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	 Falls are the leading cause of injury-related deaths among adults aged 65 and older. The age-
adjusted fall mortality rate increased by 41%, from 0.0553% in 2012 to 0.0780% in 2021. The 
models OpenPose and MoveNet can be used to detect human movements associated with falls in 
dynamic images. In this study, we utilized these AI models to independently identify falls 
among elderly individuals living alone and compared the efficiency of these two AI fall detection 
models in capturing dynamic images. In this study, we employed a web camera as a sensor and 
integrated it with the two systems mentioned above to detect human limb movements, determine 
whether the monitored individual has fallen, and send emergency notifications to family 
members, caregivers, and nursing staff via communication software. AI-based posture detection 
technology is vital for elderly individuals who live alone, have poor health, or have limited 
mobility. Our evaluation of the detection efficiency of different AI fall detection models provides 
valuable references for applications in healthcare systems.

1.	 Introduction

	 Falls are the leading cause of injury-related death among adults aged 65 and older. The 
age-adjusted fall death rate increased by 41%, from 0.0553% of older adults in 2012 to 0.0780% 
in 2021.(1,2)  According to the definition by the World Health Organization, a fall refers to an 
event where a person unintentionally comes to rest on the ground or floor.(3)  Following a fall, 
aside from potentially causing fatal or nonfatal injuries, it can also have negative psychological 
effects on the individual and their family members. For instance, the person who fell may 
experience anxiety about falling again, along with feelings of guilt and self-blame. These 
emotions can impact their daily life, potentially leading to reduced outdoor activities and, 
ultimately, a gradual loss of physical function and mobility. When a fall results in severe injury 
and there is no immediate means to notify others or receive emergency assistance, it can lead to 
irreversible harm and loss of independence, necessitating long-term reliance on others for 
assistance and care. This situation not only affects the quality of life of the individual but also 
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imposes additional burdens on their family and society. To mitigate the potential harm caused by 
falls, developing a real-time fall detection and alert system is crucial. Such a system not only 
aids in promptly responding to fall incidents and reducing the risk of harm but also offers 
potential psychological benefits. It enables individuals to receive timely support and care when 
they experience a fall, thereby maintaining their physical and mental well-being as well as their 
overall quality of life.
	 In this study, we argue for the necessity of a reliable fall detection system that can 
immediately notify family members or healthcare providers upon detecting a fall event. 
Currently, human motion detection technologies primarily fall into two categories: wearable 
sensors and image recognition techniques. However, wearable devices may pose inconvenience 
for older adults or young children who may not be familiar with how to use them or may easily 
forget to wear them. Particularly for some elderly individuals, they may find it challenging to 
adapt to the constant requirement of wearing sensors, not to mention young children who may 
not understand their purpose and could inadvertently damage the wearable devices.
	 Therefore, we chose to use lightweight pose estimation models, OpenPose(4) and MoveNet,(5) 
with a focus on fast, real-time motion estimation. These models can directly output human 
keypoint positions and, in some applications, may be paired with specialized motion classifiers 
[such as convolutional neural networks (CNNs) or recurrent neural networks (RNNs)] to classify 
specific actions, enabling the real-time detection of falls and utilizing the LINE Notify 
communication software for message notifications. We aim to achieve the following objectives: 
(1) establish a real-time fall detection and notification system, (2) successfully identify current 
actions of individuals, and (3) promptly notify family members or healthcare providers when a 
fall occurs, thereby achieving immediate alerting effects. Compared with IoT sensing 
technology, AI image recognition technology can provide a convenient, precise, and non-
intrusive solution without the need for additional wearable devices, a fact supported by multiple 
studies.(6–9) This further ensures timely detection and notification of fall events, ultimately 
enhancing the safety and quality of life for individuals. In this paper, we focus on machine 
learning techniques, specifically the lightweight OpenPose and MoveNet AI models, using a 
web cam as a sensor for real-time human pose estimation and fall detection. We leverage AI 
techniques, including deep learning, image recognition sensing, and posture estimation 
perception, to support critical healthcare applications. The aforementioned sensors and AI 
technologies are integrated with systems such as LINE Notify to provide instant alerts in 
emergency situations, emphasizing their practical and social importance.

2.	 Theoretical Foundation

	 In this section, the image recognition technology of AI open sources and human motion 
classification methods will be discussed. This discussion aims to facilitate a better understanding 
of the Lightweight OpenPose(4) and MoveNet(5) models proposed in this study and the human 
motion classification model. These are crucial for real-time detection capabilities, as the 
aforementioned AI algorithms and models help ensure that fall events can immediately trigger 
notification processes, providing prompt responses and reducing potential harm.
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2.1	 Human posture recognition

	 Image recognition technology is a rapidly growing field in recent years, which is based on 
computer vision and machine learning, utilizing deep learning models to achieve automatic 
recognition and classification of images. This technology finds extensive applications in areas 
such as security surveillance,(10,11) medical image analysis,(12–14) and autonomous driving.(15,16) 
From facial recognition to traffic sign detection, it demonstrates its importance in enhancing 
security, medical diagnosis, and traffic systems. Human pose recognition is also a critical aspect 
of this technology, further expanding its application domains, significantly impacting quality of 
life and technological advancement, and playing a crucial role in technological development.
	 The method chosen for this study involves using human pose estimation within image 
recognition technology to effectively detect human movements. Human pose estimation can be 
divided into two main approaches: top-down and bottom-up. In the top-down approach, the 
image first detects potential locations containing humans and labels bounding boxes around 
them. Then, it identifies the human joint points within these bounding boxes. Models 
representing this approach include AlphaPose(17) and Hourglass.(18) The bottom-up approach, on 
the other hand, identifies the joint positions of each person in the image and constructs complete 
human poses on the basis of the relationships between these joints. Models representing this 
approach include PifPaf,(19) OpenPose,(20) Lightweight OpenPose,(4) and MoveNet.(5)

	 In this study, considering the need for real-time action detection, we adopted a bottom-up 
human pose recognition approach, specifically utilizing the Lightweight OpenPose model and 
MoveNet models. Given the potentially large quantity of image datasets, which could otherwise 
decrease detection speeds, the bottom-up approach involves identifying all joint points in the 
image at once, without imposing additional computational burden as the number of individuals 
increases. In contrast, a top-down approach would increase joint detection computations with 
more people in the scene, potentially affecting detection efficiency in multiperson scenarios. The 
advantages of the Lightweight OpenPose(4) and MoveNet(5) models lie in their lightweight 
design, maintaining accuracy while reducing computational load, which is suitable for real-time 
action detection applications. Through this method, we can more accurately capture and analyze 
human movements in images, providing a reliable foundation for real-time fall detection and 
notification systems.
	 The overall process of OpenPose(20) is shown in Fig. 1, which includes taking the whole 
image as input, co-predicting the confidence maps for body part detection and part affinity 
fields for part association via CNNs, and then performing a series of bipartite matches to 
associate body part candidates, which are finally assembled into a complete body pose for all the 
people in the image. OpenPose(20) was developed by the Computer Vision Center team, 
consisting of researchers from the Technical University of Catalonia.
	 In this study, we considered that the Lightweight OpenPose model, improved by Osokin,(4) is 
a powerful pose estimation model capable of accurately identifying multiple human joint points, 
making it suitable for handling complex postures. This is achieved through a highly optimized 
network design and postprocessing code. It utilizes a dilated MobileNet V1(21)  feature extractor 
with depthwise separable convolutions, along with a lightweight refinement stage design, 
resulting in an increase in the accuracy-to-network complexity ratio of over 6.5 times.
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	 To assess the efficiency of AI models in detecting body movements, we also employed 
another lightweight model, MoveNet, for a comparative evaluation of its performance in real-
time fall detection scenarios. The architecture of MoveNet uses the CenterNet(22) method as its 
underlying technology. CenterNet is a bottom-up method whose main idea is to transform the 
problem of target detection into predicting the centroid of each target in the image and 
simultaneously predicting the target’s bounding box. This method simplifies the process of 
target detection and improves accuracy and efficiency.
	 MoveNet has a total of four models, mainly divided into two variants, MoveNet-SinglePose 
and MoveNet-MultiPose, which are suitable for single-person and multiperson pose estimations, 
respectively. MoveNet-SinglePose includes three models: PoseNet,(23) MoveNet-Lightning, and 
MoveNet-Thunder. PoseNet is a pose estimation model developed by Google, which is mainly 
based on the MobileNet architecture. Although PoseNet and MoveNet are different pose 
estimation models, they are both developed by Google and built and deployed on the basis of the 
TensorFlow framework, so they are often discussed and compared together.
	 The overall flow of MoveNet is shown in Fig. 2. In the first step, the centroid of the individual 
is identified using the body-centered heatmap, which is the arithmetic mean of all the keypoints, 
and the point with the smallest distance from the center of the frame is selected. In the second 
step, an initial set of key points for the body is generated from the key point regression output. In 
the third step, we multiply each key point heat map pixel by a weight that is inversely proportional 
to the distance of the regressed key points to filter out interference from the background figure. 
In the fourth step, we select the point with the largest heat map value from each key point 
channel and add a 2D offset to accurately predict the key point.
	 MoveNet-Lightning focuses on providing low latency and fast inference, whereas MoveNet-
Thunder emphasizes accuracy for complex scenarios. Although the Lightning model is faster in 
inferring, it is slightly inferior to Thunder in terms of accuracy. As shown in Table 1, these three 
models are tested on a subset of the Common Objects in Context (COCO) dataset to evaluate 
their accuracy. In the COCO dataset, each image is filtered and cropped to ensure that only one 
person’s pose is included.(24)

	 The application scenario of this study is focused on elderly individuals living alone. 
Therefore, a comparison was made between the MoveNet-Lightning and Lightweight OpenPose 
models to evaluate whether they meet the requirements of real-time performance in detecting 
fall postures during elderly activities under low-computation conditions, focusing on efficiency 
and low latency.

Fig. 1.	 (Color online) Overall process of OpenPose.(20)
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2.2	 Classification of human body movements

	 Common methods for classifying human body movements include using CNNs,(25) RNNs,(26) 

and Multilayer Perceptron (MLP).(27) CNNs are widely used for extracting features from static 
postures, whereas RNNs excel in capturing dynamic time-series aspects. Some studies further 
incorporate attention mechanisms to emphasize key body parts, enhancing the model’s capability 
to recognize complex movements. MLP models, as basic neural network structures, demonstrate 
their utility in learning complex nonlinear relationships. Overall, these methods provide a solid 
foundation for human motion detection and are widely applied in areas such as visual perception 
and behavior analysis. The MLP mixer developed on the basis of MLP features an architecture 
that includes two types of MLP: channel-mixing MLP and token-mixing MLP. Each MLP block 

Fig. 2.	 (Color online) Process of MoveNet.(24)

Table 1
Comparison of accuracies of PoseNet, MoveNet-Lightning, and MoveNet-Thunder on COCO dataset.

Model Size (MB) mAP
Latency (ms)

Pixel 5 - CPU 4 
threads Pixel 5 - GPU Raspberry Pi 4 - 

CPU 4 threads  
MoveNet Thunder 
(FP16 quantized) 12.6 72.0 155 45 594

MoveNet Thunder 
(INT8 quantized) 7.1 68.9 100 52 251

MoveNet Lightning 
(FP16 quantized) 4.8 63.0 60 25 186

MoveNet Lightning 
(INT8 quantized) 2.9 57.4 52 28 95

PoseNet 
(MobileNetV1 backbone FB32) 13.3 45.6 80 40 338
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contains two fully connected layers and a nonlinearity applied independently to each row of its 
input data tensor. Mixer layers can be written as (omitting layer indices) 

	
U X W W LayerNorm X i C

Y U
i i i

j j

*, *, *,

,* ,*

( ) . ,,   
 or

 

f� � � �

� �

� �2 1 1�

WW W LayerNorm U j Sj4 3 1� ( ), . .
,*

� � � �for
	 (1)

As mentioned above, the overall complexity is linear in the number of pixels in the image, as for 
a typical CNN.(27) The same channel-mixing MLP (token-mixing MLP) is applied to every row 
(column) of X. Tying the parameters of the channel-mixing MLP (within each layer) is a natural 
choice—it provides positional invariance, a prominent feature of convolutions.
	 The MLP model typically consists of multiple fully connected layers,(28) where each neuron 
in these layers is connected to every neuron in the previous layer. This structure helps MLP 
capture relationships between input features. Additionally, each fully connected layer in an MLP 
typically includes a nonlinear activation function such as the rectified linear unit (ReLU) or 
sigmoid,(29) which aids the model in distinguishing between different classes. In MLP models, 
the Gaussian error linear unit (GELU) nonlinear activation function and the ReLU nonlinear 
activation function exhibit significant differences:
•	 	ReLU: The ReLU activation function is defined as f(x) = max(0, x), which outputs zero when 

the input is less than or equal to zero, and otherwise remains unchanged. ReLU is piecewise 
linear and discontinuous at x = 0 (with a discontinuous derivative).

•	 	GELU: The GELU activation function is a smooth nonlinear function defined as f(x) = x⋅Φ(x), 
where Φ(x) is the Gaussian cumulative distribution function. GELU is smooth and 
differentiable across the entire real number range, making it popular in various applications, 
particularly in neural networks.

	 The GELU function can approximate the ReLU function in specific cases, particularly when 
the input values are very large or very small. This approximation property sometimes offers 
additional advantages. Generally, GELU may converge slightly faster than ReLU during training 
owing to its smooth nature, which aids in faster gradient propagation. Finally, MLP often uses 
the Softmax function(30) to generate a probability distribution over classes. This means that the 
model informs us of the likelihood that the input data belongs to each class. During training, 
MLP uses the backpropagation algorithm(31) and optimizers to adjust their settings and improve 
classification accuracy.
	 This classifier model can be represented by a mathematical formula. Assuming that the input 
feature vector is x, the computation process of the model is as follows:
1.	 	First Fully Connected Layer: The input x undergoes linear transformation in the first fully 

connected layer: h(1) = W(1)x + b(1), where W(1) is the weight matrix of the first layer and b(1) is 
the bias vector.

2.	 	ReLU Nonlinear Activation Function: The output h(1) from the first layer is passed through 
the ReLU activation function: h(2) = max (0, h(1)), where max performs element-wise 
comparison and takes the maximum.



Sensors and Materials, Vol. 37, No. 4 (2025)	 1663

3.	 	Second Fully Connected Layer: The ReLU activated output h(2) is linearly transformed in the 
second fully connected layer: h(3) = W(2)h(2) + b(2), where W(2) is the weight matrix of the 
second layer and b(2) is the bias vector.

4.	 	Softmax Function: Finally, the output h(3) from the second layer is passed through the 
Softmax function to obtain the class probabilities: ŷ = Softmax(h(3)) represents the model’s 
output, indicating the probability distribution over classes.

	 In summary, the mathematical formula for this classifier model is

	 y Softmax W max W x b b � � �� �� �( ) ( ) ( ) ( ),2 1 1 20 .	 (2)

Here, W(1) and b(1)are the weights and biases of the first layer, and W(2) and b(2) are the weights 
and biases of the second layer, respectively, and Softmax() denotes the Softmax function. The 
input layer has 16384 features, representing the feature size of a single input sample, with each 
input sample being a grayscale image of size 128 × 128. Initially, through the first fully 
connected layer, linear (16384, 100), input features are transformed into a 100-dimensional 
hidden representation, followed by a ReLU nonlinear activation function to enhance the model’s 
learning and adaptation to the data. The second fully connected layer, linear (100, 2), then 
transforms the 100-dimensional hidden representation into an output with two classes. Finally, 
the Softmax function provides a probability distribution over each class. This structure is 
designed for classification tasks where the model aims to predict which class a given input 
sample belongs to. The architecture of the MLP model is illustrated in Fig. 3.
	 The classifier model used by MoveNet is also an MLP structure, which consists of two fully 
connected layers, two ReLU nonlinear startup functions, two dropout layers, and a Softmax 
function. The architecture is shown in Table 2.
	 The first layer is the input layer, which receives a one-dimensional vector of length 51 
corresponding to 17 human body keypoints. Each keypoint consists of three values: x-coordinate, 
y-coordinate, and confidence score. The data is then processed by the second layer, a custom 
embedding layer, which handles the x and y coordinates before passing them to the first fully 
connected layer (Layer 3) with 128 neurons. This layer uses the ReLU6 activation function to 

Fig. 3.	 (Color online) MLP architecture.
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capture nonlinear features and is followed by a dropout layer (Layer 4) that randomly drops 50% 
of the neurons to reduce the risk of overfitting. The second fully connected layer (Layer 5) has 
64 neurons and also utilizes the ReLU6 activation function. It is followed by another dropout 
layer (Layer 6) to further enhance the model’s generalization capability. Finally, the output layer 
(Layer 7) consists of len neurons (in this study, for binary classification, it is 2) and employs the 
Softmax activation function for multiclass classification.

3.	 System Construction Planning

3.1	 System development

	 In terms of system setup, we have installed a video camera for real-time human pose 
detection. When the camera detects the presence of a person in the frame, the relevant image 
data is immediately transmitted to the system. The system not only receives the data but also 
actively performs action recognition to ensure real-time motion analysis of the person in the 
frame. When the system detects that a person has fallen, it promptly activates the notification 
procedure. Through the LINE Notify service, the system can instantly send notification 
messages, enhancing the response speed to fall incidents and further reducing the potential for 
harm. The overall design and implementation of the system architecture are illustrated in Fig. 4. 
With this system configuration, we ensure the operation of real-time detection and notification 
processes.
	 When the system’s video camera detects a person in the frame, it first utilizes the Lightweight 
OpenPose and MoveNet models to perform joint detection on the person’s body, displaying their 
joint posture and detection box in the frame. Through this process, the system can immediately 
capture the motion characteristics of the human body, providing detailed information for 
subsequent analysis.
	 Next, the system uses an MLP model to recognize the current actions of the detected person. 
Actions are classified into two categories: “normal” (normal actions) and “fall” (falling actions). 
If the system detects a fall for 3 s or longer, it promptly activates the LINE Notify service to send 
immediate notifications to family members or medical personnel. This design aims to implement 

Table 2
Architecture of MoveNet.
Layer Type Input shape Activation function
1 Input layer (51,) –
2 Custom layer (51,) –
3 Dense layer (51,) ReLU6
4 Dropout layer (128,) –
5 Dense layer (128,) ReLU6
6 Dropout layer (64,) –
7 Dense layer (64,) Softmax
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real-time alerting and notification functions to significantly reduce the potential harm caused by 
fall incidents.
	 Even in the absence of detected falls, the system will continue to monitor for movements, 
ensuring continuous surveillance. The overall flowchart of the system is illustrated in Fig. 5. 
Through this workflow, we ensure efficient and reliable motion detection and notification 
capabilities.

3.2	 Environment setup

	 The model training and testing equipment used in this study is a laptop with an Intel Core i7-
8565U 1.80 GHz processor and an NVIDIA GeForce MX150 graphics card. Additional 
information regarding related hardware and software versions of the development environment 
is provided in Table 3.

3.3	 Dataset sources

	 The “UR Fall Detection Dataset”(32) was produced by Michal Kępski at the Interdisciplinary 
Centre for Computational Modelling at the University of Rzeszow. The dataset contains 70 
sequences, including 30 fall events and 40 activities of daily living. Falls were recorded using 
two Microsoft Kinect cameras and corresponding acceleration data. Activities of daily living 
were recorded using only one device (Camera 0) and an accelerometer. Sensor data was collected 
using PS Move (60 Hz) and x-IMU (256 Hz) devices. The dataset is composed in the following 
way. Each row contains depth and RGB image sequences for Camera 0 and Camera 1 (floor 
parallel and ceiling-mounted, respectively), synchronization data, and raw acceleration data. 
Each movie is stored as a separate zip file in the form of a png image sequence. The depth data is 
stored in the PNG16 format and should be rescaled. In this paper, 30 movies from each of 
Camera 0 and Camera 1 are divided into a training set and a test set at a ratio of 8 to 2, and the 
movies are converted to photographs on a case-by-case basis. The exact number is shown in 
Table 4.

Fig. 4.	 (Color online) System architecture of real-time fall detection and alert system.
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4.	 Experimental Phase and Discussion

4.1	 Data processing for training

	 In this study, the training of the classifier is described as follows. First, we manually 
categorized the training images into two classes: “normal” and “fall”. Next, Lightweight 

Fig. 5.	 System flowchart of real-time fall detection and alert system.

Table 3
Hardware and software version information for AI model training in this study.

Version, model, or specification

Software information

Integrated Development Environment (IDE): Anaconda 3 + PyCham 2023.1.4
Python Version: 3.6.13
PyTorch Version: 1.4.0
TensorFlow Version: 2.13.0
CUDA Version:12.2

Hardware information Processor: Intel(R) Core(TM) i7-8565U CPU @ 1.80 GHz
Graphics Card: NVIDIA GeForce MX150

Table 4 
Dataset distribution table.(32)

Classification Camera Number of datasets Total

Training dataset Cam0 2397 4974Cam1 2577

Test dataset Com0 598 1200Cam1 602
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OpenPose split each category into training and testing sets and converted the images into 
grayscale representations of skeletal joint points, with each image sized at 128 × 128 pixels, 
preparing them for model training, as shown in Fig. 6.
	 The main reason for converting the training images to grayscale is to simplify the image data 
and reduce computational complexity. Grayscale images contain only brightness information, 
excluding color information, which is sufficient for human activity classification tasks. This 
approach enhances computational efficiency, reduces model complexity, and saves memory 
space. The normal class focuses on the grayscale skeletal joint point images for the “normal” 
class. The images are processed to highlight key joint positions and movements, facilitating 
effective training for the classification model. Each image maintains a resolution of 128 × 128 
pixels, ensuring consistent input for the model while simplifying the visual data by removing 
color information. This allows the model to concentrate on the movement patterns essential for 
classification tasks.
	 The fall class focuses on the grayscale skeletal joint point images for the “fall” class. These 
images capture critical joint positions during fall scenarios, providing essential data for training 
the classification model. Each image is standardized to a resolution of 128 × 128 pixels, 
simplifying the input while eliminating color information. This allows the model to effectively 
analyze movement patterns related to falls, enhancing its capability to classify and detect such 
actions accurately. MoveNet recognizes the human skeleton by converting it into 17 keypoints, 
each of which contains the corresponding X and Y coordinates, confidence score, and joint point 
name. For example, information about a keypoint can be represented as “x: 230, y: 220, score: 
0.9, name: ‘nose’”, which indicates the location of the keypoint and the system’s confidence in its 
accuracy. These data points are combined and stored in the CSV format as the main input data 
for model training. This is shown in Figs. 7(a) and 7(b).
	 The benefits of using only coordinates for training in MoveNet are mainly in simplifying the 
data and improving the model performance. Unlike image categorization, the coordinate data 
only retains the key information of the movement, i.e., the position of human joints and their 
changes, which significantly reduces the data dimension and computational resource 
requirements. This approach removes irrelevant information such as background, color, and 
noise from the image, so that the model can focus more on the changes in movement patterns. In 
addition, coordinate data simplifies the training process, improves efficiency and model 
convergence, and is not dependent on specific camera angles or resolutions, making it more 

Fig. 6.	 Lightweight OpenPose preprocessed data for (a) normal and (b) fall categories.

(a) (b)
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adaptable. This approach is an efficient strategy for motion recognition tasks because it can 
focus on motion patterns, such as joint movements and posture changes, to improve classification 
accuracy.

4.2	 Training process

	 Before commencing training, we set the shuffle parameter to True. This setting ensures that 
the model is not affected by the order of the data during training, allowing it to learn features 
and patterns more effectively. We then input the training and testing sets into the MLP model to 
begin the training process, as shown in Fig. 8. In this figure, Lightweight OpenPose indicates the 
current training epoch, the second row shows the calculated average training loss (train_avg_loss), 
and the third row displays the calculated average testing loss (test_avg_loss). The current training 
epoch, training accuracy, average training loss, test accuracy (val_accuracy), and average test 
loss (val_loss) of MoveNet are shown in Fig. 9.
	 Calculating the average training loss and average testing loss is crucial for evaluating the 
model’s performance during training and testing. These loss values provide indicators of how 
well the model is performing on the training and testing data. By monitoring these two loss 
values, we can assess whether the model is experiencing overfitting or underfitting. If the 
training loss continues to decrease while the testing loss increases, it may indicate overfitting, 
necessitating adjustments such as reducing model complexity or employing regularization 
techniques. Conversely, if both losses are high, it suggests that the model may require more 
training data or further parameter tuning.

4.3	 Performance evaluation metrics

	 In this study, we chose to use the precision–recall (PR) curve and receiver operating 
characteristic (ROC) curve as performance evaluation metrics, primarily because our task is a 

(a) (b)

Fig. 7.	 (Color online) MoveNet preprocessed data for (a) normal and (b) fall categories.
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binary classification problem between “normal” and “fall” events. The PR curve is particularly 
suitable for handling imbalanced datasets, as in our fall detection system, where fall events are 
the minority class compared with normal behavior. When dealing with this type of imbalanced 
data, the PR curve can more clearly demonstrate the trade-off between precision and recall, 
especially in detecting the critical minority class (such as falls), thus providing a better reflection 
of the model’s performance.
	 On the other hand, the ROC curve is a measure of the model’s capability to categorize the 
whole population, which is especially suitable for situations where the categories are more 
balanced. In binary classification problems, the ROC curve provides a more comprehensive 
assessment of the model’s predictive performance at each threshold by considering both the true 
positive rate (TPR) and the false positive rate (FPR). Therefore, we use the PR curve to 
emphasize the detection performance for a small number of categories (fall events), whereas the 
ROC curve is used to comprehensively assess the overall performance of the model in handling 
all data categories.

Fig. 9.	 Training process of MoveNet MLP model.

Fig. 8.	 MLP model training process.
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	 The better performance of Lightweight OpenPose in terms of precision–recall area under the 
curve (PR AUC) and F1 scores, as shown in Fig. 10, and the better performance of MoveNet in 
terms of ROC AUC, as shown in Fig. 11, may be related to several factors as follows.
	 Modeling architecture differences:
	 OpenPose usually adopts multistage resolution refinement step by step, which can capture 

the pose points more finely, especially in small samples or unbalanced datasets. OpenPose 
may have better precision and recall in specific tasks (e.g., situations that require high-
precision detections), which leads to better performances of PR AUC and F1-score.

	 Data characterization:
	 PR AUC and F1-score are more suitable for unbalanced datasets, especially in recognition 

tasks that focus on certain key poses or specific minority classes. If there is a category 
imbalance in the dataset, OpenPose may perform better on small sample categories.

	 ROC AUC assumes a more balanced dataset and can more fully evaluate the overall 

Fig. 10.	 (Color online) Lightweight OpenPose PR curve and ROC curve.

 Fig. 11.	 (Color online) MoveNet PR curve and ROC curve.
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performance of the model on all categories. MoveNet will have a better ROC AUC score if it 
can provide stable predictions on large or balanced datasets.

	 To summarize, Lightweight OpenPose performs well in refined prediction, so PR AUC and 
F1-score are likely to be higher, whereas MoveNet has an advantage in full-domain model 
performance; thus, ROC AUC is better.

4.4	 Handling exceptions in data preprocessing

	 Both the fall category data sets after preprocessing using Lightweight OpenPose and 
MoveNet show a decrease in quantity, with Lightweight OpenPose experiencing a more 
significant reduction (as shown in Table 5). This may be due to some body parts being obscured 
during a fall, resulting in incomplete skeleton generation and leading to a class imbalance, which 
affects the model’s performance. The occlusion issue is particularly pronounced during fall 
actions because, when the body falls, certain limbs (such as arms or legs) may be blocked from 
view, preventing Lightweight OpenPose from accurately detecting them, thus reducing the 
amount of fall category data. In Fig. 10, Lightweight OpenPose performs poorly on the ROC 
AUC since the model cannot effectively learn complete fall samples. However, because the 
model is trained on only unobstructed data, precision and recall are better in the absence of 
occlusion, leading to improved PR AUC and F1-score performances.
	 Additionally, even when the skeleton is successfully generated, especially during actions 
such as falling or sitting down, the system may sometimes misidentify nearby objects (such as 
chairs or tables) as part of the human body (as shown in Fig. 12). There may also be issues with 
incorrect human skeleton posture (as shown in Fig. 13). These misjudgments can affect the 
model’s accuracy, increase the FPR, and reduce the reliability of practical applications.
	 These challenges highlight the limitations of fall detection systems when dealing with limb 
occlusion and environmental interference. The accuracy and completeness of data are crucial for 
model performance. Future work needs to further investigate how to improve occlusion issues 
and reduce the misidentification of objects to enhance the overall stability and accuracy of the 
model.

4.5	 Notification system

4.5.1	 Data preprocessing and experimental design

	 In Sect. 4.3, we found that using Lightweight OpenPose yields better accuracy predictions 
than MoveNet for the UR Fall Detection Dataset. Considering that elderly individuals only take 

Table 5
Comparison of original and preprocessed dataset quantities.

Original dataset quantity OpenPose preprocessed 
data set quantity

MoveNet preprocessed 
data set quantity

Normal 2728 2602 2620
Fall 3446 2114 2582



1672	 Sensors and Materials, Vol. 37, No. 4 (2025)

1 to 2 s to go from losing their balance to fully falling, they face the danger of being unable to 
get up or losing consciousness due to head impact. Therefore, we have added the LINE Notify 
notification feature to quickly assist in rescue efforts in a timely manner. To effectively 
determine the duration of fall detection in order to trigger the LINE Notify alert, we conducted 
experiments to collect data and analyze the optimal threshold. These experiments primarily 
utilized the OpenPose AI model for fall detection.
	 In Sect. 4.4, regarding the prevention of fall incidents, we employed the GMDCSA24-A-
Dataset-for-Human-Fall-Detection-in-Videos.(33) This dataset consists of photos depicting 
various possible activities of humans in daily life. It includes 74 videos showcasing different 
everyday behaviors (such as walking, bending, sitting, and falling), with each video lasting at 
least 5 s or more. This serves as the basis for our research integrating the OpenPose AI model 
with the LINE Notify notification feature for experimentation. In our data preprocessing tasks, 

(a) (b)

Fig. 13.	 (Color online) Incorrect human skeleton posture of limb detection results by the AI model: (a) MoveNet and 
(b) OpenPose.

Fig. 12.	 (Color online) Misjudgment of limb detection results by the AI model: (a) MoveNet and (b) OpenPose.

(a) (b)
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we do not perform relabeling. Instead, we directly use the prelabeled videos, which already 
contain segments of various daily activities that should not be classified as falls by the model. 
The trained model then automatically extracts action features from these daily activities, with its 
output indicating whether a fall is detected.
	 Next, we establish a simulated detection system where the trained model analyzes each frame 
of daily activity videos to determine whether a fall behavior is present. The model’s output will 
indicate a fall detection result for each frame, although it may occasionally misinterpret certain 
actions (such as rapid squatting or lying down) as falls. We then activate a notification 
mechanism, triggering the LINE Notify alert function whenever the model detects a suspected 
fall. The following are the experimental steps for this phase.
Step 1:	� Detect and record model outputs
		�  The model will detect 74 video clips of activities of daily living and output whether 

there is any suspected fall behavior on each frame. When the model detects the 
suspected fall behavior, it will start the timer.

Step 2:	 Set the notification mode with different number of seconds for comparison
		�  1-s notification mode: Once the model detects a fall, the notification will be triggered 

immediately.
		�  2-s notification mode: The notification is triggered when a fall is detected and the 

behavior lasts for 2 s or more.
		�  3-s notification mode: The notification is triggered when a fall is detected and the 

behavior persists for 3 s or more.

4.5.2	 Data collection and analysis

	 In terms of data collection and experiments, we aim to obtain the following data: 
(1)	�FPR Statistics: The number of times the model misclassifies daily activities as falls is 

recorded for each notification mode.
(2)	�Notification Effect Comparison: By analyzing notifications at 1, 2, and 3 s, we evaluate 

which setting most effectively reduces the FPR.
	 On the basis of this experiment, the data collection and analysis results of the OpenPose limb 
detection combined with the LINE Notify notification feature are shown in Table 6.
	 False Alarm Rate Statistics: Record the number of times the model misidentifies daily 
activities as falls in each notification mode.
	 Comparison of Notification Effectiveness: Analyze which setting (1-second, 2-second, or 
3-second notifications) is most effective in reducing the false alarm rate.

Table 6 
Experimental data.

Notification mode Total video 
duration (s)

Total fall 
detection time (s)

Number 
of notifications False alarm rate (%)

1-s notification mode 681 48 48 7.05
2-s notification mode 681 34 17 4.99
3-s notification mode 681 15 5 2.20
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	 The analysis of the results in Table 5 shows that the false alarm rate for the 1-second 
notification mode (7.05%) indicates that notifications sent too quickly may lead to an increase in 
misreporting during daily activities. The 2-second notification mode shows an improvement in 
false alarm rate (4.99%), providing a balance between reducing false alarms and not significantly 
delaying notification efficiency. The 3-second notification mode significantly reduces the false 
alarm rate (2.20%); while extending the fall detection time may help improve accuracy, it is also 
necessary to consider the timeliness for actual fall events. On the basis of the analysis of the 
above data, setting the LINE Notify notification threshold to 3 s may be the best choice, as it 
significantly lowers the false alarm rate while reducing misreporting. If more immediate 
responses are required in future applications, further adjustments to the notification time can be 
considered, even tailoring it for specific situations.
	 When our system detects that a person has fallen in the video and that the fall persists for 
more than 3 s, it will immediately send a message to notify family members or medical personnel 
using the LINE Notify service, as shown in Fig. 14. The program tracks the start time of the fall 
event through the fall_start_time variable and calculates the duration after the event occurs. If it 
exceeds 3 s, the LINE Notify notification will be triggered. If the system detects that a person 
has fallen for 2.5 s and then immediately gets back up, determining the current state to be 
normal, the start time of the fall event will be recalculated. This mechanism can be applied to the 
real-time monitoring of fall events, providing quick alerts and notifications to enhance the safety 
monitoring system. This real-time notification mechanism ensures that relevant personnel are 

Fig. 14.	 LINE Notify notification flowchart.
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promptly informed when a fall occurs, maximizing the reduction of potential damage risks and 
demonstrating the system’s efficiency in practical applications.

4.6	 Experimental results 

	 During the system execution phase, we captured images of individuals appearing in the video 
using a camera and employed the Lightweight OpenPose and MoveNet models for joint 
detection. Subsequently, we utilized the MLP model for human activity recognition based on the 
detected joint points, displaying the current status above the detection box. When the system 
determines that the individual in the frame is “normal,” both the detection box and the status 
text are shown in green, as illustrated in Figs. 15(a) and 16(a). Conversely, if the system identifies 
the individual as “falling,” the detection box and status text appear in red, as shown in Figs. 
15(b) and 16(b). If the fall state persists for more than 3 s, the system will promptly send a 
notification to family members or healthcare personnel via LINE Notify, as depicted in Fig. 17. 
This design not only intuitively presents the status of individuals in the frame but also facilitates 
rapid notification in the event of a fall, enhancing response speed and further reducing potential 
harm risks.

4.7	 Discussion

	 The novelty of this study lies in analyzing the differences between OpenPose and MoveNet 
models in dealing with human pose estimation. Compared with previous studies, such as that by 
Kepski and Kwolek, they used a k-NN classifier  to analyze action sequences and perform fall 
detection. To reduce processing overload in complex scenes, an accelerometer was employed to 
indicate potential impacts and initiate depth image analysis.(34)  Cao et al. demonstrated the 
effectiveness of a two-branch CNN for posture estimation in fall detection, achieving high 

(a) (b)

Fig. 15.	 (Color online) Lightweight OpenPose model detection results: (a) Normal state and (b) Fall state.
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Fig. 17.	 (Color online) The fall detection and alert system sends real-time fall notifications via LINE Notify.

(a) (b)

Fig. 16.	 (Color online) MoveNet model detection results: (a) Normal state and (b) Fall state.
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accuracy and real-time performance, regardless of the number of individuals in the image.(20) 
Osokin proposed Lightweight OpenPose(4), an adaptation of the original OpenPose architecture 
for use on edge devices. This model significantly improved computational efficiency while 
maintaining multiperson pose estimation capabilities. In our study, we employed OpenPose to 
demonstrate its effectiveness in pose estimation for fall detection but highlighted high 
computational costs as a limitation. By integrating Lightweight OpenPose, as implemented in 
this work, we provide a lower computational alternative. The TensorFlow Team introduced the 
architecture, performance, and advantages of MoveNet in low-latency applications. They 
demonstrated benchmark results on the COCO dataset and analyzed MoveNet’s latency 
performance on various devices, such as mobile phones and embedded systems.(5)

	 In this study, we conducted a comparative analysis of lightweight AI models (Lightweight 
OpenPose and MoveNet) for real-time fall detection. Our innovation lies in the following:
(1)	Comparing the performances of the two models in low-computation environments,
(2)	Integrating the models into an instant alert system via LINE Notify, specifically tailored for 

elderly care applications, and
(3)	Addressing class imbalance and occlusion issues in fall detection datasets, enhancing the 

practical applicability of the system.

5.	 Conclusions

	 In this study, we successfully established an efficient and real-time fall detection and alert 
system. By combining a web camera as the sensor with the Lightweight OpenPose and MoveNet 
models for sensing human pose points, we not only achieved real-time detection but also 
effectively reduced the computational burden on the device during this process. We further used 
an MLP model to accurately identify movements of the skeletal joints, ensuring that the 
notification procedure could be quickly activated after a fall event, thereby effectively reducing 
bodily harm. Additionally, we integrated LINE Notify services to enable real-time notification 
functionality. When an individual experiences a fall, the system can immediately send 
notifications to their family members or healthcare personnel. This helps ensure a swift response 
to fall events, minimizing damage while improving the individual’s quality of life. This not only 
enhances the responsiveness to fall incidents but also shortens rescue times, further reducing the 
potential for injury. The application of this technology is beneficial not only for improving the 
quality of life for the elderly and individuals with special needs but also provides valuable 
practical applications for related medical fields.
	 In the performance evaluation of AI models, Lightweight OpenPose demonstrated better PR 
AUC and F1 scores, especially when handling imbalanced datasets, as its model architecture 
effectively captures pose points. On the other hand, MoveNet excelled in ROC AUC 
performance, making it suitable for more balanced datasets and large-scale predictions, 
showcasing its advantages in global model performance. In terms of challenges, both 
Lightweight OpenPose and MoveNet exhibited a reduction in performance in the “fall” category 
in the preprocessed data, with Lightweight OpenPose showing a more significant decrease. This 
is due to occlusions of the limbs during falls, leading to incomplete skeleton generation and 
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causing class imbalance issues. Furthermore, even when a skeleton is generated, there may still 
be cases of partial deformation or misidentification of objects as human bodies, which poses 
challenges to the system’s accuracy.
	 For future research, we suggest further extending the system’s capabilities by classifying a 
wider range of actions to meet different usage scenarios and requirements. This includes 
enhanced support for identifying a variety of daily activities, thereby providing more 
comprehensive health monitoring services. Through continuous technological progress and 
system upgrades, this research result will have a more profound and positive impact on medical 
applications. It is suggested that future research may include the following:
•	� Pose estimation analogy: The image recognition and motion classification techniques used in 

this study for human fall detection can serve as a blueprint for developing similar systems 
that can identify defects in moving parts through visual data analysis.

•	� Lightweight models for real-time applications: The focus is on lightweight AI models 
optimized for low-computing environments, especially for resource-constrained industrial 
applications where efficiency is critical.

•	� Integration and automation: Similarly, just like looking into integrating notification systems 
for instant alerts, machine learning can be combined with IoT technology to monitor 
production processes in real time. This integration helps streamline manufacturing operations 
by helping detect production anomalies early and ensuring consistent material quality.
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