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 Falling is a prevalent and hazardous event that can lead to severe injuries, such as limb 
fractures or spinal damage, especially for elderly individuals in hospital care. In this study, we 
aim to develop a machine-learning-based system for effective fall detection and prompt 
intervention. We applied deep learning techniques, particularly the AlphaPose + Spatial 
Temporal Graph Convolutional Network (ST-GCN) model, to enhance human activity 
recognition and behavior analysis. These advanced machine learning models allow for the real-
time monitoring of fall events by accurately identifying abnormal movements and behaviors 
associated with falls. In this study, we employed a web camera as a sensor to capture the human 
pose, and the AI-powered system achieved an accuracy rate exceeding 96% in training results, 
showcasing its robustness in detecting falls. Upon detection, the system sends immediate alerts 
via communication software, ensuring timely notifications to healthcare providers or family 
members. This machine learning approach significantly improves the safety of elderly 
individuals by reducing response time and minimizing the risk of fall-related injuries.

1. Introduction

 Falls are a common and serious problem among the elderly population. When older adults are 
waiting for treatment or receiving care in hospitals, falls can lead to severe consequences, 
including fractures, internal bleeding, trauma, and even life-threatening situations. Falls are the 
second leading cause of unintentional injury-related deaths worldwide. According to the World 
Health Organization, an estimated 684000 people die from falls each year, with more than 80% 
of these fatalities occurring in low- and middle-income countries. Among fatal falls, adults aged 
60 and above represent the largest proportion. Each year, there are approximately 37.3 million 
falls that are severe enough to require medical attention. Globally, falls result in more than 38 
million disability-adjusted life years lost, contributing to life loss due to disabilities.(1) When 
nurses or family members are unable to constantly supervise elderly patients, the risk of falls 
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increases significantly. Many elderly individuals may be unable to call for help in time, 
potentially worsening their injuries.
 As the history of computer vision illustrates, the availability of larger datasets, combined 
with advancements in computing power, frequently leads to paradigm shifts. In this context, 
convolutional neural networks (CNNs) have emerged as the de facto standard in the field. Owing 
to their exceptional feature extraction capabilities, CNNs excel in various visual tasks, 
particularly in fall detection applications. In recent years, numerous studies have focused on the 
application of CNNs within AI technology for fall detection. Key literature includes the 
following:
 Li et al. proposed a fall detection method based on CNNs, utilizing video sequences to 
identify fall events by sorting images of various actions.(2) They applied CNNs to each frame of 
the video to extract human poses. As part of the data preprocessing, the average image of all 
training and test images is calculated, and then this average image is subtracted from each 
training and test image to achieve uniform brightness. The advantage of this study is its ability 
to capture time series characteristics with high accuracy. However, it has limited adaptability to 
different environments or lighting conditions and is highly dependent on specific datasets.(2) 

 Butt et al. employed deep learning technology by combining CNNs and long short-term 
memory (LSTM) networks for fall detection.(3) For comparative analysis, the performance 
characteristics of two deep learning architectures—LSTM and CNN-based transfer learning—
were evaluated. Notably, they found that CNN transfer learning achieved the highest quantitative 
performance, reaching an accuracy of 98%. The advantage of this study lies in its consideration 
of both LSTM and CNN architectures, which enhances detection accuracy and improves the 
understanding of action continuity. However, a notable drawback is that deep learning models 
require substantial computing resources and lengthy training times.(3) 

 Benoit et al. conducted a comparative study of nine neural network models applied to fall 
detection in the elderly.(4) The models examined included Dense, CNN, LSTM, Gated Recurrent 
Unit (GRU), BiLSTM, Bidirectional GRU (BiGRU), CNN Dense, CNN LSTM, and CNN GRU, 
all aimed at predicting falls prior to impact with the ground using accelerometer data. The 
models were optimized using Keras Tuner and the TensorFlow backend, a leading deep learning 
framework. The results indicate that deep learning approaches demonstrate a higher 
classification accuracy and a more streamlined software architecture, although this comes at the 
cost of energy efficiency and reduced inference speed.(4) 

 Wang et al. demonstrated that the back-propagation neural network can effectively avoid 
local optimal solutions and converges more rapidly.(5) The fall detection accuracies achieved 
with the German Aerospace Center, Smart Fall, and University of Rzeszów Fall (URFall) 
datasets were 98.3, 92.0, and 96.1%, respectively. This research provides technical support for 
portable, low-power wearable fall detection systems that can adapt to various environmental 
conditions. The integration of multiple data sources enhances the accuracy and robustness of 
detection. The high accuracy in recognizing fall behaviors paves the way for portable, multi-
application scenarios with low power consumption for future fall detection systems.(5)

 Overall, CNN-based fall detection techniques show strong potential but also face several 
challenges. Our research aims to enhance the adaptability and generalization ability of the model 



Sensors and Materials, Vol. 37, No. 4 (2025) 1641

through machine learning technology and integrate web cameras as sensors to detect human 
body movements, thereby improving the accuracy and reliability of fall detection.
 The main goal of this study is to develop an instant fall detection and notification system 
based on the AlphaPose artificial intelligence model to address the urgent need for fall detection 
among the elderly. This system is designed to build upon previous research and achieve the 
following objectives:
1. accurately detect fall events using web cameras, with an accuracy of more than 96%,
2. establish a notification system that can promptly transmit fall incident information to medical 

staff or family members within 0.5 s, and
3. enable real-time sensing to ensure that the elderly can receive timely assistance after a fall, 

thereby minimizing potential injuries.

2. Theoretical Foundation

 In this section, the image recognition technology of AI open sources and human motion 
classification methods will be discussed. This discussion aims to facilitate a better understanding 
for readers of the Lightweight AlphaPose(6) model proposed in this study and the human motion 
classification model. These are crucial for real-time detection capabilities, as the aforementioned 
AI algorithms and models help ensure that fall events can immediately trigger notification 
processes, providing prompt responses and reducing potential harm.

2.1 Skeleton pose detection

 Skeleton pose detection is a crucial task in the field of computer vision, focusing on accurately 
identifying the posture and movements of human bodies in images. This technology finds 
applications in various domains, including but not limited to medical image processing,(7) 
motion analysis,(8) virtual reality,(9) and security surveillance.(10) Skeleton pose detection 
methods are primarily categorized into bottom-up and top-down approaches. In the top-down 
approach, algorithms first identify the potential locations of humans in the input image using 
object detection techniques. These locations are then marked using bounding boxes. 
Subsequently, the image regions within these bounding boxes are fed into networks for human 
pose estimation, aiming to detect joint points and body segments of humans. Methods such as 
DeepPose(11) and AlphaPose(12) adopt this approach.
 Another bottom-up approach involves first identifying possible joint locations in the image 
and obtaining feature maps for each key point through a bottom-up network. Subsequently, on 
the basis of relationships and positions of each key point, the human pose is gradually assembled. 
Methods such as OpenPose(13) and DensePose(14) operate similarly in this manner. AlphaPose’s 
skeletal pose detection system focuses on real-time multiperson pose estimation. It consists of 
four components: a Spatial Transformer Network (STN) responsible for extracting each person’s 
image and optimizing bounding box positions, two Single-Person Pose Estimation (SPPE) 
modules for individual keypoint prediction, cross-matching to obtain possible joint positions, a 
Spatial Deformer Transformer Network (SDTN) for transforming predicted keypoint locations 
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back to original image coordinates, and Pose Non-maximum Suppression (Pose NMS) to 
address duplicate predictions caused by multiple bounding boxes. AlphaPose achieves 75 mAP 
on the Common Objects in Context dataset (COCO dataset) and 82.1 mAP on the MPii dataset. 
Compared with OpenPose and the method of Newell et al.,(15) AlphaPose’s skeletal pose 
detection effect demonstrates superior accuracy and operates at 23 frames per second.(16) 
Therefore, we selected AlphaPose as the skeletal pose detection method.
 AlphaPose is based on deep learning techniques, specifically leveraging CNNs. CNNs are 
particularly suited for tasks in image processing and computer vision, as they excel at learning 
hierarchical representations of visual data. Key algorithms and components associated with 
AlphaPose include the following:
1. Residual Network (ResNet): This is a deep CNN architecture renowned for its ability to 

effectively train very deep networks using residual blocks. AlphaPose utilizes ResNet as part 
of its backbone to extract features from input images.

2. Region-based CNN (R-CNN): R-CNN is a family of object detection algorithms, including 
Faster R-CNN, which is used by AlphaPose. Faster R-CNN integrates a Region Proposal 
Network (RPN) with CNN to efficiently generate region proposals and classify objects 
within these proposals.

3. Multiperson Pose Estimation: AlphaPose focuses on estimating poses for multiple 
individuals, involving the detection of multiple persons in images or video frames and 
accurately localizing their body joints (keypoints) such as shoulders, elbows, wrists, hips, 
knees, and ankles.

4. Keypoint Localization: A specific task in AlphaPose involves predicting the coordinates of 
these keypoints for each person detected in the image. This is achieved through a combination 
of CNN-based feature extraction followed by keypoint regression or classification.

 AlphaPose integrates these deep learning technologies, including CNNs (such as ResNet for 
feature extraction) and object detection frameworks (such as Faster R-CNN for person detection), 
to perform real-time and accurate multiperson pose estimation. These algorithms and 
frameworks collectively enable AlphaPose to achieve robust pose estimation from visual data. 

2.2	 Classifier

 A classifier is a model or algorithm in machine learning used to categorize data into different 
classes on the basis of their features. This classification process spans various fields, from image 
recognition, natural language processing,(17) financial forecasting,(18) and medical diagnosis (19) 
to social media analysis(20) and product recommendations.(21) The core objective of classifiers is 
to automatically identify data features through analysis and learning patterns in the data, 
assigning them to appropriate categories for practical applications. Classifiers commonly include 
Support Vector Machines,(22) Random Forests,(23) CNN,(24) and Recurrent Neural Networks,(25) 
although these methods may not necessarily discern motion features in human pose.
 Traditional CNNs are widely applied in processing image data with regular structures, such 
as static pictures. However, their performance may be limited for nonregular image data. In 
contrast, Graph Convolutional Networks (GCNs)(26) excel in handling data with non-Euclidean 
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structures, especially irregular image data. GCNs effectively capture complex relationships in 
data, making them an ideal choice for processing irregular image data. Additionally, GCNs 
demonstrate stronger generalization capabilities, which contribute to improving model training 
efficiency. GCNs operate on graph-structured data and involve a convolution operation aimed at 
learning node representations. The basic theoretical equation describing GCN is as follows:
 Given a graph G = (V, E), V is the set of vertices (nodes) representing entities or feature points 
in the graph. E is the set of edges, representing connections between nodes. We assume that each 
node vi ∈ V has a feature representation xi, which denotes the feature vector of the node.
1. Adjacency Matrix: Each node aggregates information from its neighboring nodes for graph 

representation learning. In typical usage, matrix A is employed to represent a |V| × |V| matrix, 
where Aij indicates whether there is a connection from node vi to node vj (usually represented 
as 1 or 0).

2. Node Feature Matrix: In notation with X, it represents a |V| × d|V| matrix, where d is the 
dimension of the node feature vectors. Xi denotes the feature vector xi of node vi.

3. Graph Convolution Operation: The convolutional operation on node vi takes into account the 
features of its neighbors and possibly its own features to compute an updated representation. 
The core operation of GCNs convolves the node feature matrix X with the adjacency matrix 
A.

 ( )( 1) 1/2 1/2 ( ) ( ) l l lH D AD H Wσ+ − −=    (1)

 Here, H(l)  is the node representation matrix at layer l. W(l)  is the weight matrix at layer l. 
Ã = A + I is the adjacency matrix A with added self-loops to ensure each node has at least one 
connection. D  is the degree matrix of Ã. σ is a nonlinear activation function, such as ReLU. This 
equation describes how GCNs leverage the structural information of the graph (via the adjacency 
matrix A) to update node feature representations. By stacking multiple layers of such graph 
convolution operations, high-level node representations can be progressively extracted for 
various tasks involving graph-structured data, including node classification, link prediction, and 
graph classification.(26)

 Yan et al. proposed the Spatial Temporal GCNs (ST-GCNs) for Skeleton-Based Action 
Recognition in 2018.(27) One of the main reasons for choosing ST-GCNs in their study is their 
capability in action recognition, which is commonly applied to recognize human body poses 
during motion; considering the need for real-time action detection, especially in dynamic 
environments where the human body is typically in motion rather than stationary, it is essential 
to develop efficient and accurate detection methods. Spatial graph convolution is a technique 
that extends traditional convolution operations to handle graph-structured data. This method 
generalizes convolution from regular 2D grid images to irregular graph structures, where nodes 
represent entities (such as human joints) and edges represent relationships between nodes. This 
allows for effective feature learning on graph data, capturing complex relationships between 
nodes in a graph. 
 In the 2D convolution described by Yan et al.,(27) the sampling function p(h, w) defines 
neighboring pixels relative to a center pixel, with a fixed spatial order on a regular grid. This 
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fixed spatial arrangement allows the weight function to be implemented by indexing a tensor of 
fixed dimensions. In contrast, graphs do not have such a fixed grid structure for nodes and 
edges, necessitating a redefinition of sampling and weight functions to fit the graph structure.

2.2.1 Sampling function

 In graph convolution, the sampling function p is used to define the neighbor set of a node. For 
a node vti, its neighbor set B(vti) includes all nodes connected to vti. Specifically, the sampling 
function p(vti, vtj) can be expressed as p(vti,vtj) = vtj. This means that for each neighbor vtj of vti, 
the sampling function directly maps to these neighboring nodes. 

2.2.2 Weight function

 The weight function in graph convolution is challenging to design because nodes in a graph 
lack a fixed spatial order, unlike grid-structured data such as images, where convolutional filters 
operate on a consistent neighborhood structure. To define the weight function, we typically 
partition the neighbor set B(vti) into several subsets, each with a numerical label. This allows the 
weight function to be implemented by indexing a (c, K) dimensional tensor, where K is the 
number of subsets and c is the feature dimension. Specifically, the weight function w can be 
expressed as w (vti;vtj) = w0(lti(vtj)), where lti is a function that maps node vtj to its subset label, 
and w0 is the corresponding weight tensor. 

2.2.3 Graph convolution equation

 Combining the above sampling and weight functions, Yan et al. proposed the graph 
convolution operation,(27) which can be rewritten as

 ( )
1( ) ( ( , )) ( , )
( )tj ti

out ti in ti t j ti t jv B v
ti tj

f v f p v v w v v
Z v∈

= ⋅∑ , (2)

where B(vti) is the neighbor set of node vti, Zti(vtj) is a normalization factor used to handle the 
weight of node vtj, which is typically the reciprocal of the number of neighbors, fin(p(vti;vtj)) is 
the input feature obtained from node vtj, and w(vti;vtj) is the computed weight.
 The spatial graph convolution extends traditional convolution operations to graph structures. 
This method redefines the sampling and weight functions to accommodate the unique 
characteristics of graphs. The sampling function defines the neighbor set of nodes, whereas the 
weight function determines the weights by mapping to subset labels. The resulting graph 
convolution equation combines these elements to perform the weighted aggregation of features 
for each node, capturing relational and structural information in the graph.
 The ST-GCN is particularly effective in dynamic environments, meeting the demands for 
efficiency and accuracy in action recognition. The integration of the aforementioned models and 
methods enables this research to achieve superior performance when handling irregular action 
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image data, while ensuring that human body movements, particularly in fall scenarios, are 
successfully detected. These considerations contribute to the applicability of our system, 
especially in dynamic and variable scenes. Therefore, we adopted ST-GCN as the theoretical 
foundation for the system.

3. System Construction Planning

3.1 System development

 As previously mentioned, AlphaPose is a powerful multiperson pose detection system that 
focuses on the real-time detection and recognition of human poses in complex scenes. Its main 
steps and technologies include the following:
 STN: The STN is a module capable of learning spatial transformations on input images. Its 
purpose is to automatically learn appropriate transformations to standardize the space so that the 
subsequent pose estimation network can learn more effectively. In practical applications, STN 
extracts the regions of each person from the image and optimizes each person’s bounding box 
position by performing spatial transformations such as cropping, scaling, and rotating. This 
helps to reduce background noise and focus on the areas of interest, thereby improving the 
accuracy of subsequent pose detection.
 SPPE: The SPPE module in AlphaPose is responsible for predicting the pose of each person, 
generating keypoint heatmaps, and returning the keypoint positions for each person. These 
networks typically use CNNs to predict the keypoints. AlphaPose usually employs two single-
person pose estimation networks to predict the keypoint positions of each person separately. 
These two networks provide redundancy and cross-validation to enhance the accuracy of 
keypoint prediction.
 SDTN: SDTN converts the predicted keypoint positions from the transformed coordinate 
system back to the original image coordinate system. This allows the single-person pose 
estimation results to be mapped back onto the original image, accurately displaying the 
keypoints’ positions in the original image.
 Pose NMS: Pose NMS is a postprocessing technique used to address the issue of duplicate 
predictions due to overlapping bounding boxes. This step helps to remove redundant bounding 
boxes and ensures that each person’s pose is detected correctly and uniquely, avoiding repeated 
detections caused by multiple overlapping bounding boxes.
 In this study, we integrated AlphaPose with ST-GCN to further develop a fall detection and 
real-time notification system. When obtaining the raw image through a computer’s webcam, 
AlphaPose is used to detect each person’s pose, which is then processed by the ST-GCN 
classifier to predict each person’s actions (standing, lying down, or falling). If a fall is detected, 
the system sends a notification to Line Bot via the IFTTT communication service. The Line Bot 
then informs the user about the fall situation. The system architecture is shown in Fig. 1.
 We use AlphaPose, which was developed on the basis of the YOLOv3 model, to detect the 
positions of individuals within the webcam view and obtain each person’s skeletal pose. Then, 
we employ the ST-GCN model to predict each person’s actions (standing, lying down, or falling). 
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If a fall occurs, the system will notify the user of the fall situation through Line Bot (see the 
system flow chart in Fig. 2).

3.2 Environment setup

 The model training and testing equipment used in this study is a laptop with an Intel Core i7-
8565U 1.80 GHz processor and an NVIDIA GeForce MX230 graphics card. Additional 
information regarding the related hardware and software versions of the development 
environment is shown in Table 1.

4. Experimental Phase

4.1 Dataset normalization

 In this study, we utilized the Le2i Fall Dataset, which is designed for fall detection and 
prevention research, focusing on using machine learning and computer vision techniques to 
identify and analyze fall events. This dataset was developed by the Laboratoire d’Informatique 
en Robotique et Vision laboratory in France, with the primary goal of improving the accuracy 
and effectiveness of fall detection systems. Its main features include the following:
 The dataset primarily consists of video clips captured in a controlled environment. These 
clips capture various human activities, including falls and normal activities. Each video clip is 
annotated in detail, including the start and end times of falls, as well as annotations for other 
activities. This allows researchers to accurately label fall events and conduct analysis. The video 
clips in the dataset are typically recorded in a laboratory setting, which allows for control over 
lighting and background conditions, facilitating feature extraction and model training. The Le2i 
Fall Dataset includes a variety of fall types and human activities, making it useful for training 
models to recognize different fall patterns and distinguish between falls and non-falls. This 
dataset is widely used in fall detection system research, particularly in the fields of elderly health 
care and safety monitoring. By analyzing video data, researchers can develop more effective fall 
detection and warning systems.
 However, using the Le2i Fall Dataset for research involves addressing several challenges, 
such as how to accurately extract human posture and motion features from the videos and how 
to handle variations in different environments and backgrounds. The Le2i Fall Dataset is an 

Fig. 1. (Color online) System architecture in this study.
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important tool for fall detection and prevention research, helping researchers improve the 
accuracy and reliability of related systems. The Le2i Fall Dataset may also be stored in academic 
databases or data sharing platforms such as Kaggle, University of California Machine Learning 

Table 1
Hardware and software version information for AI model training in this study.

Version, Model, or Specification

Software 
Information

Integrated Development Environment (IDE): Anaconda 3 + PyCham 2023.1.2
Python Version: 3.7.2

PyTorch Version: 1.11.0
cuDNN Version:8,2,1

Hardware 
Information

Processor: Intel(R) Core(TM) i7-8565U CPU @ 1.80 GHz
Memory: 12 GB/ Hard drive: SSD 250 GB + HDD 1 TB

Graphics Card: NVIDIA GeForce MX230

Fig. 2. (Color online) System flow chart of this study.
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Repository, or GitHub. The dataset contains a total of 191 videos, with actions classified into 
seven categories: Standing, Walking, Sitting, Lying Down, Stand Up, Sit Down, and Fall Down. 
Initially, the dataset is converted from videos to comma-separated value (CSV) files, with 
columns for video name, frame number, and action label, representing the video’s name, the 
specific frame number, and the action classification for that frame, respectively, with actions 
annotated for each frame (see Fig. 3).
 Next, the 39 key joints of the person in each frame are labeled and recorded in a CSV file. 
The CSV file is then converted into a dataset Pickle (PKL) file. Once the dataset is prepared and 
split into training and validation sets, the ST-GCN model is trained for skeleton-based pose 
recognition. Upon successful training, the model weights will be saved in a ‘.pth’ file. We use 
create_dataset_1.py to determine the total number of frames for each video and use this frame 
count to differentiate each row of data. Then, we add a label column and manually annotate the 
human actions (based on the array of actions, such as 1 = Standing, 2 = Walking, and so forth). 
The Python syntax for human action classification is defined as follows:

class_name = {’Standing’, ’Walking’, ’Sitting’, ’Lying Down’, ’Stand Up’, ’Sit Down’, ’Fall 
Down’} # label.

 To normalize the Le2i Fall Dataset, we start by using the Python script (create_dataset_1.py) 
to determine the total number of frames for each video and categorize the data based on frame 
count. We add a label column and manually annotate human actions, such as ‘Standing’, 
‘Walking’, and ‘Sitting’, according to the actions included in the array. Next, we use the Python 
script (create_dataset_2.py, see Fig. 4) to identify the positions of each human keypoint and 
manually remove rows where keypoints could not be detected to generate a dataset of human 
joint coordinates (as illustrated in Fig. 5). Finally, we employ the Python script (create_dataset_3.
py; see Fig. 6) to convert the resulting CSV file (Fig. 5) into a PKL file, paying special attention 
to smoothing functions that might merge label categories (e.g., combining ‘Standing’ with 
‘Stand Up’).

Fig. 3. (Color online) CSV file of dataset.
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4.2 Training dataset

 In the AI training, the data normalization phase is crucial to ensure data consistency and 
accuracy. During this phase, we convert CSV files into dataset PKL files to facilitate subsequent 
processing and model training.

4.2.1 Data normalization phase

1. CSV File Conversion: Initially, we convert the raw CSV files into dataset PKL files. This 
step involves organizing, cleaning, and transforming CSV-format data into Python’s PKL 
format. The PKL file format offers efficient storage and retrieval methods, making it suitable 
for handling large datasets. Converting CSV files to PKL files is a common data processing 
step, especially when dealing with large volumes of data. PKL files are a Python-specific 
serialization format designed for storing and rapidly retrieving Python objects. This step 
enhances the efficiency of subsequent data processing.

Fig. 4. (Color online) Python script (create_dataset_2.py).

Fig. 5. (Color online) Output of Python script (create_dataset_2.py): human joint coordinates.

Fig. 6. (Color online) Python script (create_dataset_3.py).
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2. Handling Multiple Datasets: When dealing with multiple datasets, we need to repeatedly 
perform the CSV-to-PKL file conversion to ensure that each dataset undergoes a consistent 
processing workflow. This guarantees compatibility between all datasets and maintains 
overall data consistency.

4.2.2 Entering the training phase

1. Model Selection: After completing data normalization, we proceed to the training phase as 
shown in Fig. 2. In this stage, we use AlphaPose for training (see Fig. 7). YOLOv3 is a 
popular real-time object detection model, and AlphaPose extends and modifies it. AlphaPose 
is an open-source pose estimation tool developed on the basis of the YOLOv3 model, 
focusing on efficient and accurate human pose estimation. AlphaPose provides an accurate 
identification of human keypoints, which are the foundation for subsequent action recognition 
and analysis.

Fig. 7. Dataset training process in this study.
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2. ST-GCN Model: ST-GCN is a deep learning model designed to process spatiotemporal graph 
data, capable of learning spatial and temporal features. It is specialized for extracting spatial 
and temporal features of human actions from video or sequence data.

 This training process aims to optimize the performance of human pose estimation and action 
recognition models through the deep learning and analysis of data in PKL files. By using 
AlphaPose for keypoint estimation and ST-GCN for action classification and analysis, we 
achieve the precise understanding and prediction of human movements.

4.3 Training results

 After the training process depicted in Fig. 7, it is evident that accuracy improves significantly 
with an increasing number of training epochs. Around the 10th training epoch, the accuracy 
consistently exceeds 96% [see Fig. 8(a)]. Similarly, the loss rate shows a notable decrease with 
more training epochs, dropping below 0.18 after approximately the 11th training epoch [see 
Fig. 8(b)]. Analyzing the confusion matrix results (see Fig. 9), we observe that the probability of 
accurately identifying each category is very high, except for the “walking” category, which 
sometimes overlaps with the “sitting” category.

4.4 Execution results

 After running it in this study, the program begins detecting human bounding boxes and 
skeletal poses. On the basis of the recognized actions from the skeletal poses, labels are 
annotated above the bounding boxes. The text information displayed above includes the 
confidence level of the recognition and the interpreted result. If the action detected is “Lying 
Down,” the action label is displayed in orange [see Fig. 10(a)]. If the action is “Fall Down,” the 
action label is shown in red [see Fig. 10(b)]. Additionally, for “Fall Down” actions, a notification 
is sent every 30 frames using IFTTT, which forwards the message to Line Bot to alert the 
relevant personnel.

Fig. 8. (Color online) (a) Accuracy obtained from training using Le2i fall dataset in this study. (b) Loss rate 
obtained from training using Le2i fall dataset in this study.

(a) (b)
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 In this study, the Real-time Fall Detection and Reporting System developed will, at this time, 
send notification messages to the relevant family members or caregivers of the elderly individual 
in the image based on the AI interpretation results (as shown in Fig. 11). The system will provide 
different notification messages depending on whether the warning is orange or red. Below is the 
code for sending messages to Line Bot:

Fig. 9. (Color online) Confusion matrix output from training phase of this study.
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Fig. 10. (Color online) (a) Experimental result where AI identifies image as "Lying Down," displaying orange 
warning and showing accuracy. (b) Experimental result where AI identifies image as "Fall Down," displaying red 
warning and showing accuracy.

Fig. 11. This system sends information about the elderly person falling to Line Bot.

(a) (b)
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 camera_source = args.camera
 message = TextSendMessage(text=camera_source+’ Someone has fallen down at camera No. 
#. Please send someone to handle the situation as soon as possible.’)

 if action_name != ‘Fall Down’ and action_name != ‘Lying Down’:
  count = 0
 else:
  if action_name == ‘Fall Down’:
  clr = (255, 0, 0)
  count += 1
  if count >= 30 and count % 30 == 0:
   line_bot_api.broadcast(messages=[message])
 elif action_name == ‘Lying Down’:
  clr = (255, 200, 0)
  count += 1

5. Conclusions

 The goal of this research is to develop an effective fall detection and instant alert system by 
integrating web cameras as sensors, machine learning technology, and AI. The system focuses 
on human skeleton posture recognition, motion detection, and real-time reporting. By employing 
machine learning techniques, the system can accurately detect falls and promptly notify medical 
staff or family members, thereby minimizing the potential consequences of a fall.
 In this study, machine learning plays a pivotal role in the system’s ability to detect, analyze, 
and report falls. The AI-based models employed include the following:
1. YOLOv3-Tiny: This model is used to localize individuals within the frame, providing the 

initial detection of human presence.
2. AlphaPose: This model detects the individual’s skeletal pose, enabling the system to 

understand their movements and identify potentially dangerous fall events.
3. ST-GCN: This model recognizes the actions of the individual on the basis of the detected 

skeletal poses, helping the system distinguish between normal movements and falls.
 Machine learning techniques, particularly the integration of these models, ensure that the 
system’s accuracy remains consistently above 96%, demonstrating the reliability of the fall 
detection and notification process. These models work together to provide instant fall detection 
and immediate reporting, offering a timely response that can help prevent further injury.
 Furthermore, the system ensures effective notification. When a fall is detected, Line Bot 
sends a message via IFTTT technology to quickly notify relevant personnel. This ensures that 
falls are addressed promptly, minimizing potential injuries.
 The novelty of this study lies in the integration of AlphaPose with ST-GCN for real-time fall 
detection and notification. The system achieves high accuracy (above 96%) in identifying falls 
by combining skeletal pose detection and action classification. The key innovative contributions 
include the following:
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1.  Real-Time Detection and Notification: The system uses web cameras and advanced AI 
techniques to detect falls instantly and notify caregivers or family members within 0.5 s, 
which is critical for timely intervention.

2.  Use of Lightweight and Efficient Models: AlphaPose, known for its accuracy in pose 
estimation, and ST-GCN, which is effective for action recognition in dynamic environments, 
are combined to ensure robust and efficient fall detection.

3.  High Adaptability and Generalization: Unlike many existing systems that rely heavily on 
specific datasets or controlled environments, in this study, we focused on enhancing the 
model’s adaptability and generalization to various conditions.

References

 1 World Health Organization: https://www.who.int/news-room/fact-sheets/detail/falls (accessed April 2024).
 2 X. G. Li, T. T. Pang, W. X. Liu, and T. F. Wang: Proc. 2017 10th Int. Congr. Image and Signal Process. BioMed. 

Eng. Inf. (IEEE, 2017) 1. https://doi.org/10.1109/CISP-BMEI.2017.8302004
 3 A. Butt, S. Narejo, M. R. Anjum, M. U. Yonus, M. Memon, and A. A. Samejo: W. Pers. Commun. 126 (2022) 

1733. https://doi.org/10.1007/s11277-022-09819-3
 4 A. Benoit, C. Escriba, D. Gauchard, A. Esteve, and C. Rossi: IEEE Sens. J. 24 (2024) 11829. https://doi.

org/10.1109/JSEN.2024.3364249
 5 T. Wang, B. Wang, Y. Shen, Y. Zhao, W. Li, K. Yao, X. Liu, and Y. Luo: Measurement 204 (2022) 112104. 

https://doi.org/10.1016/j.measurement.2022.112104.
 6 H.-S. Fang, J. Li, H. Tang, C. Xu, H. Zhu, Y. Xiu, Y. L. Li, and C. W. Lu: IEEE Trans. P. Anal. Mach. Intell. 45 

(2023) 7157. https://doi.org/10.1109/TPAMI.2022.3222784
 7 C. Arrowsmith, D. Burns, T. Mak, M. Hardisty, and C. Whyne: Sensors 23 (2023) 363. https://doi.org/10.3390/

s23010363
 8 C. Chen, K. Liu, and N. Kehtarnavaz: J. Real-T. Image Process. 12 (2013) 155. https://doi.org/10.1007/s11554-

013-0370-1
 9 D. Mehta, H. Rhodin, D. Casas, P. V. Fua, O. Sotnychenko, W. P. Xu, and C. Theobalt: Proc. 2017 Int. Conf. 3D 

Vision (IEEE, 2017) 506. https://doi.org/10.1109/3DV.2017.00064.
 10 J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake: Proc. Conf. 

Comput. Vision Pattern Recognition (IEEE, 2011) 1297. https://doi.org/10.1109/CVPR.2011.5995316
 11 A. Toshev and C. Szegedy: Proc. 2014 IEEE Conf. Comput. Vision Pattern Recognition (IEEE, 2014) 1653. 

https://arxiv.org/pdf/1312.4659
 12 H. S. Fang, S. Xie, Y. W. Tai, and C. Lu: Proc. 2017 IEEE Int. Conf. Comput. Vision (IEEE, 2017) 2334. https://

arxiv.org/pdf/1612.00137
 13 Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh: IEEE Trans. Pattern Anal. Mach. Intell. 43 (2021) 172. 

https://doi.org/10.1109/TPAMI.2019.2929257
 14 R. A. Güler, N. Neverova, and I. Kokkinos: Proc. 2018 IEEE/CVF Conf. Comput. Vision Pattern Recognition 

(IEEE, 2018) 7297–7306. https://doi.org/10.1109/CVPR.2018.00762
 15 A. Newell, K. Yang, and J. Deng: Proc. C. Vision–ECCV 2016. L. Notes in C. Science 2016 (Springer, 2016) 

9912. https://doi.org/10.1007/978-3-319-46484-8_29
 16 M. Chasmai, N. Das, A. Bhardwaj, and R. Garg: SN Comput. Sci. 3 (2022) 475. https://doi.org/10.1007/s42979-

022-01376-7
 17 J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova: BERT: Proc. 2019 Conf. North Am. Chapter Assoc. 

Comput. Ling.: Hum. Lang. Technol. (Association for Computational Linguistics, 2019) 4171. https://doi.
org/10.18653/v1/N19-1423

 18 J. Y. Campbell, J. D. Hilscher, and J. Szilagyi: J. Invest. Manage. 9 (2011) 14. https://ssrn.com/abstract=1829622
 19 S. Jambukia, V. Dabhi, and H. Prajapati: Proc. 2015 Int. Conf. Adv. Comput. Eng. Appl. (IEEE, 2015) 714. 

https://doi.org/10.1109/ICACEA.2015.7164783
 20 Y. Chen, Y. Zhou, S. Zhu, and H. Xu: Proc. IEEE Int. Conf. Social Computing (SocialCom) Privacy, Security, 

Risk and Trust (PASSAT) (IEEE, 2012) 71–80. https://doi.org/10.1109/SocialCom-PASSAT.2012.55
 21 G. Khanvilkar1 and D. Vora: Int. J. Eng. Technol. 7 (2018) 87. https://doi.org/10.14419/ijet.v7i3.3.14492
 22 V. N. Vapnik: Estimation of Dependences Based on Empirical Data (Springer, Heidelberg, 2006) 2nd ed. 

https://doi.org/10.1007/0-387-34239-7

https://www.who.int/news-room/fact-sheets/detail/falls
https://doi.org/10.1109/CISP-BMEI.2017.8302004
https://doi.org/10.1007/s11277-022-09819-3
https://doi.org/10.1109/JSEN.2024.3364249
https://doi.org/10.1109/JSEN.2024.3364249
https://doi.org/10.1016/j.measurement.2022.112104
https://doi.org/10.1109/TPAMI.2022.3222784
https://doi.org/10.3390/s23010363
https://doi.org/10.3390/s23010363
https://doi.org/10.1007/s11554-013-0370-1
https://doi.org/10.1007/s11554-013-0370-1
https://doi.org/10.1109/3DV.2017.00064
https://doi.org/10.1109/CVPR.2011.5995316
https://arxiv.org/pdf/1312.4659
https://arxiv.org/pdf/1612.00137
https://arxiv.org/pdf/1612.00137
https://doi.org/10.1109/TPAMI.2019.2929257
https://doi.org/10.1109/CVPR.2018.00762
https://doi.org/10.1007/978-3-319-46484-8_29
https://doi.org/10.1007/s42979-022-01376-7
https://doi.org/10.1007/s42979-022-01376-7
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://ssrn.com/abstract=1829622
https://doi.org/10.1109/ICACEA.2015.7164783
https://doi.org/10.1109/SocialCom-PASSAT.2012.55
https://doi.org/10.14419/ijet.v7i3.3.14492
https://doi.org/10.1007/0-387-34239-7


1656 Sensors and Materials, Vol. 37, No. 4 (2025)

 23 L. Breiman: Mach. Learn. 45 (2001) 5. https://doi.org/10.1023/A:1010933404324
 24 Y. Lecun, L. Bottou, Y. Bengio and P. Haffner: Proc. IEEE. (IEEE, 1998) 2278. https://doi.org/10.1109/5.726791
 25 D. Rumelhart, G. Hinton, and R. Williams: Nature 323 (1986) 533. https://doi.org/10.1038/323533a0
 26 T. N. Kipf and M. Welling: Proc. Int. Conf. Learn. Representations (Curran Associates, Inc., 2017). https://

arxiv.org/abs/1609.02907
 27 S. Yan, Y. Xiong, and D. Lin: Proc. Thirty-Second AAAI Conf. Artificial Intelligence (AAAI Press, 2018) 

7444–7452.

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/323533a0
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907

