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	 A signal change in stator current often indicates that a variable-frequency motor is 
malfunctioning. In this study, we developed a method based on discrete fractional Fourier 
transform (DFrFT) to identify rotor defects in a three-phase induction motor. The first step was 
to measure the stator current in an induction motor, followed by the application of DFrFT to 
detect rotor faults. DFrFT is frequently used to transform a time-domain signal at different 
angles. Angles from 0–2π were divided into 20 equal sections, which were sequentially 
transformed to construct characteristic matrices. For clearer characteristic information, the 
fractal method was applied to extract features, fractal dimension, lacunarity, and the mean value 
from the pattern matrices. Finally, defect patterns were identified by applying extension theory. 
To verify whether the proposed method was feasible for rotor fault recognition in the presence of 
interference, ±5 to ±15% Gaussian white random noise was added to the current signal. The 
results indicated that the proposed method can diagnose various rotor defects in a motor. 

1.	 Introduction

	 Motors are important in industry and our everyday lives. In particular, variable-frequency 
motors have been widely used in electrical equipment as part of the wider push to decarbonize. 
These motors conserve energy, require low maintenance, are highly efficient, and are highly 
amenable to automation. However, motor performance is difficult to maintain. Degradation and 
malfunctions in motors can be commercially expensive.(1,2) Therefore, the long-term monitoring 
and diagnosis of motors are necessary.
	 The Electric Power Research Institute reported that 53% of all motor problems originate from 
mechanical faults, such as bearing faults, unbalanced motors, or loose components.(3) This 
implies that 47% of all motor problems occur owing to electrical faults, of which 37% are 
attributed to stator winding faults and the remaining 10% are attributed to rotor faults, such as 
an unbalanced air gap or a broken rotor bar.(4) In this study, we developed three defect fault 
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models based on three commonly occurring faults in induction motors, namely, ball bearing 
damage, one hollow rotor bar, and three broken rotor bars. A variable-frequency drive (VFD) 
was used in the test to regulate the output frequency at 60 and 50 Hz to ensure that the three 
defect fault models can be applied to different rotational speeds. The current in the defective 
stator was measured using an ammeter. The differences between characteristic signals were 
analyzed using discrete fractional Fourier transform (DFrFT).
	 Fractal theory has been successful in describing complex shapes, such as coastlines and 
mountain ranges, where conventional methods have failed.(5,6) A three-dimensional (3D) pattern 
(β–n–F) image is also a complex shape that can be transformed using DFrFT. Previous studies 
have successfully employed fractal theory to extract fractal features from 3D (n–q–φ) 
patterns.(7–9) We also applied fractal theory for 3D pattern (β–n–F) feature extraction. The 
mean value was added to produce a third characteristic, which was used to determine feature 
distributions. Finally, the proposed method was evaluated in experiments.

2.	 Rotor Defect Models and Experimental Platform Architecture 

2.1	 Defect models 

	 Induction motors degrade when operated under challenging conditions over prolonged 
periods.(10–12) In this study, we defined four types of squirrel cage induction motor: a Type A motor 
had three broken rotor bars, a Type B motor had one hollow rotor bar, a Type C motor had ball 
bearing damage, and a Type D motor was a normal induction motor (Fig. 1). These models were used 

Fig. 1.	 (Color online) Types of defect in an induction motor rotor. (a) Type A, (b) type B, (c) type C, and (d) type D.
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to identify rotor defects and analyze their characteristics. The CNS-C-4088 series of induction 
motors (Cherng Chang Elec. Mach, Taipei, Taiwan) was used; it has a rated output of 1.5 kW and 
speeds of 1750 rpm at 60 Hz and 1450 rpm at 50 Hz. The rated power for the delta connection was 
220 V, and that for the Y connection was 380 V. 

2.2	 Experimental platform 

	 The experimental platform is shown in Fig. 2. The first device is a powder brake, which is 
used to simulate magnetic loads of differing intensities. The second device is the 1.5 kW three-
phase 4P squirrel cage induction motor. The third device is an SS2 series VFD (Shihlin Electric, 
Taiwan) that is rated for the three-phase power voltage of 200–240 V at 50 or 60 Hz.
	 The motor was operated at the rated rotational speed, with the powder brake providing the 
motor load. The motor speed was regulated by the VFD. The rated rotational speeds were 1750 
rpm at 60 Hz and 1450 rpm at 50 Hz. The stator current in the experimental model was measured 
using an ammeter. Finally, an analysis program was used for the initial signal processing. It 
included notch filters to filter power base frequency and low-pass filters to filter high-frequency 
noise. A spectrum analysis was performed using the fractional Fourier transform (FrFT).(13) The 
structure of the experimental platform is shown in Fig. 3.

3.	 FrFT

3.1	 Theory introduction

	 The FrFT of the original signal x(t) with an angle α, denoted by Fβ[x](u), is defined as(14)

	 [ ]( ) ( ) ( , ) ,F x u x t K u t dtβ
α

+∞

−∞

= ∫ 	 (1)

where α is the rotation angle defined as β(π/2), β is the order of the FrFT, and u corresponds to 
the time point when α = 0 and to the frequency when α = π/2. The transform kernel Kα(u,t) is 
defined as

Fig. 2.	 (Color online) Experimental platform.
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where n ∈ Z. For the order of β, the kernel Kα (u,t) was a chirp signal with a linear frequency and 
a rate of cot(α), the initial frequency of ucsc(α). An envelope can be defined as

	 2(1 cot( ) / 2 exp( / 2cot( )).j juα α− π 	 (3)

	 The FrFT Fβ[x](u) was interpreted as a rotation by the angle α in the time–frequency plane. 
Fπ/2 corresponded to the classical Fourier transform. The angle when the FrFT was run 
continually was a simple sum equal to the angle of continuous rotation. The signal was also 
explained as the chirp decomposition of the signal. This physical interpretation of the FrFT was 
used to detect chirp-like signals, such as the signal generated by fault harmonics when discharges 
occur.(15) The DFrFT was defined as 
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where Ts denotes the sampling period. The DFrFT can be implemented through several methods, 
which differ in their computational complexity and accuracy. The eigen-decomposition method 
was used in this study.(16) The N-point DFrFT was defined by its transformation matrix and 
described as
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Fig. 3.	 Structure of experimental platform.
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where uk[n] represents a discrete Hermite–Gaussian function. The DFrFT has the advantage of 
having a low computational complexity O(N logN). The discrete signal x[n] is obtained as 
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3.2	 3D characteristic spectrum 

	 A 3D characteristic spectrum was constructed using the DFrFT of the current signal in the 
range of [0, π/2]. This is an effective means to reveal the change in energy distribution from the 
time domain to the frequency domain. The 3D pattern was then subjected to feature extraction 
to identify the type of defect. In this paper, we propose the concept of amplitude conversion ratio 
to compare the amplitude conversion rates of different types of current signal. η(n) denotes the 
absolute value of the quotient of Fβx[n], the DFrFT of x[n], which was defined as

	
[ ]( ) .

[ ]
F x nn

x n

β
η = 	 (7)

	 Fractal features were subsequently extracted using 3D β–n–η patterns to identify the different 
experimental types.(7) The first step of the feature extraction was determining the increment of 
α (Δα) using the value of Δβ. To reduce the computational load of the DFrFT, 20 transformations 
were performed with α in [0, π/2] and Δα = 4.5° (Δβ = 0.05). First, the discrete Hermite–Gaussian 
function ua[n] and the matrix Fβ[m,n] were calculated, which was multiplied by the original 
discharge signal x[n] to obtain Fβx[n], as illustrated in Eq. (6). Eventually, a 3D characteristic 
pattern was created through 20 successive transforms, after the amplitude transform ratio η was 
determined using Eq. (7).

4.	 Experiment Results and Discussion 
	
	 Stator currents in the different experimental models were measured and analyzed. The data 
for each model were obtained every 10 s, and the sampling rate was 100 kS/s. Different numbers 
of data points were acquired for each frequency. After the data were pretreated as described in 
Sect. 2, two power cycle current signals were captured for analysis. Figures 4 and 5 show the 
trends in stator current after signal pretreatment when the experimental model was operated at 
60 and 50 Hz, respectively. However, the use of these signals alone is insufficient for determining 
how well the rotor defect models perform against each other. Therefore, these signals were 
transformed into a 3D pattern (β–n–F) by the DFrFT. In this study, 30 sets of measurements 
were taken for each experimental model; 15 sets were randomly selected to determine the 
extension classical domain, and the remaining 15 sets were used for evaluating the test pattern.
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Fig. 4.	 (Color online) Stator current when the model was operated at 60 Hz. (a) Type A, (b) Type B, (c) Type C, and 
(d) Type D. 

Fig. 5.	 (Color online) Stator current when the model was operated at 50 Hz.(a) Type A, (b) Type B, (c) Type C, and 
(d) Type D.

(a) (b)

(c) (d)
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4.1	 3D (β–n–F) pattern 

	 The stator current was continuously converted from the time domain to the frequency domain 
to establish a characteristic pattern. The β–n–F characteristic 3D patterns of the stator current 
signal at 60 and 50 Hz are shown in Figs. 6 and 7, respectively. These figures suggest that each 
type of current had a different β–n–F 3D characteristic pattern. However, identifying 
experimental patterns using these maps was difficult. Therefore, fractal characteristic features, 
fractal dimension, and lacunarity were extracted from the β–n–F 3D pattern of each 
experimental model.

4.2	 Feature extraction 

	 The feature distribution obtained by the proposed method is shown in Fig. 8. Fractal 
dimension and lacunarity were extracted from all 3D (β–n–F) patterns. The fractal dimensions 
had a wide distribution for all four experimental models, implying that distinguishing one fault 
mode from the other was challenging when using fractal dimension alone [Fig. 8(a)]. However, 

Fig. 6.	 (Color online) 3D (β–n–F) patterns at 60 Hz. (a) Type A, (b) type B, (c) type C, and (d) type D.
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different experimental models could be distinguished from each other when lacunarity was 
added to the analysis. For both motor operating frequencies of 50 and 60 Hz, the patterns of any 
particular experimental model were close to each other. In this study, the mean value extracted 
from the 3D (β–n–F) pattern was added as the third feature to ensure that the pattern difference 
was clearer. The fractal feature distribution with the mean value added is shown in Fig. 9. The 

Fig. 7.	 (Color online) 3D (β–n–F) patterns at 50 Hz. (a) Type A, (b) type B, (c) type C, and (d) type D.

Fig. 8.	 (Color online) Distribution of fractal features. (a) Motor operating at 60 Hz. (b) Motor operating at 50 Hz.

(a) (b)

(c) (d)
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addition of the third feature simplified the task of separating the patterns of each experimental 
model, compared with the patterns presented in Fig. 8.

4.3	 Pattern recognition 

	 In this study, we employed extension theory to extract patterns in rotor defect models because 
the method of extension recognition involves the concepts of matter elements and extension sets. 
This method is suitable for solving contradiction problems.(17) The fuzzy membership function 
has an output within [0, 1]. This interval is extended in an extension set to [−∞, ∞]. Thus, this set 
can be used to define another set that might include any data point in the domain. Matter 
elements can easily express the essence of matter, and the extension set is a quantitative tool 
originating from extension theory. Sets represent the degree of correlation between matter 
elements on the basis of a correlation function.
	 The procedure of the extension method has been detailed in previous reports.(18,19) The input 
for a recognition system may contain noise originating from the detector or the environment. To 
verify the feasibility of the proposed method for recognizing stator current signal patterns, 
random Gaussian white noise was simulated and added to the measured stator current signals. 
The following four cases of pattern recognition results were obtained:
Case 1: Pattern recognition using fractal features at 60 Hz [Fig. 8(a)].
Case 2: Pattern recognition using fractal features at 50 Hz [Fig. 8(b)].
Case 3: Pattern recognition using fractal features with a mean value at 60 Hz [Fig. 9(a)].
Case 4: Pattern recognition using fractal features with a mean value at 50 Hz [Fig. 9(b)].
	 Tables 1 and 2 present the accuracy rates of pattern recognition based on fractal features. The 
recognition rate was 100% in the absence of extra noise. The average recognition rate decreased 
as the amount of random white noise increased. When the amount of random white noise 
increased by 15%, the average recognition rate decreased from 81.7% to 78.3%. To improve the 
recognition rate, a third feature was added to the mean value in this study. The subsequent 
recognition results are listed in Tables 3 and 4. The average recognition rate increased for all 

Fig. 9.	 (Color online) Distribution of fractal features with a mean value. (a) Motor operating at 60 Hz. (b) Motor 
operating at 50 Hz

(a) (b)
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cases after the addition of the third feature. When 15% of random white noise was added, the 
average recognition rate decreased from 85 to 83.3%.

5.	 Conclusion 

	 We presented a motor current signature analysis tool based on the DFrFT as an effective 
pattern recognition method for identifying rotor defects in induction motors. The DFrFT 
described the gradual transition characteristics from the frequency domain to the time domain 
as the transform order was increased from zero to unity, followed by the construction of a 3D 
(β–n–F) matrix. Furthermore, fractal theory was introduced to extract the fractal dimension, 

Table 1 
Recognition accuracy rates (%) when using fractal features at 60 Hz.

Model Noise
0% ±5% ±10% ±15%

Type A 100 93.3 86.7 73.3
Type B 100 93.3 80 80
Type C 100 93.3 86.7 80
Type D 100 100 100 93.3
Average 100 95 88 81.7

Table 2
Recognition accuracy rates (%) when using fractal features at 50 Hz.

Model Noise
0% ±5% ±10% ±15%

Type A 100 100 86.7 80
Type B 100 93.3 86.7 80
Type C 100 93.3 80 73.3
Type D 100 93.3 93.3 80
Average 100 95 86.7 78.3

Table 3 
Recognition accuracy rates (%) when using fractal features with mean discharge at 60 Hz.

Model Noise
0% ±5% ±10% ±15%

Type A 100 100 93.3 86.7
Type B 100 100 93.3 86.7
Type C 100 93.3 93.3 80
Type D 100 100 93.3 86.7
Average 100 98.3 93.3 85

Table 4
Recognition accuracy rates (%) when using fractal features with mean discharge at 50 Hz.

Model Noise
0% ±5% ±10% ±15%

Type A 100 100 93.3 86.7
Type B 100 100 86.7 86.7
Type C 100 93.3 86.7 80
Type D 100 93.3 93.3 80
Average 100 96.6 90 83.3
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lacunarity, and mean value. Finally, extension theory was applied to achieve the pattern 
recognition of motor defects. The performance of the proposed method in the presence of 
interference was assessed by adding ±5 to ±15% of random Gaussian noise to the current signal. 
The results suggest that the pattern recognition method can distinctly discriminate between 
different types of motor defect, even at different frequencies. These results verify the 
effectiveness of the proposed method in detecting motor failures, aiding quality control.
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