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	 In this study, we developed a novel integrated model that combines a convolutional neural 
network (CNN) with a gated recurrent unit neural network (GRU) for the prediction of regional 
weather. The CNN–GRU model addresses the inherent complexity influenced by global 
environmental factors in capturing high-level data characteristics and reduces the error rate of 
current climate index prediction models. The model conducts time-series prediction gathering 
high-level data characteristics based on CNN and GRU’s capacity. For an accurate prediction, 
the CNN–GRU model integrates data and retrieved features from it. In the experiment, data 
including four climatic indices of Beijing, China from 1901 to 2022 were used to construct 
two-dimensional time-series matrices. The model outperformed the other models including the 
long short-term memory (LSTM)–fusion neural network, bilateral LSTM, bilateral GRU, 
double-LSTM, double-GRU, and CNN–GRU (Double-Conv2d) models. The CNN–GRU model 
was more accurate than the other models.

1.	 Introduction

	 Temperature, precipitation, the number of rainy days, and the rate of cloud cover are the 
weather indicators crucial to constructing and evaluating a climate prediction model. To measure 
such indicators, a variety of sensors are employed in meteorological stations and satellites. For 
temperature measurement, a thermistor, platinum resistance thermometer, and thermocouples 

mailto:2024028@dgut.edu.cn
https://doi.org/10.18494/SAM5469
https://myukk.org/


2014	 Sensors and Materials, Vol. 37, No. 5 (2025)

are used.(1) Precipitation is generally measured using a tipping bucket rain gauge, a weighing 
rain gauge, optical precipitation sensors, and weather radars.(2) Radars are used to detect 
precipitation by measuring the reflection of radio waves off raindrops and other hydrometeors. 
Doppler radars, in particular, can also detect the motion of raindrops. Rainy days are observed 
using a weighing rain gauge or automated weather stations integrating rain gauges and other 
sensors.(3) Ceilometers, pyranometers, and satellite instruments such as a moderate-resolution 
imaging spectroradiometer and a visible infrared imaging radiometer suite are used to monitor 
cloud cover from land or space.(4) These sensors and devices are widely used to measure weather 
data. The selection of sensors depends on the application and the level of precision required in 
ground-based meteorological stations or remote satellite systems.
	 The spatiotemporal features of indicators and global environmental changes pose a challenge 
to predicting climate accurately. Recently, machine learning technology has been applied to 
predicting climate from previous records leveraging its capability to extract information on 
weather.(5–9) Machine learning algorithms for climate prediction have considerably advanced. 
Kadow et al. proposed a method based on long short-term memory (LSTM) using a double-layer 
network to predict temperature, precipitation, humidity, and sunshine duration hours.(10) This 
method showed smaller root mean squared error (RMSE), mean absolute percent error (MAPE), 
and validation loss than models based on recurrent neural networks (RNNs) and the support 
vector machine (SVM). However, the model cannot capture non-time-series characteristics in 
the data on weather. To predict PM2.5 concentration and meteorological data, Zhang et al. 
suggested an LSTM–fusion neural network (FNN) model.(11) In this model, the properties of the 
deep neural network (DNN) were integrated with the linked layer. Compared with the 
conventional LSTM model, the model reduced RMSE and MAE by 11.60 and 14.86%, 
respectively. However, the DNN layers could not capture the high-level properties of the data 
despite their capability to capture non-time-series characteristics.(11) Kuo et al. proposed an 
LSTM- and FNN-based forecasting model using Kunming City’s climatic comfort index. The 
model combined a single-layer FNN with a four-layer LSTM.(12) On the basis of the climate data 
from 1980 to 2010, the model forecasted the temperature of the Kunming area and reduced 
RMSE and MAE by 0.12 and 0.09 ℃, respectively, which were improved forecasts compared 
with those obtained using the model constructed with a bidirectional recurrent neural network 
(BRNN) and a bidirectional long short-term memory neural network (Bi-LSTM). Nevertheless, 
this model failed to capture the features related to oscillations in the loss function (RMSE). Zhao 
suggested a convolutional neural network (CNN)–gated recurrent unit neural network (GRU)-
based model to predict multipoint temperature and humidity for mushroom cultivation. The two-
layer GRU and CNN networks were used with a maximum pooling layer.(12) A dataset including 
air temperature, relative humidity, substrate temperature, and light intensity was used for model 
training and predicting the spatial distribution of humidity over 20 min. When compared with 
backpropagation (BP), LSTM, and GRU models, the RMSE and MAE at different points inside 
the mushroom greenhouse were reduced by 2.731 and 1.713%, respectively. However, 
computational complexity resulted from the construction of double convolutional layers with a 
single pooling layer even though this method captured the high-level properties of the data.(12–14)
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	 Zhang used a Bi-LSTM and an auto-encoder (AE) in a prediction model for the concentration 
of the particulate matter of 2.5 μm (PM2.5). To use data for adaptive learning, an AE layer was 
added before the Bi-LSTM. The auto-encoded input was transmitted to the Bi-LSTM for 
time-series prediction. The model outperformed the RNN, LSTM, AE-RNN, and AE-LSTM 
models in terms of RMSE. However, the model could not predict other weather indicators 
because of their complicated characteristics.(15) A deep learning model for the prediction of 
evapotranspiration (ET0) one week in advance was proposed by Ahmed et al.(16) For daily ET0 
prediction, a model composed of CNN, GRU, and ant colony optimization (ACO) algorithms 
was used for multistage learning using ET0 data from the previous week. The model presented a 
lower MAE and a higher efficiency than multivariate adaptive regression spline (MARS), 
LSTM, and GRU models. However, its accuracy in predicting other types of weather was not 
validated.(16–19)

	 Considering the benefits and drawbacks of the previous models, we developed a weather 
prediction model by integrating CNN and GRU in this study. The CNN–GRU model 
outperformed other models in terms of RMSE and MAE on the test and training datasets. Its loss 
function also converged better. The model predicted temperature, precipitation, the number of 
rainy days, and the rate of cloud cover with high accuracy. 

2.	 Dataset and Models

	 The climatic research unit time-series (CRU-TS) dataset was used in this study as it is the 
most widely used. The dataset is provided by the United Kingdom’s National Centre for 
Atmospheric Science (NCAS). It is constructed using monthly observational data and angular 
distance weighting (ADW) interpolation. It comprises the data measured daily or sub-daily. The 
network common data form (NetCDF) was also used for dimensionality reduction. The data on 
the land surface area near Beijing, China at the longitude and latitude of 39.75 and 116.75° were 
processed. Daily mean temperature (℃), precipitation (mm), the number of rainy days (days), 
and the rate of cloud cover (%)  were chosen to evaluate the models. Figure 1 shows the daily 
mean temperatures in the Beijing area from 1901 to 2022.

2.1	 CNN

	 CNN is an FNN using convolutional computations. CNN consists of convolutional, pooling, 
and fully connected layers (Fig. 2). Convolutional layers are responsible for capturing higher-
level characteristics of the data and analyzing intrinsic relationships of features. In addition to 
reducing computational complexity and the number of parameters, pooling layers are used to 
improve the efficiency of training.(21,22) 

2.2	 GRU

	 GRU is an RNN that memorizes key events in sequential data and predicts the following 
events on the basis of time-series data (Fig. 3).(23) Its architecture is similar to that of LSTM. 
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GRU adopts gating units to address the inability of the standard RNN to maintain long-term 
memory and gradient problems in backpropagation.(24) It has a simpler internal architecture than 
LSTM, which requires less computational requirements.(25) 

Fig. 1.	 (Color online) Daily mean temperature in Beijing area from 1901 to 2022.(20)

Fig. 2.	 Structure of CNN.

Fig. 3.	 (Color online) Structure of GRU.

℃
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	 When the input for each time step includes the hidden state Ht−1 determined from the 
previous time step and the input xt from the current time step, Zt is the output of the update gate, 
which is used to control the degree of update of the current state. When Rt is the output of the 
reset gate, the impact of past states on the current state is determined. tH  is a candidate hidden 
state by the superposition of the current input and past states. Ht updates the hidden state at the 
current time by updating the weighted average of the gate and past states, as well as the weighted 
average of the candidate’s hidden state tH  (1−4).

	 ( )1,t z t tZ W H xσ − = ⋅  	 (1)

	 ( )1,t R t tR W H xσ − = ⋅  	 (2)

	  ( )1tanh ,t t t tH W R H x− = ⋅ ×  	 (3)

	 ( ) 

11t t t t tH Z H Z H−= − × + × 	 (4)

3.	 Model Construction

3.1	 Data processing

	 The original data were processed for reducing dimensionality, converging to the coordinates 
of the Beijing area, and obtaining the time-series data on temperature, precipitation, the number 
of rainy days, and the rate of cloud cover. The processed data were normalized to obtain the 
time-series matrix (Fig. 4).

Fig. 4.	 (Color online) Flow of data processing.
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3.2	 CNN–GRU model

	 The effects of environmental factors on weather indicators are diverse and complex. 
Unexpected events such as natural disasters can alter their distributions with subsequent effects 
on temperature and precipitation patterns.(26) Human activities also affect the weather indicators. 
Such factors introduce high-level characteristics into the climate data and affect the accuracy of 
traditional time-series prediction models as they cannot capture the nuanced and interrelated 
effects of the factors.(27) To address this challenge, we incorporated a GRU model into a CNN 
model. This CNN–GRU model leverages the strength of CNN in extracting features and 
patterns, which is critical to understanding the complex interactions among the indicators.(28) 
The integration of CNN layers enables the model to detect intricate patterns and inherent high-
level characteristics in the data, which are not determined by traditional time-series models.(29)

	 The extracted features obtained by the CNN–GRU model were input into a two-layer GRU 
structure as GRU effectively processes and predicts time-series data and captures the temporal 
dynamics of weather indicators. GRU is also known for its efficiency in modeling temporal 
dependencies and enables nuanced time-series predictions.(30) To the model, a fully connected 
layer of FNN was added to integrate the characteristics extracted by the previous layer. To 
enhance the robustness and generalization capabilities of the model, a dropout regularization 
technique was applied to prevent overfitting and ensure its effectiveness and accuracy.(31)

	 Figure 5 shows the structure of the CNN–GRU model, illustrating the integration of the 
CNN and GRU layers and their respective roles in the model. The model was designed to capture 
and analyze complex patterns of the data and effectively predict future trends and changes in the 
spatial and temporal dimensions of the data. In the model, climate dynamics caused by natural 
and anthropogenic factors were considered to enhance prediction accuracy.

Fig. 5.	 (Color online) CNN–GRU model structure.
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3.2.1	 Input layer

	 The input layer was responsible for the dimension reduction of the data to establish a two-
dimensional time-series matrix. The data were normalized to ensure consistency in scale and 
distribution and input into the model. For data normalization, the Min–max normalization 
method was used to make the data range from 0 to 1 [Eq. (5)]. This method was used to increase 
the comparability and stability of the model.(32) 

	 ( )
( )

,
x min

Z
max min

−
=

−
	 (5)

where x represents the original data, and min and max respectively represent the minimum and 
maximum values of the original data.

3.2.2	 CNN layers

	 CNN layers were used to extract semantic and spatiotemporal characteristics (high-level 
characteristics). Three convolutional layers (Conv2D) paired with three pooling layers 
(MaxPooling2D) were used as the CNN layers. Each of the convolutional layers had 32, 64, and 
128 filters with a kernel size of 3 × 3 and a stride of 1. The rectified linear unit (ReLU) function 
was used as the activation function. The data were processed in a pooling layer with a pool size 
of 2 to reduce the number of dimensions of high-dimensional characteristics and computational 
complexity. The dropout regularization was applied to mitigate overfitting caused by weight 
decay. Lastly, the high-level characteristics captured by the CNN layers were fed into the GRU 
layer to capture temporal characteristics.

3.2.3	 GRU layers

	 GRU layers were used to recurrently process the high-level characteristics and identify 
significant events at different times to capture the temporal characteristics. The two-layer GRU 
network structure was used with 64 and 128 neurons in each layer. The ReLU function was 
applied as the activation function. After capturing the temporal characteristics, a single-layer 
feed-forward neural network was used to construct a fully connected output layer.(32) 

3.3	 Prediction

	 The CNN–GRU model was trained using the data from 1901 to 2017 to predict weather 
indicators from 2018 to 2022. The results were compared with the measured data (Fig. 6).
	 The process of prediction consisted of the following three steps (Fig. 7):
Step 1.	Process data to reduce the dimension of data, help the model converge fast, and improve 

performance.
Step 2.	Train model to predict indicators.
Step 3.	Predict four weather indicators for the next 60 months.
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4.	 Methods 

4.1	 System configuration

	 The hardware used for the experiment included an AMD Ryzen 7 5800H processor, a graphic 
card of Radeon 3.20 GHz, and a RAM of 16.0 GB (13.9 GB available) in the Windows 64-bit 
operating system.

4.2	 Evaluation metrics of model performance

	 We used RMSE(33) and MAE(34) as evaluation metrics for the model [Eqs. (6−8)]. Specifically, 
RMSE was used to represent the loss function value. In model training, RMSE and MAE were 
monitored on the training and test datasets to estimate the convergence rate. The dataset from 
1901 to 2017 was split into ratios of 0.75 and 0.25 for training and testing the models, respectively.

Fig. 6.	 (Color online) Training CNN–GRU model and its prediction.

Fig. 7.	 (Color online) System structure of CNN–GRU model.
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5.	 Results and Discussion

5.1	 Performance evaluation in training and testing

	 The convergence rates of RMSE and MAE of the CNN–GRU model were compared with 
those of the LSTM–FNN, Bi-LSTM, Bi-GRU, Double-LSTM, Double-GRU, and CNN–GRU 
(Double-Conv2d) models. All models had the same number of epochs, input batch size, ReLU 
activation function, and Adam optimizer. The CNN–GRU model showed a higher convergence 
rate of RMSE with a more gradual decrease. Its RMSE and MAE were lower than those of the 
other methods. Figures 8 and 9 show the RMSE and MAE of the CNN–GRU model for the 
weather indicators over 100 epochs in training and testing.

(a) (b)

(c) (d)

Fig. 8.	 (Color online) Loss functions of weather indicators. (a) Loss function of temperature. (b) Loss function of 
precipitation. (c) Loss function of number of rainy days. (d) Loss function of rate of cloud cover.
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	 The CNN–GRU model showed faster convergence and lower MAE for the weather indicators 
than the other models (Table 1). The RMSE and MAE values of the weather indicators were 
stabilized after 20 epochs and approached minimum by the 40th iteration. These findings proved 
the exceptional convergence rate of the CNN–GRU model. The developed CNN–GRU model 
showed RMSE values of 0.0331 ℃, 0.0938 mm, 0.1024 days, and 0.0663%, whereas the other 
models showed RMSE values of 0.0346–0.1442 ℃, 0.0932–0.136 mm, 0.0167–0.133 days, and 
0.0768–0.0948% for temperature, precipitation, the number of rainy days, and the rate of cloud 
cover, respectively. The MAE values of the CNN–GRU model were 0.0256 ℃, 0.0540 mm, 
0.0806 days, and 0.0425%, whereas those of the other models were 0.0268–0.0909 ℃, 0.0542–
0.1092 mm, 0.0829–0.1085 days, and 0.0506–0.0684% for temperature, precipitation, the 
number of rainy days, and the rate of cloud cover, respectively. The RMSE and MAE values of 
the CNN–GRU model were lower than those of the other models, which indicates the better 
prediction results of the CNN–GRU model.

5.2	 Performance evaluation in predicting

	 The data from 2018 to 2022 were fed into the model for prediction. A sliding window 
approach was employed to predict the data for 60 months with a window size of 12 months 
(Fig. 10).

(a) (b)

(c) (d)

Fig. 9.	 (Color online) MAEs of weather indicators. (a) MAE of temperature. (b) MAE of precipitation. (c) MAE of 
number of rainy days. (d) MAE of rate of cloud cover.
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	 After predicting the weather indicators from 2018 to 2022, the results were compared with 
the measured data. Figure 11 shows the predicted and measured data of the weather indicators 

Table 1
Loss function and MAE values of different models.
Model Weather indicators Loss function MAE

LSTM–FNN

Temperature (℃) 0.1442 0.0909
Precipitation (mm) 0.1360 0.1092

Number of rainy days (days) 0.1330 0.1085
Rate of cloud cover (%) 0.0948 0.0684

Double-LSTM

Temperature (℃) 0.0400 0.0314
Precipitation (mm) 0.1009 0.0597

Number of rainy days (days) 0.1131 0.0885
Rate of cloud cover (%) 0.0774 0.0517

Double-GRU

Temperature (℃) 0.0374 0.0292
Precipitation (mm) 0.0994 0.0582

Number of rainy days (days) 0.1086 0.0847
Rate of cloud cover (%) 0.0768 0.0518 

Bi-LSTM

Temperature (℃) 0.0412 0.0320
Precipitation (mm) 0.1019 0.0682

Number of rainy days (days) 0.1135 0.0881
Rate of cloud cover (%) 0.0787 0.0530

Bi-GRU

Temperature (℃) 0.0400 0.0319
Precipitation (mm) 0.0984 0.0609

Number of rainy days (days) 0.1118 0.0868
Rate of cloud cover (%) 0.0774 0.0508

CNN–GRU
(Double-Conv2d)

Temperature (℃) 0.0346 0.0268
Precipitation (mm) 0.0932 0.0542

Number of rainy days (days) 0.1067 0.0829
Rate of cloud cover (%) 0.0774 0.0506

CNN–GRU
(Developed in this study)

Temperature (℃) 0.0331 0.0256
Precipitation (mm) 0.0938 0.0540

Number of rainy days (days) 0.1024 0.0806
Rate of cloud cover (%) 0.0663 0.0425

Fig. 10.	 Data windowing process.
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predicted by the CNN–GRU model. The CNN–GRU model accurately predicted temperature, 
precipitation, the number of rainy days, and the rate of cloud cover. The model also captured the 
temporal characteristics of the four indicators, reflecting the variability of the weather indicators 
for the next 60 months. The predicted temperature data showed the smallest difference, 
indicating the model’s accuracy in predicting temperature.

5.	 Conclusions

	 We developed a CNN–GRU model to predict weather indicators and compared its 
performance in training, testing, and prediction with other models including LSTM–FNN, 
Bi-LSTM, Bi-GRU, Double-LSTM, Double-GRU, and CNN–GRU (Double-Conv2d) models. 
To evaluate its performance, its RMSE, convergence rate, and MAE were compared with those of 
the other models. The CNN–GRU model showed lower loss function and MAE than the other 
methods, indicating that the model presented a higher accuracy. The CNN–GRU model 
predicted the weather indicators accurately with negligible differences from those of the 
measured data from 2018 to 2022. Such results proved the superior prediction capability of the 
CNN–GRU model to the other models. The developed CNN–GRU model in this study can be 

(a) (b)

(c) (d)

Fig. 11.	 (Color online) Predicted and measured data of weather indicators from 2018 to 2022. (a) Temperature, (b) 
precipitation, (c) number of rainy days, and (d) rate of cloud cover.
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used for predicting certain weather indicators in the long term for up to five years, but it needs 
an improvement to be used for the prediction of other indicators. In addition, the model 
prediction results can be considered to develop relevant weather sensors to provide more 
accurate data.
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