Fall Detection and Reporting System developed will, at this time,
send notification messages to the relevant family members or caregivers of the elderly individual
in the image based on the AI interpretation results (as shown in Fig. 11). The system will provide
different notification messages depending on whether the warning is orange or red. Below is the
code for sending messages to Line Bot:

Fig. 9. (Color online) Confusion matrix output from training phase of this study.

Sensors and Materials, Vol. 37, No. 4 (2025) 1653

Fig. 10. (Color online) (a) Experimental result where AI identifies image as "Lying Down," displaying orange
warning and showing accuracy. (b) Experimental result where AI identifies image as "Fall Down," displaying red
warning and showing accuracy.

Fig. 11. This system sends information about the elderly person falling to Line Bot.

(a) (b)

1654 Sensors and Materials, Vol. 37, No. 4 (2025)

 camera_source = args.camera
 message = TextSendMessage(text=camera_source+’ Someone has fallen down at camera No.
#. Please send someone to handle the situation as soon as possible.’)

 if action_name != ‘Fall Down’ and action_name != ‘Lying Down’:
 count = 0
 else:
 if action_name == ‘Fall Down’:
 clr = (255, 0, 0)
 count += 1
 if count >= 30 and count % 30 == 0:
 line_bot_api.broadcast(messages=[message])
 elif action_name == ‘Lying Down’:
 clr = (255, 200, 0)
 count += 1

5. Conclusions

 The goal of this research is to develop an effective fall detection and instant alert system by
integrating web cameras as sensors, machine learning technology, and AI. The system focuses
on human skeleton posture recognition, motion detection, and real-time reporting. By employing
machine learning techniques, the system can accurately detect falls and promptly notify medical
staff or family members, thereby minimizing the potential consequences of a fall.
 In this study, machine learning plays a pivotal role in the system’s ability to detect, analyze,
and report falls. The AI-based models employed include the following:
1. YOLOv3-Tiny: This model is used to localize individuals within the frame, providing the

initial detection of human presence.
2. AlphaPose: This model detects the individual’s skeletal pose, enabling the system to

understand their movements and identify potentially dangerous fall events.
3. ST-GCN: This model recognizes the actions of the individual on the basis of the detected

skeletal poses, helping the system distinguish between normal movements and falls.
 Machine learning techniques, particularly the integration of these models, ensure that the
system’s accuracy remains consistently above 96%, demonstrating the reliability of the fall
detection and notification process. These models work together to provide instant fall detection
and immediate reporting, offering a timely response that can help prevent further injury.
 Furthermore, the system ensures effective notification. When a fall is detected, Line Bot
sends a message via IFTTT technology to quickly notify relevant personnel. This ensures that
falls are addressed promptly, minimizing potential injuries.
 The novelty of this study lies in the integration of AlphaPose with ST-GCN for real-time fall
detection and notification. The system achieves high accuracy (above 96%) in identifying falls
by combining skeletal pose detection and action classification. The key innovative contributions
include the following:

Sensors and Materials, Vol. 37, No. 4 (2025) 1655

1. Real-Time Detection and Notification: The system uses web cameras and advanced AI
techniques to detect falls instantly and notify caregivers or family members within 0.5 s,
which is critical for timely intervention.

2. Use of Lightweight and Efficient Models: AlphaPose, known for its accuracy in pose
estimation, and ST-GCN, which is effective for action recognition in dynamic environments,
are combined to ensure robust and efficient fall detection.

3. High Adaptability and Generalization: Unlike many existing systems that rely heavily on
specific datasets or controlled environments, in this study, we focused on enhancing the
model’s adaptability and generalization to various conditions.

References

 1 World Health Organization: https://www.who.int/news-room/fact-sheets/detail/falls (accessed April 2024).
 2 X. G. Li, T. T. Pang, W. X. Liu, and T. F. Wang: Proc. 2017 10th Int. Congr. Image and Signal Process. BioMed.

Eng. Inf. (IEEE, 2017) 1. https://doi.org/10.1109/CISP-BMEI.2017.8302004
 3 A. Butt, S. Narejo, M. R. Anjum, M. U. Yonus, M. Memon, and A. A. Samejo: W. Pers. Commun. 126 (2022)

1733. https://doi.org/10.1007/s11277-022-09819-3
 4 A. Benoit, C. Escriba, D. Gauchard, A. Esteve, and C. Rossi: IEEE Sens. J. 24 (2024) 11829. https://doi.

org/10.1109/JSEN.2024.3364249
 5 T. Wang, B. Wang, Y. Shen, Y. Zhao, W. Li, K. Yao, X. Liu, and Y. Luo: Measurement 204 (2022) 112104.

https://doi.org/10.1016/j.measurement.2022.112104.
 6 H.-S. Fang, J. Li, H. Tang, C. Xu, H. Zhu, Y. Xiu, Y. L. Li, and C. W. Lu: IEEE Trans. P. Anal. Mach. Intell. 45

(2023) 7157. https://doi.org/10.1109/TPAMI.2022.3222784
 7 C. Arrowsmith, D. Burns, T. Mak, M. Hardisty, and C. Whyne: Sensors 23 (2023) 363. https://doi.org/10.3390/

s23010363
 8 C. Chen, K. Liu, and N. Kehtarnavaz: J. Real-T. Image Process. 12 (2013) 155. https://doi.org/10.1007/s11554-

013-0370-1
 9 D. Mehta, H. Rhodin, D. Casas, P. V. Fua, O. Sotnychenko, W. P. Xu, and C. Theobalt: Proc. 2017 Int. Conf. 3D

Vision (IEEE, 2017) 506. https://doi.org/10.1109/3DV.2017.00064.
 10 J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake: Proc. Conf.

Comput. Vision Pattern Recognition (IEEE, 2011) 1297. https://doi.org/10.1109/CVPR.2011.5995316
 11 A. Toshev and C. Szegedy: Proc. 2014 IEEE Conf. Comput. Vision Pattern Recognition (IEEE, 2014) 1653.

https://arxiv.org/pdf/1312.4659
 12 H. S. Fang, S. Xie, Y. W. Tai, and C. Lu: Proc. 2017 IEEE Int. Conf. Comput. Vision (IEEE, 2017) 2334. https://

arxiv.org/pdf/1612.00137
 13 Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh: IEEE Trans. Pattern Anal. Mach. Intell. 43 (2021) 172.

https://doi.org/10.1109/TPAMI.2019.2929257
 14 R. A. Güler, N. Neverova, and I. Kokkinos: Proc. 2018 IEEE/CVF Conf. Comput. Vision Pattern Recognition

(IEEE, 2018) 7297–7306. https://doi.org/10.1109/CVPR.2018.00762
 15 A. Newell, K. Yang, and J. Deng: Proc. C. Vision–ECCV 2016. L. Notes in C. Science 2016 (Springer, 2016)

9912. https://doi.org/10.1007/978-3-319-46484-8_29
 16 M. Chasmai, N. Das, A. Bhardwaj, and R. Garg: SN Comput. Sci. 3 (2022) 475. https://doi.org/10.1007/s42979-

022-01376-7
 17 J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova: BERT: Proc. 2019 Conf. North Am. Chapter Assoc.

Comput. Ling.: Hum. Lang. Technol. (Association for Computational Linguistics, 2019) 4171. https://doi.
org/10.18653/v1/N19-1423

 18 J. Y. Campbell, J. D. Hilscher, and J. Szilagyi: J. Invest. Manage. 9 (2011) 14. https://ssrn.com/abstract=1829622
 19 S. Jambukia, V. Dabhi, and H. Prajapati: Proc. 2015 Int. Conf. Adv. Comput. Eng. Appl. (IEEE, 2015) 714.

https://doi.org/10.1109/ICACEA.2015.7164783
 20 Y. Chen, Y. Zhou, S. Zhu, and H. Xu: Proc. IEEE Int. Conf. Social Computing (SocialCom) Privacy, Security,

Risk and Trust (PASSAT) (IEEE, 2012) 71–80. https://doi.org/10.1109/SocialCom-PASSAT.2012.55
 21 G. Khanvilkar1 and D. Vora: Int. J. Eng. Technol. 7 (2018) 87. https://doi.org/10.14419/ijet.v7i3.3.14492
 22 V. N. Vapnik: Estimation of Dependences Based on Empirical Data (Springer, Heidelberg, 2006) 2nd ed.

https://doi.org/10.1007/0-387-34239-7

https://www.who.int/news-room/fact-sheets/detail/falls
https://doi.org/10.1109/CISP-BMEI.2017.8302004
https://doi.org/10.1007/s11277-022-09819-3
https://doi.org/10.1109/JSEN.2024.3364249
https://doi.org/10.1109/JSEN.2024.3364249
https://doi.org/10.1016/j.measurement.2022.112104
https://doi.org/10.1109/TPAMI.2022.3222784
https://doi.org/10.3390/s23010363
https://doi.org/10.3390/s23010363
https://doi.org/10.1007/s11554-013-0370-1
https://doi.org/10.1007/s11554-013-0370-1
https://doi.org/10.1109/3DV.2017.00064
https://doi.org/10.1109/CVPR.2011.5995316
https://arxiv.org/pdf/1312.4659
https://arxiv.org/pdf/1612.00137
https://arxiv.org/pdf/1612.00137
https://doi.org/10.1109/TPAMI.2019.2929257
https://doi.org/10.1109/CVPR.2018.00762
https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1007/s42979-022-01376-7
https://doi.org/10.1007/s42979-022-01376-7
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://ssrn.com/abstract=1829622
https://doi.org/10.1109/ICACEA.2015.7164783
https://doi.org/10.1109/SocialCom-PASSAT.2012.55
https://doi.org/10.14419/ijet.v7i3.3.14492
https://doi.org/10.1007/0-387-34239-7

1656 Sensors and Materials, Vol. 37, No. 4 (2025)

 23 L. Breiman: Mach. Learn. 45 (2001) 5. https://doi.org/10.1023/A:1010933404324
 24 Y. Lecun, L. Bottou, Y. Bengio and P. Haffner: Proc. IEEE. (IEEE, 1998) 2278. https://doi.org/10.1109/5.726791
 25 D. Rumelhart, G. Hinton, and R. Williams: Nature 323 (1986) 533. https://doi.org/10.1038/323533a0
 26 T. N. Kipf and M. Welling: Proc. Int. Conf. Learn. Representations (Curran Associates, Inc., 2017). https://

arxiv.org/abs/1609.02907
 27 S. Yan, Y. Xiong, and D. Lin: Proc. Thirty-Second AAAI Conf. Artificial Intelligence (AAAI Press, 2018)

7444–7452.

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/323533a0
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907

