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	 In this study, we focus on the application of heterogeneous sensor fusion technology, which 
involves the integration of a scanning laser rangefinder (LRF) and a low-cost camera, to detect 
obstacles in front of a robot. This technology enables real-time obstacle identification and path 
replanning, allowing the robot to navigate through unknown and cluttered environments 
efficiently. In indoor navigation, the initial map necessary for path planning is first created using 
a method related to simultaneous localization and mapping. The two-dimensional location of 
existing or newly emerged obstacles can be determined by comparing the sensing results of the 
LRF with the initial map. Furthermore, analyzing captured images using semantic segmentation 
and monocular depth estimation provides 3D information in the vicinity of a robot. In our work, 
we leverage the accuracy of an LRF and the high resolution of a visual sensor to effectively 
integrate heterogeneous sensors, enabling the robot to sense and avoid obstacles. Experimental 
findings have demonstrated the effectiveness of indoor navigation for a mobile robot in 
unexplored environments using our proposed sensor fusion technology.

1.	 Introduction

	 In recent years, there has been rapid advancement in the sensor industry and computation 
acceleration, leading to a significant increase in the number of research papers focused on 
autonomous mobile robots (AMRs). AMRs are typically equipped to perform functions such as 
positioning, path planning, and movement control. Path planning involves two primary types: 
creating the initial path based on environmental information and adapting to dynamic obstacles 
that may appear during navigation. Dynamic obstacles refer to objects that were not originally 
part of the environmental data and have the potential to obstruct the navigation path of a robot. 
Addressing the complex issue of detecting and obtaining sufficient information about these 
obstacles to enable the robot to alter its path is a significant challenge that needs attention.
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	 A laser rangefinder (LRF) is a commonly used sensor in robotic systems to obtain depth 
information about the surroundings of a robot. Most affordable LRF devices utilize 2D light 
detection and ranging (LiDAR) scanning, which involves a rotating mechanism to gather 
environmental data at a fixed height. However, these devices have limitations in perceiving the 
environment in 3D, potentially leading to collisions with undetected obstacles that do not align 
with the LiDAR scanning height. To address this issue, some researchers have suggested 
integrating image sensors with LRFs to enable 3D detection, thereby improving robot navigation 
safety.(1–3) In this study, we will utilize semantic segmentation and monocular depth estimation 
technology to generate 3D point clouds of obstacles. By integrating this with the sensing data of 
an LRF, we will employ a heterogeneous sensor fusion approach to ensure that obstacle 
information benefits from the accuracy of an LRF and the detailed resolution of an image sensor.
	 Let us introduce the key vision-based technologies employed in our proposed method, such 
as semantic segmentation and monocular depth estimation. Semantic segmentation involves 
assigning pixels to specific categories at the pixel-wise level. Fully convolutional networks(4) 
replaced the fully connected layer with a convolutional layer to classify all pixels and could be 
trained in an end-to-end training process. U-Net,(5) a popular semantic segmentation network 
with an encoder-decoder architecture, enables efficient training with minimal data and yields 
accurate results. Subsequent enhancements such as U-Net++(6) and U-Net3+(7) have been built 
upon the U-Net framework. ENet,(8) similar to ResNet,(9) is an efficient real-time semantic 
segmentation network designed with a main branch and an additional branch using convolution 
operations. Fast-SCNN(10) adopts a two-branch structure to combine global and local features 
obtained from more and less convolutional operations, respectively. A model called FasterSeg 
was proposed in Ref. 11; it utilized neural architecture search (NAS) to design the neural 
network architecture and was trained using knowledge distillation. Results showed that 
FasterSeg outperformed the other networks mentioned. Hence, we have opted for FasterSeg, 
which plays a crucial role in obstacle identification, as the semantic segmentation model in this 
study.
	 Our algorithm begins by conducting semantic segmentation and then proceeds to estimate 
the distance of obstacles using monocular depth estimation. The training methods for monocular 
depth estimation typically involve supervised or unsupervised learning. PSMNet,(12) a 
supervised learning network, employs a 3D convolutional neural network (3D-CNN) and 
pyramid space to address estimation errors in reflective or textureless areas. Supervised learning 
models usually demand substantial amounts of training data, particularly high-resolution depth 
maps, which can be difficult and expensive to acquire. Hence, an unsupervised learning-based 
method is a more favorable choice. Monodepth,(13) an unsupervised learning network, uses a 
CNN to generate left-view and right-view disparity maps from a single-view image. Further 
details about monocular depth estimation are outlined in Sect. 2.1. Another model,(14) trained 
using an unsupervised approach, incorporates a CNN based on Monodepth to predict the 
parameters of the camera, thereby reducing depth errors. Between the aforementioned two 
models, the compact Monodepth model with fewer parameters is better suited for our power-
limited robot. Consequently, we employed the Monodepth model in this study to predict the 
disparity map of a single-view image.
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	 The primary objective of this study is to integrate an image-based sensor and an LRF device 
to generate a point cloud representation of the obstacles in the environment through the 
utilization of competitive and complementary sensor fusion methodologies. In addition, we 
performed several experiments related to robot navigation to validate the effectiveness of our 
method.

2.	 Proposed Heterogeneous Sensor Fusion

	 In this study, we focus on integrating two sensor types: the CMOS image sensor and the LRF. 
By benefiting from the high resolution of an image sensor and the accurate measurement of an 
LRF, these sensors work in tandem to deliver a more dependable 3D sensing outcome, allowing 
the robot to detect obstacles in its path within complex environments effectively. More detailed 
insights into our innovative sensor fusion technology are outlined in the following subsections.

2.1	 3D positioning of obstacles by image sensor

	 The vision-based obstacle detection method proposed in this study encompasses three 
primary steps, which are described below.
	 Step 1: Deep-learning-based semantic segmentation. This step identifies potential obstacle 
pixels in an image using deep-learning-based semantic segmentation and then forms objects 
through connected component labeling. The main aim of this step is to distinguish obstacle 
pixels from other non-obstacle pixels. This enables a focused analysis of obstacles, including 
determining their distances and avoiding them. In this study, we utilize the semantic 
segmentation network, named FasterSeg,(11) to recognize objects of interest in the surrounding 
environment, specifically predefined types of obstacles. The fundamental design principles and 
advantages of FasterSeg are elaborated in subsequent paragraphs.
	 FasterSeg is a supervised learning network that employs NAS to generate an improved 
structure for semantic segmentation models automatically. Achieving a balance between high 
accuracy and low latency can be challenging, as these goals often oppose each other. As a result, 
FasterSeg is a newly introduced NAS framework designed to achieve fast inference and 
competitive accuracy. It consists of three main components.
•	� Efficient search space with multi-resolution branching: This approach involves utilizing a 

backbone network to downsample with a factor of 8 and then branching out into factors of 8, 
16, and 32.

•	� Regularized latency optimization with finer granularity: This addresses the issue of 
architecture collapse in latency-constrained searches.

•	� Teacher–student co-searching for knowledge distillation: This method entails training two 
networks using knowledge distillation. The first network, called the teacher network, is 
trained to optimize semantic segmentation accuracy without considering computing speed. 
The second network, known as the student network, integrates channel parameters learned 
from the trained teacher network to achieve high segmentation accuracy and fast operation.
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	 The loss function during training in our work is defined as

	 2seg latww= +   .	 (1)

Here, seg  and lat  are loss functions for segmentation and latency; w1 and w2 are their weights, 
respectively. In our experiments, we set w1 = 1 and w2 = 0.1. Here, seg  is defined on the basis of 
cross entropy and online hard example mining.(15) lat  is defined by operation , subsampling 
, and the channel expansion ratio  , as formulated in Eq. (2).

	 21 22 23lat w w w= + +      	 (2)

In our experiments, we set w21 = 0.001, w22 = 0.997, and w23 = 0.002.
	 Step 2: Monocular depth estimation. This step estimates the depth map for the image 
captured in the previous Step 1. Once the obstacle pixels are identified, the next step involves 
determining the depth corresponding to each pixel to obtain the 3D position information of the 
identified obstacles. In this study, we utilized a method known as monocular depth estimation 
for the captured image. Initially, we applied a convolutional neural-network-based method called 
Monodepth(13) to estimate a disparity map. Subsequently, we converted the disparity into a depth 
map based on camera parameters and geometric relationships. We can leverage our previous 
works(16,17) to improve Monodepth models if obstacles have been identified.
	 In this paragraph, the original Monodepth model is introduced and used subsequently. As 
shown in Fig. 1, the Monodepth model ϕ  aims to predict a disparity image ˆ LD  from a given left-
view image IL. Here, ϕ  can be achieved through an autoencoder architecture in a self-supervised 
training manner. Each training sample contains a pair of well-rectified left and right images, IL 
and IR. Learning a disparity image corresponding to the left-view image is regarded as a stereo 
vision reconstruction problem. Given a left-view image IL, the model ϕ  first predicts two 
disparity images, ˆ LD  and ˆ RD . For the right image IR, the left disparity is ˆ LD  used to reconstruct 
its opposite left-view corresponding ˆLI . Similarly, ˆ RD  is used for reconstructing ˆRI  from LI . 
The loss function Mono  used in the Monodepth model is defined in Eq. (3) as a combination of 
three critical terms.

Fig. 1.	 (Color online) Training scheme of Monodepth model.
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	 ( ) ( ) ( )L R L R L R
Mono a a a d d d c c cα α α= + + + + +       	 (3)

Here, a  encourages the reconstructed image to appear similar to the corresponding training 
input (appearance matching loss), d  enforces smooth disparity (disparity smoothness loss), and 

c  prefers the predicted left and right disparities to be consistent (left–right disparity consistency 
loss). The superscripts L and R represent the left and right views, respectively. 
	 The Monodepth result is a disparity map corresponding to the input image, which necessitates 
conversion from disparity to depth. In our work, we employed a ZED stereo camera to gather 
training data comprising pairs of well-rectified left and right images. When converting from 
disparity to depth, it is crucial to consider the intrinsic parameters of a camera, specifically the 
focal length along horizontal and vertical axes. The relationship between disparity and depth is 
not straightforwardly reciprocal, so we introduced the conversion formula as Eq. (4).

	 1
4

2 3

β β
β β

= +
+




	 (4)

Here,   denotes depth,  denotes disparity, and 1β , 2β , 3β , and 4β  are coefficients that can be 
further determined by training data. In the experiments, only the obstacles within a 6 m range 
are considered in finding these coefficients because the obstacles beyond 6 m have less impact 
on navigation safety.
	 Step 3: Point cloud generation. This step involves the generation of the point cloud consisting 
of identified obstacles using the results from Steps 1 and 2, thereby finalizing the 3D positioning 
of the obstacles. The process for generating the point cloud is depicted in Fig. 2. Let us utilize 

Fig. 2.	 Point cloud generation process.
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Fig. 3 to elucidate the preprocessing outcomes of each step in our point cloud generation process. 
Figure 3(a) presents the original image, whereas Figs. 3(b) and 3(c) demonstrate the outcomes of 
depth estimation and segmentation. Subsequently, Fig. 3(d) showcases the binary image 
representing the obstacle of interest, and Fig. 3(e) exhibits the filtered result achieved through 
morphological operations, including dilation and erosion. Accordingly, the point cloud can be 
generated by referencing Figs. 3(b) and 3(e).
	 We assume that the camera center is the origin of the world coordinate system (WCS), as 
shown in Fig. 4. A physical 3D object point hC = (xh, yh, zh) is projected onto the imaging plane at 
the image point hI = (uh, vh), as calculated using Eq. (5).
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h v c
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yv f v
z

 = +

 = +


	 (5)

Here, (uc, vc) is the image center on the imaging plane, and fu and fv are the horizontal and 
vertical focal lengths, respectively. For a given pixel (uh, vh), its reconstructed 3D point (xh, yh) at 
the depth zh is derived using Eq. (6).

Fig. 3.	 (Color online) Temporal results during point cloud generation: (a) original image, (b) depth estimation 
result, (c) segmentation result, (d) obstacle, and (e) filtered result of obstacle.

Fig. 4.	 (Color online) Definition of used camera coordinate system.
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	 To obtain the point cloud containing obstacles, Eq. (6) is solved on every pixel belonging to 
the identified obstacles. Figure 5(a) illustrates the point cloud generated with an obstacle, which 
in this case, is a person. To streamline computation in subsequent steps, the point cloud should 
be gridded, reducing the total point cloud samples while maintaining the obstacle structure. 
Figure 5(b) presents the gridded result with a grid size of 4 cm. Following gridding, we filter the 
point cloud, retaining only the samples where there are more than 15 neighboring points within a 
radius of 12 cm. The gridded point cloud undergoes further filtration, and only the samples with 
more than 15 neighboring points within 12 cm are preserved. Figure 5(c) shows the filtered point 
cloud result. Using only the image sensor, we have reconstructed the 3D structure of the 
obstacles at this stage.

2.2	 Heterogeneous sensor fusion process 

	 The integration of image sensing often results in inaccurate point clouds due to estimation 
errors from the Monodepth model, which tends to have greater errors for farther obstacles. To 
address this, our approach involves heterogeneous sensor fusion using competitive and 
complementary fusion, leveraging the different precision and resolution of the LRF and image 
sensing. We employ the extended Kalman filter(18) (EKF) as the basis for this sensor fusion, 
capitalizing on the accuracy of the LRF and the high resolution of the image sensor.
	 In the competitive fusion step, the distance obtained from the LRF serves as the real state 
vector, and the EKF is used to predict and update obstacle estimations by considering the 
distance from image sensing as the measurement. Additionally, a region of interest (ROI) is 
defined to cover 12 cm above and below the line scanned by the LRF, and the centroid of the 
point cloud of the obstacle within the ROI is calculated. In the complementary fusion step, the 
point cloud is corrected on the basis of the Kalman gain and the error between the state and 
measured vectors obtained from the competitive fusion step. This approach allows for corrected 
point clouds, providing the high-resolution and accurate 3D structure information of obstacles.

Fig. 5.	 (Color online) Point cloud of a person: (a) original, (b) gridded result, and (c) filtered result.
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3.	 Experimental Results

	 In this section, we outline a series of specific experiments conducted to validate the 
effectiveness of the proposed method for sensor fusion across heterogeneous systems.

3.1	 Performance evaluation on FasterSeg

	 Table 1 presents the relevant parameters that we used in our experiments to train the 
FasterSeg model. In Fig. 6, columns (a) and (b) depict captured images and their corresponding 

Table 1
Hyperparameters for training FasterSeg model.
Parameter Name Value
Size of input image (pixels) 512 × 288
Image size of input layer (pixels) 512 × 256
Number of training samples 350
Number of validation samples 92
Number of training epochs 500
Batch size 4
Number of layers 8
Learning rate 10−2

Object categories (can be expanded) Road, wall, obstacle

Fig. 6.	 (Color online) Examples: (a) captured images, (b) labeled ground truth, and (c) results of FasterSeg.
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ground truth, while column (c) shows the results produced by FasterSeg. In this figure, the road, 
wall, and obstacle are represented by purple, gray blue, and red colors, respectively. The 
segmentation accuracy is summarized in Table 2.

3.2	 Performance evaluation on Monodepth model

	 We utilized the pretrained Monodepth model, as outlined in Ref. 13, which was trained on the 
KITTI dataset, to estimate the disparity map of a single-view image. Additionally, we gathered 
3465 pairs of well-rectified images using the ZED camera and fine-tuned the pretrained model 
with the parameters specified in Table 3. Our dataset consists of 1995 samples from the testing 
campus, 849 samples with people as obstacles, and 621 samples with office chairs. After the 
fine-tuning process, we derived the disparity-to-depth conversion formula, as shown in Eq. (7).

	 0.05625 0.7293
0.5971 0.000219

= −
+




	 (7)

	 Subsequently, the depth from the well-calibrated ZED sensor was used as the reference 
ground truth, and the absolute estimation errors from the Monodepth model error were 
calculated using Eq. (7) and are plotted in Fig. 7. Notably, the Monodepth model error increased 
with distance, emphasizing the necessity for heterogeneous sensor fusion to reduce it.

3.3	 Experiments of heterogeneous sensor fusion

	 The heterogeneous sensor fusion process addressed in Sect. 2.2 employs the LRF sensed 
information to rectify the depth estimation errors of the Monodepth model presented in Fig. 7. In 
this section, the ZED sensed depth data is still employed as the reference ground truth. In Fig. 8, 
we compare the point clouds when obstacles are located at various distances. The blue and green 

Table 2
Performance metrics on segmentation by FasterSeg.
Category Average Precision (AP) (%)
Wall 95.231
Road 95.875
Obstacle 89.446
Overall 93.513

Table 3
Hyperparameters for Monodepth model fine-tuning.
Parameter Name Value
Number of samples 3465
Size of input image (pixels) 512 × 256
Number of epochs 25
Batch size 4
Learning rate 10−4
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points correspond to the point clouds obtained from our sensor fusion and the ZED camera, 
respectively. Owing to the estimation error of Monodepth,(13,16) the structures are slightly 
inconsistent with ZED sensed depth information. However, our sensor fusion-based point cloud 
consistently aligns with the ground truth, regardless of the distance between the obstacle from 
the camera. The comparative analysis of depth estimation highlights the contributions of this 
study.

3.4	 Navigation test on wheeled robot
	
	 We conducted indoor navigation experiments in the corridor of our department building. 
Initially, we utilized GMapping to construct the map, which was then imported to OpenCV for 
further processing. This map was gridded, and a generalized Voronoi topological map was built, 

Fig. 7.	 Monocular depth estimation error.

Fig. 8.	 (Color online) Comparison of point clouds when the obstacle is (a) 1, (b) 1.5, (c) 2, (d) 2.5, (e) 3, (f) 3.2, (g) 4, 
and (h) 4.2 m away.
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as shown in Fig. 9(a). Subsequently, the location of the robot was determined using the adaptive 
Monte Carlo localization method,(19) and the initial path planning was conducted using the A* 
search algorithm.(20) Figure 9(b) illustrates the path from the robot to its destination at this stage. 
Plots (a)–(c) in Fig. 10 present an instance of the robot encountering an obstacle within 2 m, 
resulting in path replanning. Figure 10(d) showcases the replanned path that enabled the robot to 
bypass the obstacle.

4.	 Conclusion

	 In this study, we developed a method of improving robot navigation around obstacles by 
combining data from different sensors. We used both an image sensor and an LRF sensor to 
create a more accurate 3D map of the space in front of the robot. During navigation, the camera 
of the robot captures images, which are then analyzed using FasterSeg to identify obstacles. 
Simultaneously, the Monodepth model and disparity-to-depth conversion estimate the distance 
of the obstacles from the camera, creating point clouds relative to the position of the camera. By 
combining data from both sensors, we can generate more reliable 3D information about 

Fig. 9.	 (Color online) Robot navigation: (a) generalized Voronoi topological map and (b) initially planned path by 
A* algorithm.

Fig. 10.	 (Color online) Example of obstacle avoidance: (a) mobile robot, (b) a chair as an obstacle, (c) point cloud of 
the obstacle, and (d) replanned path for obstacle avoidance.
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surrounding obstacles, helping the robot navigate through cluttered environments. We also 
conducted several experiments to validate the effectiveness of our sensor fusion method for 
practical robot navigation.

Acknowledgments

	 This research was funded by the National Science and Technology Council, Taiwan, grant 
number NSTC 112-2221-E-992-064-MY2.

References

	 1	 Z. Wang, Y. Wu, and Q. Niu: IEEE Access 8 (2019) 2847. https://doi.org/10.1109/ACCESS.2019.2962554
	 2	 W. Chen, C. Zhou, G. Shang, X. Wang, Z. Li, C. Xu, and K. Hu: Remote Sens. 14 (2022) 6033. https://doi.

org/10.3390/rs14236033
	 3	 Q. Tang, J. Liang, and F. Zhu: Signal Process. 213 (2023) 109165. https://doi.org/10.1016/j.sigpro.2023.109165
	 4	 J. Long, E. Shelhamer, and T. Darrell: Proc. IEEE Conf. Computer Vision and Pattern Recognition (IEEE, 

2015) 3431. https://doi.org/10.1109/CVPR.2015.7298965
	 5	 O. Ronneberger, P. Fischer, and T. Brox: 18th Int. Conf. Medical Image Computing and Computer-Assisted 

Intervention (Springer, 2015) 234. https://doi.org/10.1007/978-3-319-24574-4_28
	 6	 Z. Zhou, Md M. R. Siddiquee, N. Tajbakhsh, and J. Liang: 21st Int. Conf. Medical Image Computing and 

Computer-Assisted Intervention (Springer, 2018) 3. https://doi.org/10.1007/978-3-030-00889-5_1
	 7	 H. Huang, L. Lin, R. Tong, H. Hu, Q. Zhang, Y. Iwamoto, X. Han, Y. W. Chen, and J. Wu: 2020 IEEE Int. Conf.

Acoustics, Speech and Signal Processing (IEEE, 2020) 1055. https://doi.org/10.1109/ICASSP40776.2020.9053405
	 8	 A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello: arXiv:1606.02147v1 (2016). https://doi.org/10.48550/

arXiv.1606.02147
	 9	 K. He, X. Zhang, S. Ren, and J. Sun: Proc. 2016 IEEE Conf. Computer Vision and Pattern Recognition (IEEE, 

2016) 770. https://doi.org/10.1109/CVPR.2016.90
	10	 P. K. Poudel, S. Liwicki, and R. Cipolla: arXiv:1902.04502v1 (2019). https://doi.org/10.48550/arXiv.1902.04502
	11	 W. Chen, X. Gong, X. Liu, Q. Zhang, Y. Li, and Z. Wang: arXiv:1912.10917v2 (2020). https://doi.org/10.48550/

arXiv.1912.10917
	12	 J. R. Chang and Y. S. Chen: Proc. IEEE Conf. Computer Vision and Pattern Recognition (IEEE, 2018) 5410. 

https://doi.org/10.1109/CVPR.2018.00567
	13	 C. Godard, O. M. Aodha, and G. J. Brostow: Proc. IEEE Conf. Computer Vision and Pattern Recognition 

(IEEE, 2017) 270. https://doi.org/10.1109/CVPR.2017.699
	14	 V. Anisimovskiy, A. Shcherbinin, S. Turko, and I. Kurilin: Canadian Conf. Artificial Intelligence (Springer, 

2020) 36. https://doi.org/10.1007/978-3-030-47358-7_4
	15	 A. Shrivastava, A. Gupta, and R. Girshick: Proc. IEEE Conf. Computer Vision and Pattern Recognition (IEEE, 

2016) 761. https://doi.org/10.1109/CVPR.2016.89
	16	 H. C. Chen: IEEE Access 7 (2019) 117869. https://doi.org/10.1109/ACCESS.2019.2953954
	17	 H. Chen, H. C. Chen, C. H. Sun, and W. J. Wang: Int. J. Fuzzy Syst. 26 (2024) 1143. https://doi.org/10.1007/

s40815-023-01657-0
	18	 G. Bishop and G. Welch: An Introduction to the Kalman, Proc. 2001 SIGGRAPH (ACM, 2001). 
	19	 X. Wang, C. Li, L. Song, N. Zhang, and H. Fu: Proc. 37th Chinese Control Conf. (IEEE, 2018) 5207. https://doi.

org/10.23919/ChiCC.2018.8482698
	20	 D. Foead, A. Ghifari, M. B. Kusuma, N. Hanafiah, and E. Gunawan: Procedia Comput. Sci. 179 (2021) 507. 

https://doi.org/10.1016/j.procs.2021.01.034

https://doi.org/10.1109/ACCESS.2019.2962554
https://doi.org/10.3390/rs14236033
https://doi.org/10.3390/rs14236033
https://doi.org/10.1016/j.sigpro.2023.109165
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-030-00889-5_1
https://doi.org/10.1109/ICASSP40776.2020.9053405
https://doi.org/10.48550/arXiv.1606.02147
https://doi.org/10.48550/arXiv.1606.02147
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.1902.04502
https://doi.org/10.48550/arXiv.1912.10917
https://doi.org/10.48550/arXiv.1912.10917
https://doi.org/10.1109/CVPR.2018.00567
https://doi.org/10.1109/CVPR.2017.699
https://doi.org/10.1007/978-3-030-47358-7_4
https://doi.org/10.1109/CVPR.2016.89
https://doi.org/10.1109/ACCESS.2019.2953954
https://doi.org/10.1007/s40815-023-01657-0
https://doi.org/10.1007/s40815-023-01657-0
https://doi.org/10.23919/ChiCC.2018.8482698
https://doi.org/10.23919/ChiCC.2018.8482698
https://doi.org/10.1016/j.procs.2021.01.034

