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 Deep learning algorithms, such as those employed by CHATGPT/artificial neural networks, 
have served as transformative catalysts across various sectors, significantly impacting our daily 
lives. Within the realm of semiconductor processes, the metric of yield stands as a crucial 
performance benchmark directly influencing the sustained success of enterprises. Among 
batches of chips, inherent disparities in quality persist, with each chip grade necessitating an 
appropriate operational environment. To preempt the pitfalls of customer returns or factory 
repairs, thereby mitigating manufacturing costs, in this study, we embark on a comprehensive 
exploration utilizing AI algorithms for quality classification. In pursuit of bolstering the 
competitive edge of semiconductor firms, the refinement of gallium arsenide chip quality 
classification to augment yield emerges as a paramount concern. Moreover, in this research 
endeavor, we seek to discern the physical parameters underlying GaAs defect products, offering 
pivotal insights to enhance the manufacturing process—an aspect poised to be a pivotal focal 
point.

1. Introduction

 The integration of AI and semiconductor technology plays a crucial role in current 
technological innovations and applications. This combination has led to many significant 
applications and impacts. Some of the key aspects include smart devices and IoT, autonomous 
driving technology, smart cities and intelligent transportation, medical diagnosis and treatment, 
smart manufacturing, and Industry 4.0. The integration of AI and semiconductor technology is 
driving the digital transformation of many industries, creating numerous new business 
opportunities and solutions. Gallium arsenide (GaAs) is an important semiconductor material 
with excellent electronic properties; thus, it has wide applications in multiple technological 
fields. The demand for semiconductor chips has shown a sustained and rapid growth trend, 
which is not only a natural result of technological development but also a product of the 
simultaneous evolution of multiple industries. For example, the global deployment of 5G 
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technology has propelled the demand for high-performance semiconductor chips owing to the 
rapid increase in communication speed and the transmission of large amounts of data. The 
application scope of this technology covers smartphones, IoT devices, and the construction of 
smart cities, all of which continuously drive the growth of the semiconductor market. 
Furthermore, the development of AI and machine learning (ML) requires powerful processing 
capabilities and high-performance chips to accomplish complex calculations and analyses.(1,2) 
This demand motivates semiconductor companies to continuously research and develop more 
advanced process technologies and design architectures to meet the continuously upgrading 
market demands. Additionally, with the rise of electric vehicles and the upgrade of traditional 
automotive electronics, the automotive industry’s demand for highly intelligent and electrified 
components continues to rise. The rapid development of in-car computers, sensor systems, and 
self-driving technology all require more powerful semiconductor component support. The 
widespread adoption of remote work and remote learning, especially in the aftermath of the 
COVID-19 pandemic, further drives the demand for computer equipment, from laptops to cloud 
servers. The application scope of semiconductor chips continues to expand in response to 
people’s desire for more convenient and efficient digital work and learning. In general, the sharp 
increase in demand for semiconductor chips is a natural response to the development of the 
digital age. The continuous advancement of technology drives changes in various aspects of 
society, and semiconductors, as the foundation of technology, play a crucial role in connecting 
and driving these changes. In the future, with the emergence of newer technologies, the demand 
for semiconductor chips is expected to continue to grow(3,4) (Appendix A). The yield of chips is 
calculated by subtracting the number of contaminated chips and the number of boundary-cut 
chips from the total number of chips on a wafer, and then dividing the result by the total number 
of chips on the wafer. Although contaminated portions are screened before the wafer is processed 
into chips, there still exists variability in the quality levels of chips deemed to be of good quality. 
Therefore, in this study, we aim to utilize the AI/artificial neural network (ANN) clustering 
algorithm for semiconductor GaAs chip quality classification. Through a thorough analysis of 
chip characteristics, we aim to enhance accuracy and efficiency. This ensures that manufactured 
GaAs chips meet certain quality standards before delivery to customers, mitigating returns and 
product recalls, reducing production costs, and enhancing customer satisfaction. ANN’s 
capability to learn complex patterns makes it indispensable in both telecommunications and 
aerospace applications. In telecommunications, it ensures network reliability, efficiency, and 
scalability in an era of increasing connectivity. In the aerospace sector, ANN enhances safety, 
autonomy, and precision in mission-critical systems where failure is not an option. These 
applications highlight the transformative impact of ANN on modern technology, driving 
advancements in connectivity, automation, and safety.
 In the field of semiconductor processes, yield is a critically important performance indicator 
that directly affects the long-term success of enterprises. Within a batch of chips, there are still 
differences in quality, and each chip quality has its suitable operating environment. In this paper, 
we start with the following objectives, namely, to send chips of appropriate quality to suitable 
places, thus avoiding the risk of customer returns or factory repairs that increase manufacturing 
costs, and to conduct in-depth research using the AI/ML algorithm for quality classification. 
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Hence, to promote the competitiveness of semiconductor companies, enhancing the accuracy of 
GaAs chip quality classification to improve yield has become an important issue. Furthermore, 
we will identify the physical parameters of GaAs defective products to improve the fabrication 
process, which will also be an important highlight. Additionally, the results of this study should 
be used in conjunction with advanced inspection instruments such as X-ray machines in order to 
truly achieve the goal of improving semiconductor manufacturing processes.

2. Background 

2.1 Physical properties of GaAs

 GaAs is a type of III-V semiconductor material with various applications, particularly in 
semiconductor processes. Its main advantage lies in its excellent electronic properties. Compared 
with silicon (Si) semiconductors, GaAs semiconductors have a higher electron mobility, making 
them superior in high-frequency applications such as RF and microwave components. This high-
speed characteristic makes it an ideal choice for many communication and radar systems 
applicable in high-frequency signal processing. Additionally, GaAs has a wider band gap than 
silicon, which allows it to exhibit superior high-temperature stability. This enables GaAs to 
maintain high performance even in high-temperature environments, which is crucial for special 
applications such as space probes and communication equipment in high-temperature 
environments. Furthermore, GaAs is widely used in semiconductor lasers and optoelectronic 
devices. GaAs semiconductor lasers have narrow emission spectra and high conversion 
efficiency, playing important roles in optical communication, fiber optic communication, and 
laser radar, among other fields.(5,6)

 GaAs photodiodes are extensively used in optical communication and high-speed data 
transmission. Their high-speed switching makes them an ideal choice for high-frequency 
applications. Apart from its outstanding performance in high-frequency applications and 
optoelectronic devices, GaAs also excels in high-power and high-frequency microwave 
components. It exhibits good performance in microwave power amplifiers and power amplifiers 
for high-frequency wireless communication. This makes GaAs indispensable in fields such as 
military communication, radar systems, and satellite communication.
 In summary, GaAs is an ideal semiconductor material in various application areas owing to 
its excellent electronic transport properties, high-temperature stability, and optoelectronic 
properties. Its applications range from communication and optoelectronic devices to microwave 
components and high-power applications, offering more physical advantages than mainstream 
semiconductor materials. However, it comes with the corresponding drawback of being relatively 
expensive to produce.
 In Fig. 1, owing to gallium arsenide’s direct band gap property, when electrons transition 
from the valence band to the conduction band, they only need to absorb energy without changing 
momentum. This is in contrast to silicon’s indirect band gap, where not only energy absorption 
but also momentum change is required.
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 Gallium arsenide offers advantages in certain high-frequency and optoelectronic applications 
owing to its superior properties, whereas silicon remains the dominant material in mainstream 
electronics owing to its widespread availability and lower cost (Table 1). Silicon is the backbone 
of the microelectronics industry owing to its cost-effectiveness, mature technology, and 
suitability for a wide range of applications, including ICs, microprocessors, and mainstream 
solar cells. Gallium arsenide excels in high-speed, high-frequency, and optoelectronic 
applications. Its properties make it ideal for use in RF and microwave circuits, LEDs, laser 
diodes, and high-efficiency solar cells. Each material has its strengths and is chosen on the basis 
of the specific requirements of the application.

2.2 Methods for testing the quality of gallium arsenide wafers

 GaAs wafers play a crucial role in the modern semiconductor industry, and their quality is 
paramount in ensuring the performance of devices. Therefore, assessing and determining the 
quality of wafers is necessary, and common methods and standards for wafer quality inspection 
include the following.(7,8)

•  Band gap and spectral properties: Photoluminescence and electroluminescence methods 
among others are used to measure the band gap and ensure that the material’s optical 
properties meet expectations. This helps in detecting impurities or defects in the wafers.

•  Crystal structure detection: X-ray diffraction or other crystallographic methods are used to 
ensure that GaAs wafers have the correct crystal structure. The correct crystal structure is 
one of the important factors in ensuring material stability and performance.

•  Electrical performance assessment: Electrical performance, including conductivity, carrier 
concentration, and mobility, are assessed. These electrical performance measurements can be 
achieved through Hall effect tests or electrical performance testing and are conducted to 
ensure the performance of GaAs wafers in electronic devices.

Fig. 1. (Color online) (a) Direct band gap and (b) indirect band gap.

(a) (b)
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•  Surface quality: Surface analysis tools such as optical microscopes and atomic force 
microscopes are used to inspect the flatness and surface defects of wafers, ensuring good 
surface quality.

•  Process control and consistency: For large-scale manufacturing, ensuring process 
consistency and control is essential. Therefore, process equipment quality control is regularly 
tested to ensure the consistent quality of manufactured GaAs wafers.

•  Device performance testing: The performances of devices such as high-frequency 
amplifiers and photodiodes are tested to ensure that GaAs wafers perform as required in 
practical applications.

 In this comprehensive assessment, the quality of GaAs wafers can be considered from 
multiple aspects, including physical properties, optical properties, and electrical properties, as 
well as surface and process consistency. Such evaluations require the use of various testing and 
analysis methods, as well as specialized laboratory equipment and expertise. The quality of 
semiconductor wafers has profound implications in the performance, stability, and reliability of 
modern technology and electronic devices. High-quality semiconductor wafers not only provide 
high computational speed and superior processing performance but also ensure the stable 
operation and long-term reliability of electronic devices. Conversely, low-quality wafers may 
lead to decreased system performance, stability issues, and even affect the system’s overall 
reliability.(9,10) Therefore, the performance of semiconductor wafers is directly influenced by 
their quality. High-quality wafers typically offer fast computational speed and superior 
processing capabilities, crucial for handling complex computational tasks and demanding 
application scenarios. Secondly, low-quality wafers may cause system instability. Electronic 
devices rely on various chips to work together; if one of them is of low quality, it may cause 
system errors, unpredictable failures, or even system crashes. Such instability can significantly 
inconvenience users, especially in application scenarios with high requirements for system 
stability, such as medical equipment or autonomous vehicles. Wafer quality is also directly 
related to energy efficiency. Low-quality wafers may generate more heat, requiring more heat 
dissipation and energy management, which affects the overall system’s energy efficiency. 
Conversely, high-quality wafers typically maintain low power consumption while providing 
high performance. Additionally, low-quality wafers may lead to increased manufacturing costs. 
Increased failure rates in production lines will increase costs, and repairing or replacing 
defective wafers will also raise maintenance costs. Conversely, high-quality wafers not only help 
reduce production costs but also contribute to improving production efficiency.(11,12)

Table 1
GaAs and Si properties.
Property GaAs Si
Electron mobility 8500 m2/Vs 1000 m2/Vs
Band gap 1.42 eV 1.1 eV
Band gap type Direct Indirect
Maximum operating temperature Above 200 °C Below 150 °C
Optical conversion Luminescent Weak emission
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3. Design of Experimental Architecture 

 A wafer is formed by pulling a high-purity semiconductor material into cylindrical ingots, 
which are then sliced thinly to less than one millimeter thick through chemical mechanical 
polishing. Wafers come in various sizes, with a maximum diameter of approximately 30 cm.(13,14) 
Taking a fin-type field-effect transistor as an example, thin-film layers ranging from several 
nanometers to hundreds of nanometers are first deposited on the surface of the wafer. A 
photoresist is then applied, and a photomask with circuit design patterns is used to expose the 
wafer to ultraviolet light, which is then reduced to nanoscale dimensions using lenses. Chemical 
reactions occur in the exposed areas, followed by dissolution and etching to remove unnecessary 
parts. This process is repeated several times to create transistors, and by repeating deposition, 
photolithography, and etching, complex circuits can be created on the wafer.(15,16) After the 
circuit fabrication is completed, the wafer is diced into several individual chips, as shown in Fig. 
2.
 Figure 2 shows that after the circuit fabrication is completed, the wafer is cut into several 
individual chips. The wafer and chip fabrication process in semiconductor manufacturing 
involves several critical steps, as explained earlier, to transform raw materials into functional 
electronic devices.
 Figure 3 shows various quality ranks of GaAs chips on the wafer. Detecting and minimizing 
defects is crucial for ensuring the quality and reliability of semiconductor devices. Various 
inspection and metrology techniques, such as optical inspection, electron microscopy, and 
electrical testing, are employed throughout the manufacturing process to identify and mitigate 
defects.

3.1	 Physical	specifications	of	GaAs	wafer

 The physical properties of GaAs chips produced in the GaAs manufacturing process are 
described in detail below. The explanation of the meaning of each item’s physical characteristics 
shown in Table 2 is as follows.

Fig. 2. Wafer and chip fabrication.
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•  “Positive Photoresist Thickness”: metals, including titanium (Ti) and gold (Au), are 
deposited on the substrate surface to a thickness of approximately 4750 Å in the GaAs 
semiconductor process. The above combination of metal layers is commonly used in 
semiconductor processes to manufacture metal wires, electrodes, or other electronic 
components. The Ti layer is typically used to provide good adhesion between the metal and 
the semiconductor, and the specific thickness of the positive photoresist may vary depending 
on process requirements.

•  “Silicon	Nitride	(Si₃N₄)” is deposited on the substrate surface in the GaAs semiconductor 
process. Silicon nitride is a compound composed of silicon and nitrogen and is known for its 
excellent insulating properties and chemical stability. Therefore, it is commonly used as an 
insulating layer or protective layer in semiconductor processes to provide insulation, protect 
the substrate, or serve other specific purposes.

•  “Back Metallization” refers to the deposition of metals, including gold germanium (AuGe) 
and gold (Au), on the back of the device to a thickness of 4750 Å in the GaAs semiconductor 
process. This combination of metal layers is typically used in semiconductor processes to 
manufacture electrodes or other structures related to the back of the device. The gold 

Fig. 3. (Color online) Various types of GaAs chip on the wafer.

Table 2
Standard specifications for physical properties of GaAs chips.
Number Physical property Standard specification
01 Positive photoresist thickness (Spec 4750 ± 10% Å)
02 Silicon nitride (Si3N4) (Spec N Value 2.0 ± 2)
03 Back metallization (Spec 4750 ± 10%Å)
04 Mesa depth (Spec 44000 ± 5000 Å)
05 Bonding wire thickness (Spec 15600 ± 10% Å)
06 Photoresist thickness (PI) (Spec > 40000 Å)
07 Oxide aperture (Spec Length 10 ± 2 µm, Width 13 ± 2µm)
08 Threshold current (Ith) (Spec 1 ± 0.3mA)
09 Operating voltage (Vf@9 mA) (Spec 1.9 ± 0.3 V)
10 Operating power (Pf@9 mA) (Spec 5.0 ± 1 mW)
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germanium alloy layer is related to the electrical or thermal characteristics of the device and 
is commonly used at the interface between the metal and the semiconductor to improve their 
adhesion.

•  “Mesa Depth” refers to the depth of the mesa structure in semiconductor devices and is used 
to define individual regions of the chip where specific devices are located. The mesa is an 
elevated structure surrounded by an insulating material. For GaAs semiconductors, mesa 
depth is crucial to device performance as it affects optical, electrical, and overall functional 
characteristics. The specific requirements of mesa depth may vary depending on the type of 
device being manufactured and the desired characteristics.

•  “Bonding Wire Thickness”: metals, including chromium (Cr) and gold (Au), are deposited 
on the device to a thickness of 15600 Å. This combination of metal layers is typically used to 
manufacture bonding wires or conductors, especially for connecting electronic components 
between different layers. Chromium is commonly used as an adhesion layer to provide 
adhesion between the metal and the semiconductor or other materials. 

•  In the GaAs semiconductor field, “PI” often refers to photoresist. A photoresist is a material 
coated on the semiconductor surface for image transfer and pattern formation during 
manufacturing processes. PI thickness refers to the thickness of the photoresist layer. A 
photoresist is used to create patterns in semiconductor manufacturing, where patterns are 
transferred onto the photoresist using light passing through a photomask, and then these 
patterns are transferred onto the semiconductor material to form the desired structures. PI 
thickness is a parameter affecting the process because it affects the optical properties of the 
photoresist and the effectiveness of pattern transfer. 

•  In the GaAs semiconductor process, “oxide aperture” refers to the size of small holes in the 
oxide layer. This is typically associated with deposition and etching steps during the 
manufacturing process. When an oxide layer is formed on GaAs, the process may require the 
formation of small holes in specific areas for subsequent processing, such as metal deposition, 
manufacturing metal wires, or forming other components. The size and shape of these holes 
are usually determined by process design and application requirements: therefore, there may 
be different sizes and shapes. The accurate control of oxide aperture size is crucial in 
semiconductor manufacturing as it directly affects the success of subsequent steps. 

•  In GaAs, “Ith” typically refers to the threshold current in semiconductor lasers. The 
threshold current is the current at which the laser material begins to exhibit optical 
amplification and reflection effects when current passes through it. It is the critical condition 
for laser emission to start. For laser devices, the threshold current is an important performance 
parameter as it directly affects the initiation and stable operation of the laser. When the 
current is below the threshold current, the laser device is typically in a nonmissive state, and 
when the current reaches or exceeds the threshold current, it triggers the optical amplification 
and emission processes, initiating the emission of output light signals. 

•  “Vf@9mA” typically refers to the forward voltage of the device, where @9mA indicates the 
current condition of 9 mA. Forward voltage is the voltage across the semiconductor device 
when forward current flows through it. 
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•  ‘Pf@9mA’ indicates the operating power of this gallium arsenide component at 9 mA of 
current. This power value is typically measured in watts (W). Operating power is a crucial 
characteristic as it provides information about the energy consumption of the component 
under normal operating conditions. This is important for applications powered by batteries, 
energy-saving designs, and considerations for ensuring the proper functioning of the 
component. For example, if the ‘0.5@9mA’ of a gallium arsenide component is 5 W, it means 
that at 9 mA current, the operating power of this component is 5 W.

3.2	 GaAs	AI/ML	deep	learning	classification	models

3.2.1 AI/ANN supervised deep learning sigmoid function

 The sigmoid function is a mathematical function that maps any input value to a value between 
0 and 1, which makes it suitable for binary classification problems. The advantage of the sigmoid 
function shown as Eq. (2) is that it is differentiable, which makes it easy to use backpropagation 
algorithms for training ANN in the hidden layer. However, the sigmoid function has some 
drawbacks as well. One drawback is that it can suffer from the “extinguishing gradient” problem 
that occurs when the gradient of the function becomes very small as the input value becomes 
very large or very small. This can make effective learning difficult for the ANN, especially in 
deep neural networks. Figure 4 shows the parallels between the CHATGPT/AI deep learning 
system and the human neural system. In this comparison, the input layer corresponds to sensory 
neurons, the hidden layer (ANN deep learning) corresponds to interneurons, and the output layer 
corresponds to motor neurons. 

Fig. 4. (Color online) Comparative diagram of CHATGPT/AI and human neural system.

Sigmoid function
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 Another issue with the sigmoid function is that it is not zero-centered, which means that the 
output of the function is always positive or negative, but never exactly zero. This can make it 
harder to train ANNs, especially when using gradient descent optimization algorithms. Despite 
these drawbacks, the sigmoid function is still commonly used in ANNs, especially in the output 
layer for binary classification tasks.(17,18)
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where x is the input to the function and e is the mathematical constant approximately equal to 
2.71828.

3.2.2	 GaAs	AI/nearest	neighbor	classification	(NNC)	learning	algorithm

 The NNC algorithm is a straightforward method for clustering data points on the basis of 
their proximity to each other. The choice of the distance metric and the number of clusters (K) 
can significantly impact the clustering outcome and may require careful consideration in 
accordance with the specific characteristics of the data.(19,20) The NNC clustering algorithm is 
shown as

 Cluster（x）=argmin || kx µ− ||, (3)

where cluster（x）denotes the cluster to which x belongs, K represents each cluster, μk is the 
centroid (mean) of cluster k, and ·  denotes the Euclidean distance (or any other distance).

3.2.3 GaAs AI/hierarchical clustering (HIE)	learning	algorithm

 HIE is a variant of traditional hierarchical clustering that incorporates some form of 
supervision or labeled information during the clustering process. While traditional hierarchical 
clustering techniques rely solely on the intrinsic structure of the data, hierarchical clustering 
leverages external information to guide the clustering process. This approach can be beneficial 
in various applications where the available labeled information can help improve the quality of 
the clustering results.(21,22)

3.2.4	 Discriminant	prediction	analysis	(DPA)
 
 DPA is a statistical technique used to classify a set of observations into predefined classes. It 
is particularly useful in situations where the dependent variable is categorical and the 
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independent variables are metric. The primary goal of DPA is to predict the category to which a 
new observation belongs on the basis of a set of predictor variables.(23)

3.2.5 ANN/NNC comparison analysis
 In Table 3, we explain the key differences between ANN and NNC.

4. Empirical Study and Analysis

 GaAs is a compound semiconductor material that offers advantages such as high electron 
mobility, high-frequency operation, and low noise characteristics, making it highly desirable for 
various applications including telecommunications, aerospace, and defense. In 
telecommunications, ANN is used for network traffic prediction, signal processing, resource 
allocation, and fault detection. Factors that should be controlled include data accuracy, network 
topology, and computational delay management. In aerospace, ANN is commonly used for flight 
data analysis, navigation systems, autonomous control, and fault diagnosis. Indeed, improving 
the accuracy of GaAs semiconductor chip quality classification through AI/ML algorithms is an 
innovative and timely issue in enhancing semiconductor manufacturing processes. Choosing the 
appropriate AI/ML model depends on the specific requirements of the task, available 
computational resources, interpretability needs, and the characteristics of the dataset. 

Table 3
Results of ANN/NNC comparison analysis.
Comparison aspect ANN NNC

Learning method
Supervised learning: adjusts weights through 
training to learn relationships between inputs 
and outputs

No training required: directly classifies on 
the basis of proximity to labeled data points.

Structure
Composed of multiple layers (input, hidden, 
output) with adjustable weights and activation 
functions

No explicit structure: relies on data points 
and their distances for classification.

Applicable problems
Complex, nonl inear problems such as 
image recognition, speech processing, and 
autonomous decision-making

Simple classification tasks, especially in low-
dimensional feature spaces.

Computational cost
H ig h du r i ng t he t r a i n i ng phase , but 
computation is efficient during inference after 
optimization

No training phase, but classification cost 
depends on dataset size (distance calculations 
with all data points).

Memory requirements Stores trained weights and network structure, 
requiring less memory

Stores the entire dataset, requiring significant 
memory for large datasets.

Classification method Uses outputs from the neural network (e.g., 
soft max layer) for classification

Classifies on the basis of distances (e.g., 
Euclidean distance) to the nearest labeled 
points.

Dependence on data Requires large, labeled training datasets and 
is sensitive to data quality

Less dependent on the dataset but requires 
a uniform and sufficient distribution of data 
points.

Scalability
Scalable to deep networks (e.g., CNN, 
RNN) for handling large-scale and high-
dimensional problems

Not suitable for high-dimensional or large-
scale data owing to increased cost of distance 
computations.

Example applications
-  Recognizing handwrit ten digits (e.g., 

MNIST dataset).
- Object recognition in autonomous vehicles

-  Simple tasks such as classifying types of 
object (e.g., fruit classification).

RNN: necurrent neural network; MNIST: Mixed National Institute of Standards and Technology.
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Experimentation and validation on a representative dataset are crucial for selecting the most 
suitable model.(24–26)

 Concerning the GaAs test in this study, the standard specifications of physical characteristics 
will affect chip quality, and the factors determining the chip quality can be divided into four 
categories (poor, general, good, and very good) according to the physical characteristics of 
gallium arsenide (Table 4). 

4.1	 ANN	classification	test

4.1.1 Optimized test

 The number and percentage of training samples are 56 and 70.0%, the number and percentage 
of testing samples are 24 and 30.0%, and the valid sums are 80 and 100.0%, respectively (Table 
5). To perform an ANN learning error rate analysis, we typically start by training the model at 
various  learning rates and measure its performance on a validation set. The sum of squares of 
testing errors is 7.056, and the error rate is 5.4%; the sum of squares of training errors is 2.284, 
and the error rate is 0.0% (Table 6). 
 In Fig. 5, the ANN comprises  the following scenarios. Input Layer: This layer comprises four 
factors. Hidden Layer: This layer consists of three neural elements, labeled H (1,1), H (1,2), and 
H (1,3). Output Layer: This layer contains four types of perf-id GaAs quality rating ranks. (For 
experimental numbers regarding Fig. 5, refer to Appendix B.)
 Table 7 reflects the actual and predicted classification results for the GaAs chip ANN, along 
with the classification accuracies for each category. Table 7 is a detailed description matrix of 
Table 6, in which the classification accuracy is also 94.6%.

Table 4
Gallium arsenide chip classification test parameters and variables.

Number Classification test physical 
prameters and variables Referenced parameters specification

01 Uniformity (balance)
Influenced by the thicknesses of the positive metal, silicon nitride, 
and back metal when determining whether the color reaction of 
light irradiated on the chip is uniform.

02 Power strength (powrate) Determined by Pf@9mA. Indicates the strength of chip power.

03 Waterproof stability (waterprotect) Determined by Mesa Depth. Indicates the insulation and waterproof 
performance.

04 Response time (timeresponse) Influenced by Ith. As the current value increases, the speed of 
carrier movement increases, thereby accelerating response time

Table 5
Summary of GaAs chip case processing.

N Percent (%)
Sample Training 56 70.0
Testing 24 30.0
Valid 80 100.0
Excluded 0
Total 80



Sensors and Materials, Vol. 37, No. 5 (2025) 1797

Table 6
Summary of GaAs chip error test results.

Training

Cross-entropy error 7.056
Percent incorrect predictions 5.4%

Stopping rule used 1 consecutive step(s) with no decrease in errora

Training time 0:00:00.02

a Cross-entropy error 2.284
Percent incorrect predictions 0.0%

Note: error rate = 5.4 (in other words, the overall classification test accuracy is 94.6%).

Fig. 5. (Color online) ANN optimal deep learning network linkage relationship.

Table 7
GaAs chip ANN classification results.

Predicted
Sample Observed Poor General Good Very good Percent correct (%)

Training

Poor 16 0 0 0 100.0
General 0 15 0 0 100.0
Good 0 1 10 2 76.9
Very good 0 0 0 12 100.0
Overall percent (%) 28.6 28.6 17.9 25.0 94.6

Testing

Poor 4 0 0 0 100.0
General 0 4 0 0 100.0
Good 0 0 10 0 100.0
Very good 0 0 0 6 100.0
Overall percent (%) 16.7 16.7 41.7 25.0 100.0
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4.1.2 Sensitivity test

 Gain analysis is a technique used to measure and compare the performance improvements or 
benefits obtained from different interventions, systems, or strategies. In the context of ANNs, 
gain analysis typically involves evaluating the classification effectiveness by comparing its 
performance metrics (such as accuracy, precision, and recall) before and after certain 
modifications or optimizations are applied. Lift analysis, often used in marketing and machine 
learning, is a technique that measures the effectiveness of a predictive model by comparing the 
predicted results with the actual results. These help understand how much better the model 
performs than a random guess. As seen in Fig. 6, which shows the advantages and disadvantages 
of the output layer of the perf-id variable models, basically, as long as each output layer 
classification line falls above the 45-degree diagonal line, the random model benefit is much 
better  closer to the coordinate (0,1). Therefore, the GaAs wafer quality status perf-id = 4 is the 
best, followed by perf-id = 2.(27,28) The main purpose of Fig. 6 is to compare the performances 
among subgroups for the output layer. 
 As shown in Fig. 7, which illustrates the advantages and disadvantages of the output layer of 
the perf-id variable models, basically, the tested model benefit is much better  closer to the 
coordinate (0,1). Therefore, the GaAs wafer quality status perf-id = 4 is the best, followed by 
perf-id = 2. The test results shown in Fig. 7 are completely consistent with those shown in Fig. 6. 
However, it is important to note that these clustering results still need to be validated and 
confirmed through high-magnification microscopy and other testing methods. In Figs. 6 and 7, 
the y-axis apex likely represents the ideal point on a performance curve (e.g., receiver operating 
characteristic curve). This point symbolizes the model’s optimal performance.

Fig. 6. (Color online) Results of ANN gain sensitivity analysis.
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 In the following, to calculate an ANN with weighted importance, we can incorporate 
different weights into the neural network’s layers and connections to reflect the relative 
importance of various inputs. Incorporating weighted importance can improve the model’s 
learning process by giving more focus to important features from the start. Table 8 shows the 
importance of input-layer-affecting factors of the optimized model. This simulation study 
revealed that for relative weight, timeresponse (= 0.313), balance (= 0.266), and powrate (= 0.249) 
are the three most important GaAs wafer quality weighted self-attention factors. In this 
experiment, the results of the sampling test indicated that the waterproof technology has likely 
reached a high standard. Therefore, the coefficient value of waterprotect = 0.172 is relatively low 
and can be ignored if necessary. Moderately reducing the number of input-layer-affecting  
factors may potentially further decrease the overall model test error rate. This requires 
continuous iterative testing.
 Figure 8 shows the results of the comparison of the importance weights of input-layer-
affecting factors. This simulation study shows that for the relative weight order with normalized 
importance of the priority rank, timeresponse (= 100.0%), balance (= 84.9%), and powrate (= 
79.4%) are the three most important factors influencing GaAs wafer quality weighted self-
attention. Among them, water protect is 54.9%, which is the least important  

4.2 GaAs NNC/DPA test result

 In Fig. 9, GaAs chip AI/NNC/DPA based on distance metrics is illustrated. NNC/DPA 
involves assigning each data point to the cluster represented by its nearest neighbor. 
Consequently, the outcome comprises clusters where each cluster contains data points that are 

Fig. 7. (Color online) Results of ANN lift sensitivity analysis.
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Fig. 8. (Color online) Results of ANN weighted importance comparison analysis.

Table 8
Results for the GaAs chip classification importance of input-layer-affecting factors.

Importance Normalized importance (%)
balance .266 84.9
powrate .249 79.4
waterprotect .172 54.9
timeresponse .313 100.0

Fig. 9. (Color online) Results of GaAs chip AI/NNC/DPA analysis based on distance metrics.

proximate to each other on the basis of  the selected distance metric.(29,30) Each GaAs parameter 
tested with distance metrics requires results in subsequent examination by X-ray checking. This 
enables the precise identification of GaAs chip defects and provides information that serves as a 
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crucial basis for process improvement. Figure 9 represents a visualization of the predictor space 
for a nearest neighbor classification model, which uses three selected predictors from a dataset. 
The key details and interpretation of this chart are as follows. 
(1)	Predictor	Space
 Figure 9 shows a 3D space with the axes representing three predictors: balance, waterprotect, 
and powrate. These predictors are projected from a 4-D dataset.
(2)	Built	Model	Information
 The model uses K = 4, meaning that it classifies each observation on the basis of the four 
nearest neighbors in the predictor space.
(3)	Color	and	Shape	Representations
Focal Points:
a.  Points highlighted in red indicate the focal records (“Yes”), showing that they are being 

classified or analyzed.
b.  Points in blue represent “No” (nonfocal points).
Type:
a.  Circles represent training data.
b.  Triangles represent holdout (or test) data.
(4)	Target	(perf_id)
a. The shade of blue indicates the target class.
b. Light blue = poor
c. Slightly darker = general
d. Darker = good
e. Darkest blue = very good
(5)	Purpose
 Figure 9 illustrates the distribution of training and holdout data in the feature space and 
highlights the model’s focal data for NNC classification.
 Table 9 presents the AI/NNC/DPA classification results, showcasing the reliability rankings 
of different GaAs chips on the basis of their classification prediction outcomes. It details the 
counts and respective percentages of accurate and inaccurate predictions across five distinct 
reliability routes. Notably, 91.3.0% of the initially grouped cases were accurately classified, 
implying an error rate of 8.7. 

4.3 GaAs HIE/DPA test results

 Conducting a hierarchical clustering and discriminant analysis experiment involves a series 
of steps. The agglomeration schedule in hierarchical clustering provides a detailed record of the 
merging process of clusters at each step. It captures information about which clusters are merged 
at each stage, along with the resulting distance or similarity between the merged clusters. The 
schedule helps visualize the hierarchical structure of the clusters as they are agglomerated(31,32) 
(Appendix C). Table 10 presents the AI/HIE/DPA classification results, showcasing the 
reliability rankings of different GaAs chips based on their classification prediction outcomes. 
Notably, 88.8% of the initially grouped cases were accurately classified, implying an error rate 
of 11.2.
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4.4	 Comparison	of	different	GaAs	chip	AI/ML	test	models

 Performing a comprehensive experimental comparison analysis of different algorithms in 
machine learning for the GaAs chip involves several key steps and considerations. 
 In Fig. 10, the experimental error rates are 5.4 (ANN deep learning), 8.7 (NNC/DPA), and 
11.2 (HIER/DPA). The experimental results indicate that the ANN deep learning model has an 
advantage.

4.5 Summary of analysis and discussion

 In this research, ANNs and NNC/HIE serve as powerful tools for the classification analysis 
of GaAs chip data.
 Concerning the AI/ML algorithm’s GaAs classification results, the identified defective GaAs 
chips must ultimately be examined using instruments such as X-ray systems and high-
magnification microscopes to ensure accurate validation, indicating a need for process 
improvement. 

Table 9
GaAs chip AI/NNC/DPA classification results.

Classification resultsa

Predicted value 
for perf_id

Predicted group membership
1 2 3 4 Total

Original

Count

1 19 1 0 0 20
2 1 17 0 0 18
3 0 2 24 0 26
4 0 0 3 13 16

%

1 95.0 5.0 .0 .0 100.0
2 5.6 94.4 .0 .0 100.0
3 .0 7.7 92.3 .0 100.0
4 .0 .0 18.8 81.3 100.0

a91.3% of original grouped cases correctly classified (error rate = 8.7).

Table 10
GaAs chip AI/HIE/DPA classification results.

Classification Resultsa

Average linkage 
(between groups)

Predicted group membership
1 2 3 4 Total

Original

Count

1 4 1 0 0 5
2 3 40 0 0 43
3 3 0 13 0 16
4 2 0 0 14 16

%

1 80.0 20.0 .0 .0 100.0
2 7.0 93.0 .0 .0 100.0
3 18.8 .0 81.3 .0 100.0
4 12.5 .0 .0 87.5 100.0

a88.8% of original grouped cases correctly classified (error rate = 11.2).
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 Concerning the AI/ML algorithm GaAs classification, in this study, we demonstrated the 
exceptional performance of the optimized model, with an error learning rate anticipated to be 
very low. Specifically, we highlighted that the ANN has a testing error rate of 5.4%, 
demonstrating its superiority over the NNC algorithm with an error rate of 8.7% and the HIE 
algorithm with an error rate of 11.2%.
 Additionally, this synergistic approach effectively harnesses the strengths of both 
methodologies, resulting in a more robust and comprehensive solution for improving 
semiconductor manufacturing processes.
 In Table 11, we highlight the differences in error rates and contributing factors between 
silicon wafer systems and GaAs systems.

Fig. 10. (Color online) GaAs chip error rates determined by different AI/ML algorithms.

Table 11
Silicon wafer systems and GaAs systems.
Aspect Silicon wafer systems GaAs systems

Typical error rate L owe r e r ro r r a t e s i n mo s t s t a nd a rd 
applications.

Higher error rates, especially in high-frequency 
scenarios.

Signal integrity Relatively stable owing to low noise and 
higher reliability.

More susceptible to signal degradation under 
high-speed operations.

Sensitivity to 
defects Better tolerates minor manufacturing defects. More sensit ive to small imperfect ions in 

fabrication.
Operating 
frequency Performs well at lower frequencies (<1 GHz). Operates effectively at higher frequencies (>1 

GHz), although error rates may increase.
Power 
consumption

Low, which minimizes thermal noise and 
associated errors.

High, leading to increased heat and potential 
error amplification.

Manufacturing 
variability

Wel l - e s t abl i shed processes re su l t i n 
consistent performance.

More prone to variability, leading to higher 
chance of errors.

Cost efficiency More cost-effective, reducing the economic 
impact of error mitigation.

Higher cost, which increases pressure to 
minimize errors during design and production.

Key applications
-  S t a n d a r d e l e c t r o n i c d e v i c e s (e .g . , 

computers, smartphones).
- Low-speed and power-efficient systems.

-  High-speed and high-frequency devices (e.g., 
RF communication systems).

Summary: 1. Silicon Wafer Systems: Offer better error rate performance in standard, low-frequency, and low-power 
environments. 2. GaAs Systems: More suitable for high-frequency and high-speed applications but come with increased 
error rates and sensitivity to imperfections.
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5. Conclusions

 The main conclusion gained from this study is that the AI/ML clustering algorithm in 
machine learning is of significant importance in improving the classification of semiconductor 
gallium arsenide chip quality. By clustering chip data, we can more accurately identify chips of 
different qualities, thereby achieving more effective quality management. This has a practical 
application value for the semiconductor manufacturing industry. Considering an average six-
inch GaAs wafer fab that produces about 3,200 wafers per month where the number of chips per 
wafer varies depending on the chip’s purpose and circuit size, the typical yield is around 50,000 
chips per wafer; then, the monthly production capacity of a six-inch wafer fab is approximately 
160 million chips. Using the company’s method may result in around eight million chip quality 
misclassifications. Given that the price of a gallium arsenide wafer is around 5,000 US dollars, 
our approach could significantly reduce the costs associated with returning for repair or 
executing returns and exchanges. 
 The future of improving the accuracy of GaAs semiconductor chip quality classification 
through AI/ML algorithms looks promising. GaAs chips are known for their high-speed 
performance and efficiency, making them valuable for applications such as telecommunications, 
aerospace, and defense. AI and machine learning algorithms can play a significant role in 
enhancing the quality classification of GaAs chips by leveraging large datasets and advanced 
analytical techniques.
 Here is a glimpse of what the future might hold. 
 Data-driven insights: AI algorithms can analyze vast amounts of data collected during the 
manufacturing process to identify patterns, anomalies, and correlations that may not be apparent 
to human operators. This can lead to more precise quality classification and predictive 
maintenance strategies. 
 Real-time monitoring: ML models can be deployed for the real-time monitoring of GaAs chip 
fabrication processes. By continuously analyzing sensor data and production metrics, these 
models can detect deviations from optimal conditions and alert operators to potential quality 
issues before they escalate. 
 Automated defect detection: AI-powered vision systems can automatically inspect GaAs 
chips for defects such as cracks, impurities, or irregularities in the crystalline structure. This can 
significantly reduce the need for manual inspection and improve overall production efficiency. 
 Adaptive learning: ML algorithms can adapt and improve over time as they are exposed to 
more data and feedback from quality assessments. This adaptive learning capability enables the 
continuous refinement of the classification models, leading to higher accuracy and reliability. 
 Integration with other technologies: AI/ML algorithms can be integrated with other emerging 
technologies such as IoT devices and blockchain for enhanced data collection, traceability, and 
quality assurance throughout the supply chain. 
 Customization and optimization: Manufacturers can leverage AI algorithms to customize 
GaAs chip production processes in accordance with specific performance requirements and 
application scenarios. This optimization can result in chips that are tailored to meet the exact 
needs of diverse industries and end users. 
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 Overall, the future of improving GaAs semiconductor chip quality classification through AI/
ML algorithms will be characterized by increased efficiency, accuracy, and customization, 
ultimately leading to enhanced performance and reliability in various high-tech applications.

6. Appendices A–C

A. Semiconductor equipment trend
 According to the “2026 200 mm (8-inch) Wafer Fab” report by Semiconductor Equipment 
and Materials International (SEMI), the capacity of 200 mm wafer fabs from 2023 to 2026 is 
projected to increase by 14% to meet future demands (Fig. 11).

B. Experimental matrix for ANN optimal deep learning network linkage relations 
 Figure 12 includes the following detailed numeric data. Input Layer: This layer comprises 
four factors. Hidden Layer: This layer consists of three neural elements labeled H (1,1), H (1,2), 
and H (1,3). Output Layer: This layer contains four types of perf-id GaAs quality rating rank.

 Simplified error rate for classifications:
 Error rate = number of incorrect predictions/total number of predictions

C.	Results	of	GaAs	HIE/DPA	agglomeration	schedule	test	

 An example of a GaAs HIE/DPA agglomeration schedule is shown in Fig. 13. This 
dendrogram shows the hierarchical structure of the clustering process, illustrating how data 
points A, B, C, D, and E are grouped together step by step, starting with the closest pairs and 
merging until all the data points are in a single cluster.

Fig. 11. (Color online) Semiconductor Equipment and Materials International (SEMI) capacity prediction.
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Fig. 13. (Color online) Agglomeration schedules.
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