
2091Sensors and Materials, Vol. 37, No. 5 (2025) 2091–2104
MYU Tokyo

S & M 4044

*Corresponding author: e-mail: lhy@lyun.edu.cn
**Corresponding author: e-mail: cfyang@nuk.edu.tw
https://doi.org/10.18494/SAM5567

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Distributed Denial of Service Attack Detection
Based on Cuckoo Search Bidirectional Learning Method

Hongxiang Ke,1 Huoyou Li,2* and Cheng-Fu Yang3,4**

1Zhangzhou College of Science and Technology, Zhangzhou 363200, China
2School of Mathematics and Information Engineering, Longyan University, Longyan 364012, China

3Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan
4School of Energy and Power Engineering, Guangdong University of Petrochemical Technology, Maoming,

Guangdong Province 525000, China

(Received January 27, 2025; accepted April 21, 2025)

Keywords:	 distributed denial of service, attack detection, bidirectional long short-term memory, cuckoo
search bidirectional learning method, particle swarm optimization model

	 Distributed denial of service (DDoS) attacks pose a critical network security threat by
exhausting server resources and bandwidth, rendering systems incapable of delivering essential
services. While bidirectional long short-term memory (BLSTM) neural networks can detect
these attacks, the bidirectional learning (BL) model, despite its suitability for handling large-
scale and multi-attribute datasets, suffers from temporal interdependence limitations and
suboptimal performance. In this paper, we introduced the cuckoo search (CS) bidirectional
learning method (CSBLM), an innovative optimization model that enhanced the BL network
performance through dynamic parameter tuning. At its core, CSBLM leveraged an optimized
CS algorithm to fine-tune crucial BL neural network parameters, dynamically optimizing both
the number of hidden units in the LSTM layer and the ideal time series length for processing.
This sophisticated parameter optimization strategy represents a significant advancement in
DDoS attack detection methodology. Experimental results demonstrated CSBLM’s superior
performance compared with conventional optimization approaches, including gray wolf and
particle swarm optimization models. The implementation of CSBLM achieved outstanding
results, significantly reducing the number of network operation iterations while enhancing
detection accuracy to an impressive 99.09%. These outcomes firmly established CSBLM as a
powerful solution for improving DDoS attack detection, offering both enhanced efficiency and
exceptional accuracy in identifying and mitigating network security threats.

1.	 Introduction

	 The development of internet technologies has also led to a variety of distributed denial of
service (DDoS) attack methods. Classic attack types include synchronize (SYN) flood, domain
name system (DNS) query flood, internet control message protocol (ICMP) flood, user datagram
protocol (UDP) flood, and network time protocol flood, among others.(1) During an attack,

mailto:lhy@lyun.edu.cn
mailto:cfyang@nuk.edu.tw
https://doi.org/10.18494/SAM5567
https://myukk.org/

2092	 Sensors and Materials, Vol. 37, No. 5 (2025)

attackers often use a combination of techniques to achieve different objectives. The aim of some
attacks, such as ICMP flood and UDP flood, is to consume bandwidth by exploiting network
transmission protocols. Others, like SYN flood, target the resources of the victim server by
continuously initiating requests, leading to central processing unit (CPU) overload or memory
exhaustion. Over one-fifth of businesses worldwide are currently affected by DDoS attacks, and
this number continues to rise every year.(2) In February 2018, GitHub, an online code
management service, was targeted by a Memcached DDoS attack. During the attack, the
website’s traffic surged to 1.3 Tbps.(3) However, owing to GitHub’s strong focus on DDoS
protection, they were able to prevent significant damage. In February 2020, Amazon web
services, including simple storage service and other services, experienced a DDoS attack. This
attack caused an 8-hour outage, making it one of the largest DDoS attacks on record, with a
capacity of 2.3 Tbps.(4) The attack also crippled DNS web routers, impacting other services such
as elastic load balancing, relational database service, and elastic compute cloud, which are
commonly used for querying public DNS resolution systems.(5)

	 DDoS attacks primarily take two forms.(6) One type targets the network traffic, overwhelming
the bandwidth with attack packets and preventing legitimate traffic from reaching the server.
The other targets system resources, such as memory and CPU, by sending excessive requests
that disable the server’s ability to respond. DDoS attacks can be classified into direct and
reflection attacks.(7) Direct attacks send a high volume of packets, such as transmission control
protocol (TCP), ICMP, and UDP packets. A common method is TCP SYN flooding, which
exploits the TCP three-way handshake.(8) In this attack, massive TCP SYN packets are sent to
the server, which responds to each packet, but since the source IP is random, connections cannot
be established; consequently, resources are drained. Reflection attacks use intermediate
machines, like routers or printers, to send requests to the target server under the attacker’s
command.(9) If enough machines are involved, the reflection packets flood the target’s network
link. To address DDoS attacks, researchers have employed various approaches.
	 Li et al. developed a mathematical model using queuing theory in a container-based cloud
environment to model low-rate distributed denial-of-service (LDoS) attacks.(10) Shon et al. used
a genetic algorithm (GA) to select features and a support vector machine (SVM) for DDoS
detection.(11) Yuan et al. proposed the use of deep learning models to learn high-order features of
DDoS data, leveraging deep networks and historical network data to overcome the high error
rates of shallow machine learning.(12) Jin et al. proposed a hybrid model, DCNN_DSAE, which
combines the strengths of a deep convolutional neural network and deep stacked autoencoder
(DSAE) algorithms to improve both accuracy and efficiency.(13) Bhardwaj et al. integrated a
DSAE for feature learning with a deep neural network to classify network traffic into benign
and DDoS attack traffic.(5) Peng et al. explored the effect of hyperparameters on neural network
performance by using two structures: basic neural networks (BNNs) and long short-term
memory recurrent neural networks (LSTM RNNs).(1) They applied grid search algorithms to
optimize learning rates and number of iterations, minimizing the cost function of BNNs and
transferring the optimized parameters to the LSTM network.
	 Sensors are typically used to collect network traffic, data packets, and various system
operation parameters that serve as the foundation for attack detection. Sensors can be deployed

Sensors and Materials, Vol. 37, No. 5 (2025)	 2093

within the network to continuously monitor traffic and detect anomalous activities, such as signs
of DDoS attacks. The optimized model proposed in this paper [such as the cuckoo search (CS)
bidirectional learning method (CSBLM)] is aimed at improving the accuracy, scope, and ease of
implementation of DDoS attack detection. This means that when implementing these models,
the data provided by the sensors (e.g., network traffic, connection status, etc.) will be used for
more precise analysis. Given the challenges mentioned above, there is a clear need for a more
comprehensive, accurate, and easily implementable method for detecting DDoS attacks. The
optimized model proposed in this paper effectively addresses these issues. We introduce an
optimized approach, the CSBLM, which combines improved accuracy, a broader scope, and
simpler implementation for DDoS detection. The main contributions of this paper are as follows.
First, we present a dynamic optimization technique for the core parameters of the bidirectional
learning (BL) neural network using an enhanced CS algorithm. Second, we develop the CSBLM
detection algorithm. Finally, we conduct comparative experiments of CSBLM with traditional
models, such as grey wolf optimization (GWO) and particle swarm optimization (PSO), to
validate its effectiveness.

2.	 Related Principles and Technologies

2.1	 Bidirectional LSTM network

	 The BL network is a type of recurrent neural network designed to address the vanishing
gradient problem that occurs in deeper network structures.(14) This is achieved through gating
units that set thresholds, enabling the BL recurrent unit to retain information for long periods.
The BL recurrent unit consists of three gates: the forget gate, input gate, and output gate. The
forget gate discards or forgets information from previous time steps, the input gate reads and
selects information from the current time step, and the output gate determines which information
is output from the current cell. The forward propagation of the BL is expressed as

	

() ()
()

() ()

1 1

1 1

1

, , , ,

tanh , ,

, , tanh ,

,

t t t t t t
f f f u u u

t t t t t t t t
c c f u

t t t t t t
o o o o

W a x b W a x b

c W a x b c c c

W a x b a c

τ σ τ σ

τ τ

τ σ τ

− −

− −

−

   = + = +   

 = + = + 

 = + = 

 
 



	 (1)

where τf, τu, and τo represent the forget gate, input gate, and output gate, respectively; tc
represents the candidate value of the memory cell; and τu can be used to determine whether to
use tc to update ct. σ represents the sigmoid function, and tanh(ct) is commonly used for linear
activation functions. at represents the activation value at time t. After forward propagation,
backpropagation is performed, and the gradient used to update each parameter is represented by
Eq. (2), where t

fdτ , t
udτ , and t

odτ represent the update gradients of the three gates.

2094	 Sensors and Materials, Vol. 37, No. 5 (2025)

	

()() ()
()() ()

() ()

2 1

2

* * 1 tanh * * * 1

* * 1 tanh * * * 1

* tanh * * 1

t t t t t t t t
f o f f

t t t t t t t t
u o u u

t t t t t
o o o

d dc da c c

d dc da c c

d da c

τ τ τ τ

τ τ τ τ

τ τ τ

− = + − −  

 = + − −  

= −



	 (2)

dWf, dWu, dWc, and dWo represent the updated gradient of weight evidence, as shown below.

	

1 1

1 1

* , * ,

* , * ,

T Tt t t t t t
f f u u

T Tt t t t t t
c o o

dW d a x dW d a x

dW dc a x dW d a x

τ τ

τ

− −

− −

      = =         
      = =         



	 (3)

dct−1, dat−1, and dxt respectively represent the update gradients of the memory cells, activation
values, and time steps in the t − 1 time step, as

	
()()1 2

1

*

,

,

,

* * 1 tanh *

*

t t t t t t
o f

t T t T t T t T t
ca ua u fu f oa o

t T t T t T t T t
cx ux u fx f ox o

dc dc da c

da W dc W W W

dx W dc W W W

τ τ

τ τ τ

τ τ τ

−

−

 = + −  

= + + +

= + + +





	 (4)

where Wc, Wu, Wf, and Wo are

	 : , : , : , : .c ca cx u ua ux f fa fx o oa oxW W W W W W W W W W W W = = = =            	 (5)

	 Derivatives of deviation values bc, bf, bu, and bo are shown as

	 , . , ,t t t t
c f f u u o o

batch batch batch batch
db dc db d db dbτ τ τ= = = =∑ ∑ ∑ ∑ 	 (6)

2.2	 CS algorithm

	 The cuckoo algorithm is a metaheuristic algorithm inspired by the brooding behavior of
cuckoos and the flight patterns of leavers. It operates on the basis of three key rules.(15) (1)
Cuckoos lay one egg at a time, placing it randomly in a nest; (2) nests with high-quality eggs are
selected for the next generation; and (3) the number of host nests is fixed, and the probability of
finding a cuckoo egg is ()0,1ap ∈ . To simplify the process, it is assumed that each nest contains
only one egg, and the numbers of eggs, nests, and cuckoos are the same. The algorithm includes
both global exploration and local random walks. The local random walk is calculated using Eq.
(7), where t

ix and 1t
ix + represent the positions of the ith nest at iterations t and t + 1, respectively.

(16) Here, α is the step size scaling factor, s is the step size, s0 is the minimum step size, ϵ is a

Sensors and Materials, Vol. 37, No. 5 (2025)	 2095

random number from a uniform distribution, and ⊗ denotes the dot product of vectors.
Additionally, t

jx and
t
kx represent two randomly selected positions at iteration t.

	 () () ()1 1,
0,

0
,

0
t t t t
i i a j k

x
x x s H p x x H x

x
α+ >

= + ⊗ − ⊗ − =  ≤
 	 (7)

	 The Mantegna algorithm can achieve a symmetric Lévy stable distribution, and the step size
s can be calculated via Eq. (8), where U follows a distribution with a mean of 0, the variance is a
Gaussian normal distribution with x, and X can be calculated via Eq. (8). The τ function is
constant for a given λ, and when λ = 1 and σ2 = 1.

	 () () ()
()()

()
()

1/
2 2

1/ 1 /2

1 sin / 2
, ~ 0, , ~ 0,1 , •

1 2
,

/ 2
Us U N V N

V

λ

λ λ

τ λ λ
σ σ

λτ λ −

 + π
 = =

+  
	 (8)

	 The global random walk is applicable to Lévy flights and is calculated using Eq. (9). λ is
generally taken as 1 or 1.5, and α is taken as 0.01.

	 () () () ()
()

1
01

sin / 2 1, , , .(0)t t
i ix x L s L s s s

s λ

λτ λ λ
α λ λ+

+

π
= + = ⋅ >

π


	 (9)

3.	 Methods

	 The BL model was used to detect DDoS attacks and was well-suited to scenarios with large
datasets, multiple attributes, and interdependent time series. To enhance the performance of the
BL network, in this paper, we proposed CSBLM, in which the CS algorithm is utilized to
dynamically optimize key parameters, such as the number of hidden units in the LSTM layer
and the time series length in the BL neural network. Through comparative experiments of the
traditional GWO and PSO models, the effectiveness of CSBLM was demonstrated in terms of
iteration times and optimization performance.

3.1	 Neural network parameter optimization

3.1.1	 Comparison and analysis of CS, GWO, and PSO optimization algorithms

	 The BL network is effective for recognizing time series datasets because of its strong
memory function. Its performance depends on both the dataset it is trained on and the network
structure. Additionally, many parameters affect the network structure, and continuous
experimentation is necessary to create a model that fits the specific dataset. With a large
parameter space, random or exhaustive search methods require significant time and resources.
CSBLM intelligently searches for the optimal combination of parameters in the network
structure, such as time steps and the number of units in the LSTM layer, to create a more suitable

2096	 Sensors and Materials, Vol. 37, No. 5 (2025)

network for DDoS datasets and improve prediction accuracy. It is compared with models based
on the GWO and PSO algorithms to demonstrate its efficiency. The GWO algorithm has strong
convergence and fewer parameters, with each gray wolf representing a feasible solution moving
towards the three best individuals in the cluster during optimization. The PSO algorithm relies
on information sharing among individuals in the population, allowing the entire group to move
towards the optimal solution by evolving from disorder to order.
	 In the experiment, the following parameters were set: number of nests, particles, and wolves
n = 8, maximum number of iterations iterationsltermax = 30, and dimension d = 2. In the CS
algorithm, a discarding factor pa = 0.25 was applied. For the GWO algorithm, random values for
r1 and r2 were generated within the range of 0 to 1, and the coordination coefficients A and C
were calculated accordingly. In the PSO algorithm, the inertia parameter w = 0.8, the acceleration
constants C1 = C2 = 2, and r1 and r2 were randomly generated within the range of 0 to 1. We used
the IDS_ISCX_2012_dataset, which contains 100000 data points, with a 1:1 ratio of normal to
malicious requests. The dataset was split into a 4:1 ratio for the training and test sets. As a result,
80000 data points were used for training the neural network, and the cross-entropy loss function
value was calculated. This value served as the fitness function for the heuristic algorithm to
determine the optimal parameter combination.
	 Figure 1 presents a comparison of the convergence effects in optimizing the BL model
parameters using the CS, GWO, and PSO algorithms. The CS algorithm achieved optimal fitness
values of 0.24766 in the fourth iteration and 0.23624 in the twelfth iteration. The GWO algorithm
found better solutions in the fourth, tenth, and thirteenth iterations, with values of 0.25113,
0.24422, and 0.2409, respectively. The PSO algorithm reached a minimum fitness value of
0.28378 in the second iteration, and the value continued to decrease from the fourth to the tenth
iteration, eventually stabilizing at 0.25925. In comparison, the cuckoo algorithm outperformed
the other two methods in finding the optimal fitness value more quickly. This is because the CS
algorithm performs both global and local optimizations in each iteration, with a higher
probability of parameter replacement, leading to fewer iterations.

Fig. 1.	 (Color online) (a) Convergence of the best-fit values of the three models and (b) average convergence values
for three models.

(a) (b)

Sensors and Materials, Vol. 37, No. 5 (2025)	 2097

	 The average fitness value of each iteration during the optimization process of the three
algorithms is shown in Fig. 1(b). The GWO and CS algorithms show relatively smooth changes,
while the PSO algorithm fluctuates between 0.28 and 0.425 as the number of iterations increases.
This fluctuation is primarily due to PSO considering fewer factors when updating particle
information, leading to a more random update speed than those in the other two algorithms. The
CS algorithm is smoother than the GWO, as it updates position information by considering all
individuals in the cluster, while GWO relies more on the positions of the three optimal gray
wolves. As a result, the average fitness value of the CS algorithm consistently decreases with
more iterations, while the GWO shows fluctuations during its decline, and the PSO shows more
noticeable fluctuations. For detecting DDoS datasets, the cuckoo algorithm-based optimization
model requires fewer iterations and converges more smoothly than both the gray wolf and
particle swarm algorithms, demonstrating better overall performance.

3.1.2	 Optimization of network parameters for the CSBLM

	 The CSBLM intelligently searches for the best combination of parameters in the BL neural
network, including timesteps and LSTM layer units, to create a network more suited for DDoS
datasets and improve prediction accuracy. To further validate the CS algorithm, we compare
CSBLM with the GWO and PSO algorithms from earlier. The results show that the CS algorithm
outperforms the others in optimization. The steps for optimizing the BL neural network
parameters using the CS algorithm are as follows.
(1)	Preprocess the IDS_ISCX_2012_dataset.
(2)	Set the solution range and dimension of the BL neural network timesteps and units. Moreover,

it is also necessary to set the number of nests in the heuristic algorithm, the probability of
discarding Pa, and the maximum number of iterations.

(3)	Initialize the variables and randomly assign the location of the nest in the CS algorithm. The
location of the nest (timesteps, units) determines the subsequent composition of the BL
network.

(4)	Train the BL network model on the basis of the set parameters. Moreover, the cross-entropy
error obtained after training is used as the fitness value of the heuristic algorithm, and later, it
is also used as the criterion for whether to replace the old and new solutions.

(5)	Global optimization is performed using the Levy formula to calculate the new nest location.
The resulting solution is then placed into the BL network for training to obtain the
corresponding fitness value. Finally, the fitness values of the new and old solutions are
compared, and on the basis of the principle of optimal selection, a decision is made on
whether to replace the old nest.

(6)	After the global optimization step, the CS algorithm is applied for local optimization. During
this process, nests with low fitness are discarded based on the basis of the probability Pa, and
new nest positions are generated using the local random walk formula.

(7)	Again derive the optimal solution on the basis of the fitness value, and then determine
whether the maximum number of iterations has been reached. If not, return to step (6) to
continue optimizing; otherwise, proceed to step (8).

2098	 Sensors and Materials, Vol. 37, No. 5 (2025)

(8)	Obtain the optimal parameters of the BL network, establish the optimal network model, and
finally detect DDoS data.

3.2	 DDoS detection via CSBLM

	 As shown in Fig. 2, the CSBLM consists of two parts: parameter optimization and the neural
network. The neural network is made up of an input layer, a hidden layer, and an output layer.
The input layer normalizes the DDoS dataset and organizes it into time steps. The hidden layer
uses LSTM units with a bidirectional structure to learn from both past and future time periods.
Adjusting the number of neurons in the LSTM module enhances the network performance. The
output layer, using a fully connected layer and sigmoid function, predicts the data types in the
DDoS dataset. After the BL method, network parameters are updated through backpropagation
with the help of optimization functions.

3.3	 Experiment and results analysis

	 In this paper, we used the IDS_ISCX_2012 dataset and a three-layer network structure. By
optimizing the network using CS, GWO, and PSO algorithms, the optimal combinations of time
steps and the number of hidden units in the LSTM layer are found to be [51,19] and [62,22],
respectively. The first value represents the time step, and the second represents the number of
hidden units. Five metrics are selected for evaluation: accuracy, precision, recall, F1 score, and
the number of iterations. Each parameter is tested 10 times, and the average value is calculated.
Peng et al. used the parameter combinations [25,64] and achieved an accuracy of 97.89% and an
F1 score of 97.89%.(1) These results are used for comparison in this study. During the experiment,
the parameter values after the 8th and 40th iterations are recorded to observe the effect of
iteration count on the results. Tables 1 to 6 present the data for three parameter combinations:
[51,19], [25,64], and [62,22]. Tables 1 to 3 show the results after 8 iterations, while Tables 4 to 6

Fig. 2.	 (Color online) DDoS detection model based on the CSBLM network.

Sensors and Materials, Vol. 37, No. 5 (2025)	 2099

Table 1
Parameter combination [51,19], 8 iterations.
Test number Accuracy

(%)
Precision

(%)
Recall (%) F1 (%) Training loss

(%)
Training acc

(%)
1 93.62 95.53 91.68 93.75 0.1007 98.63
2 96.97 99.76 94.48 97.05 0.1088 98.35
3 95.70 99.53 92.43 95.85 0.1002 98.58
4 94.41 99.57 90.23 94.67 0.1031 98.42
5 91.18 94.77 88.38 91.47 0.1084 98.49
6 95.96 99.35 93.02 96.08 0.0912 98.84
7 95.38 97.58 93.45 95.47 0.1129 98.05
8 95.303 98.19 92.809 95.426 0.1085 98.46
9 95.168 98.596 92.252 95.319 0.1017 98.51
10 95.27 97.05 93.69 95.34 0.1008 98.60
Average value 94.90 97.99 92.24 95.04 0.104 98.49

Table 2
Parameter combination [25,64], 8 iterations.
Test number Accuracy

(%)
Precision

(%)
Recall (%) F1 (%) Training loss

(%)
Training acc

(%)
1 97.10 99.28 95.17 97.15 0.1323 96.71
2 96.97 99.76 94.48 97.05 0.1363 96.74
3 97.09 99.66 94.78 97.16 0.1345 96.68
4 96.72 99.83 93.97 96.82 0.1279 96.80
5 96.87 99.38 94.62 96.94 0.1372 96.54
6 97.03 99.41 94.89 97.10 0.1270 96.85
7 97.04 99.44 94.87 97.10 0.1339 96.77
8 97.02 99.74 94.59 97.10 0.1278 96.97
9 96.88 99.46 94.57 96.96 0.1290 96.69
10 96.89 99.72 94.37 96.97 0.1279 96.79
Average value 96.96 99.57 94.63 97.04 0.105 96.75

Table 3
Parameter combination [62,22], 8 iterations.
Times Accuracy

(%)
Precision

(%)
Recall (%) F1 (%) Training loss

(%)
Training acc

(%)
1 98.64 98.73 98.55 98.64 0.1132 98.03
2 99.11 99.78 98.46 99.12 0.1062 98.59
3 99.00 99.64 98.39 99.01 0.0993 98.64
4 98.57 99.19 97.98 98.85 0.1051 98.64
5 98.63 98.95 98.33 98.63 0.977 98.69
6 98.83 99.74 97.96 98.84 0.999 98.59
7 98.59 99.72 97.52 98.61 0.940 98.70
8 98.07 99.07 97.14 98.09 0.1008 98.70
9 99.15 99.83 98.5 99.16 0.1015 98.65
10 99.19 99.79 98.62 99.20 0.0910 98.86
Average value 98.78 99.44 98.15 98.82 0.363 98.61

2100	 Sensors and Materials, Vol. 37, No. 5 (2025)

Table 4
Parameter combination [51,19], 40 iterations.
Times Accuracy

(%)
Precision

(%)
Recall (%) F1 (%) Training loss

(%)
Training acc

(%)
1 99.60 99.93 99.29 99.61 0.0771 99.02
2 95.63 98.24 93.36 95.74 0.0833 98.78
3 93.83 99.42 89.40 94.15 0.0832 98.99
4 96.20 99.53 93.30 96.31 0.0803 99.05
5 95.66 96.96 94.49 95.71 0.0885 98.71
6 95.99 97.48 94.65 96.04 0.0847 98.81
7 93.63 91.05 95.98 93.45 0.0803 98.97
8 95.34 99.11 92.15 95.50 0.0948 98.72
9 94.98 99.73 91.06 95.20 0.0815 99.01
10 95.25 97.42 93.35 95.34 0.0911 98.82
Average value 95.61 97.89 93.70 95.71 0.084 98.89

Table 5
Parameter combination [62,22], 40 iterations.
Times Accuracy

(%)
Precision

(%)
Recall (%) F1 (%) Training loss

(%)
Training acc

(%)
1 98.99 99.79 98.21 99.00 0.881 98.79
2 99.25 99.90 98.60 99.25 0.875 99.04
3 99.33 99.73 98.94 99.33 0.075 99.14
4 99.10 99.67 98.53 99.10 0.0806 99.09
5 99.35 99.96 98.74 99.35 0.0715 99.25
6 99.13 99.89 98.39 99.14 0.0945 98.68
7 99.15 99.62 98.68 99.15 0.0782 99.11
8 99.17 99.88 98.48 99.18 0.773 99.13
9 98.17 99.15 97.23 98.18 0.0856 98.86
10 99.25 100 98.52 99.25 0.0767 99.07
Average value 99.09 99.76 98.43 99.09 0.309 99.02

Table 6
Parameter combination [25,64], 40 iterations.
Times Accuracy

(%)
Precision

(%)
Recall (%) F1 (%) Training loss

(%)
Training acc

(%)
1 98.37 99.99 96.89 98.41 0.1061 97.43
2 96.75 98.49 95.17 96.80 0.0975 97.68
3 97.88 99.34 96.53 97.91 0.1027 97.60
4 97.66 99.06 96.36 97.69 0.1001 97.67
5 97.46 99.74 95.38 97.51 0.1129 97.26
6 97.66 99.90 95.60 97.71 0.0993 97.69
7 97.80 99.37 96.33 97.83 0.1035 97.56
8 97.62 99.32 96.04 97.65 0.1033 97.67
9 97.98 99.07 96.65 98.00 0.1005 97.63
10 97.60 99.45 95.89 97.64 0.1011 97.77
Average value 97.68 99.37 96.08 97.72 0.103 97.60

Sensors and Materials, Vol. 37, No. 5 (2025)	 2101

display the results after 40 iterations. Each experiment was repeated 10 times, and the average
values were calculated. The model was evaluated using the accuracy, precision, recall, and F1
score for the training set, and both the loss function value and accuracy of the training set were
recorded.
	 Figures 3(a) and 3(b) display the accuracies for the three parameter combinations while
Figs. 4(a) and 4(b) show their corresponding loss values. Notably, the experimental data are
based on the training set and tested on the test set to check for overfitting. From the results in
Figs. 4(a) and 4(b), it is concluded that the optimized parameter combinations achieve higher
accuracy and lower loss values. Figure 3(a) shows that after 9 iterations, the parameter
combinations [62,22] and [51,19] quickly reduce the loss rate and maintain an accuracy of about
98.5%, while the [25,64] combination has an accuracy of only around 96.5%. This trend

Fig. 3.	 (Color online) (a) Accuracy rates for three combinations after eight iterations. (b) Accuracies of the three
combinations after 40 iterations.

Fig. 4.	 (Color online) (a) Loss values for three combinations after eight iterations. (b) Loss values for 40 iterations
of three combinations.

(a) (b)

(a) (b)

2102	 Sensors and Materials, Vol. 37, No. 5 (2025)

continues after 40 iterations. Figure 3(b) shows that the accuracies of [62,22] and [51,19] rise to
approximately 99%, while that of [25,64] reaches only about 97.5%. Figures 4(a) and 4(b) show
that the loss values for [62,22] and [51,19] decrease more quickly and remain lower for the same
number of iterations. The loss value for [25,64] is significantly higher, indicating that parameter
combinations optimized by heuristic algorithms can considerably improve both the accuracy and
gradient descent speed in the training set.
	 Figures 5(a) and 5(b) show the results for three parameter combinations after 8 and 40
iterations. The data were averaged from 10 experiments and evaluated in terms of accuracy,
precision, recall, and F1 score. According to the figures, for the 8 and 40 iterations, the
accuracies of the [51,19] combination are 94.90% and 95.61%, respectively, which are lower than
the approximately 98% accuracy seen in the training set. This indicates overfitting. While the
parameter combinations [62,22] and [51,19] are optimized using heuristic algorithms, adjusting
parameters based on fitness values alone does not prevent overfitting. To address this problem,
optimization can be improved by increasing the number of iterations and recognition accuracy,

Fig. 5.	 (Color online) (a) Evaluation criteria for three sets of parameters after eight iterations. (b) Evaluation
criteria for three sets of parameters after 40 iterations.

(a)

(b)

Sensors and Materials, Vol. 37, No. 5 (2025)	 2103

but additional measures are needed to prevent overfitting. One approach is to impose stricter
constraints on the neuron optimization range to avoid overfitting caused by too few neurons in
the LSTM layer or overly large time step divisions, while multiple optimization can help reduce
the likelihood of such issues. For the [62,22] combination, the evaluation metrics for the training
and testing sets are similar, and there is no clear evidence of overfitting. Compared with the
[25,64] combination from previous literature,(1) accuracy increases from 96.96% and 97.68%
after 8 and 40 iterations, respectively, to 98.78% and 99.09%.

4.	 Conclusions

	 We proposed an optimization model for the core parameters (time step size, number of
neurons, etc.) of BL networks via CS. In terms of parameter selection, we compared and
analyzed the performance of three heuristic algorithms, namely, CS, GWO, and PSO, in
optimizing DDoS datasets and ultimately identified two optimal parameter combinations,
[51,19] and [62,22]. These two combinations are compared with the parameter combination
[25,64] reported in the literature.(13) The experimental results show that the two combinations
[51,19] and [62,22] have better performance for the training set and can achieve higher accuracy
in fewer iterations. Moreover, a comparison of the performance of the three methods on the test
set reveals that the combination method of [51,19] has an overfitting phenomenon. We adopted a
more precise setting of the neuron range and multiple optimization testing methods to solve the
overfitting problem. With the parameter combination of [62,22], the accuracies can reach 98.78%
and 99.09% in the 8th iteration and 40th iteration, respectively, and the F1 value also reaches
98.81% and 99.09%, which are considerable improvements.

Acknowledgments

	 This work is supported in part by the Fujian Provincial Department of Education Project (No.
JAT241409), Fujian Provincial Science and Technology Special Commissioner Project (No.
202135060173), and Zhangzhou Science and Technology Special Commissioner Project (No.
2024S350623028).

References

	 1	 T. Peng, C. Leckie, and K. Ramamohanarao: ACM Comput. Surv. 39 (2007) 3–es.
	 2	 G. Somani, M. S. Gaur, D. Sanghi, M. Conti, and M. Rajarajan: Comput. Electr. Eng. 59 (2017) 165.
	 3	 https://www.wired.com/story/github-ddos-memcached/ (accessed March 2018).
	 4	 https://www.zdnet.com/article/aws-said-it-mitigated-a-2-3-tbps-ddos-attack-the-largest-ever/ (accessed June

2020).
	 5	 A. Bhardwaj, V. Mangat, and R. Vig: IEEE Access 8 (2020) 181916.
	 6	 R. K. C. Chang: IEEE Commun. Mag. 40 (2002) 42.
	 7	 T. Mahjabin, Y. Xiao, G. Sun, and W. Jiang: Int. J. Distrib. Sens. Netw. 12 (2017) 13.
	 8	 https://www.techtarget.com/searchnetworking/definition/TCP (accessed March 2024).
	 9	 U. Rahamathullah and E. Karthikeyan: Proc. Int. Conf. Smart Data Intelligence (ICSMDI 2021), Tamil Nadu,

India.
	10	 Z. Li, H. Jin, D. Zou, and B. Yuan: IEEE Trans. Parallel Distrib. Syst. 31 (2020) 695.

https://www.wired.com/story/github-ddos-memcached/
https://www.zdnet.com/article/aws-said-it-mitigated-a-2-3-tbps-ddos-attack-the-largest-ever/
https://www.techtarget.com/searchnetworking/definition/TCP

2104	 Sensors and Materials, Vol. 37, No. 5 (2025)

	11	 T. Shon, Y. Kim, C. Lee, and J. Moon: Proc. 6th Annu. IEEE SMC Information Assurance Workshop, West
Point, NY, USA, 2005, 176–183.

	12	 X. Yuan, C. Li, and X. Li: 2017 IEEE Int. Conf. Smart Computing (SMARTCOMP), Hong Kong, China, 2017,
1–8.

	13	 L. Jin, J. Zhang, Z. Li, and Y. Liao: 2024 5th Int. Conf. Big Data & Artificial Intelligence & Software
Engineering (ICBASE), Wenzhou, China, 2024, 579–583.

	14	 J. Schmidhuber and S. Hochreiter: Neural Comput. 9 (1997) 1735.
	15	 Y. Zhang and Z. Jin: J. Harbin Inst. Technol. 51 (2019) 89.
	16	 Y. Li, Z. Shang, and J. Liu: J. Comput. Sci. 47 (2020) 219.

