S & M 4049

# Humidity-sensing Performance of Graphene/SnO<sub>2</sub> Nanocomposites

Zhen Zhu<sup>1</sup> and Wang-De Lin<sup>2\*</sup>

<sup>1</sup>School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China <sup>2</sup>Department of Cosmetic Application & Management, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 26647, Taiwan

(Received January 20, 2025; accepted March 18, 2025)

Keywords: humidity sensor, graphene/SnO2, nanocomposites

In this study, a series of humidity sensors based on graphene/SnO<sub>2</sub> (Gr/SnO<sub>2</sub>) nanocomposites with different proportions of the sensing material (10, 20, 30, 40, 50, and wt%) have been successfully fabricated by a simple method. The surface design, chemical structural information, and elemental variation of the prepared humidity sensors were investigated using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDXS) and transmission electron microscopy (TEM). By measuring the sensitivity, hysteresis, response characteristics of the humidity sensors, it was proved that the obtained 30 wt% Gr/SnO<sub>2</sub>-based humidity sensor exhibited outstanding fast response/recovery speeds (28/140 s), small hysteresis ( $\sim$ 5% RH), and high humidity sensitivity (S=80770) in the 12–90% RH range. Therefore, Gr/SnO<sub>2</sub> can be used as a potential material for real-time humidity-sensing applications.

# 1. Introduction

Humidity is a key environmental factor affecting environmental protection, precision instrument protection, industrial production, food safety, agricultural manufacturing, wearable electronics, and human health applications in daily life. Thus, it is imperative to monitor the humidity of the surrounding environment for assessing human health.<sup>(1–5)</sup> Until now, many efforts have been devoted to developing humidity sensors with flexibility, easy processability, low hysteresis, high sensitivity, low cost, good chemical and thermal stabilities, and capability for the real-time monitoring of humidity, mainly including ceramics, electrolytes, metal oxide semiconductors, polymers, 2D nanomaterials, and proteins.<sup>(6–11)</sup> Among them, metal oxide semiconductor nanomaterials such as ZnO, ZrO<sub>2</sub>, SnO<sub>2</sub>, WO<sub>3</sub>, and TiO<sub>2</sub> have been generally recognized as preferred choices owing to their advantages of cost-effectiveness, chemical stability, and high sensitivity.<sup>(12–17)</sup> In recent years, as a typical n-type oxide semiconductor, SnO<sub>2</sub> has been widely investigated as a sensitive material for humidity detection application.

\*Corresponding author: e-mail: <u>newwander@smc.edu.tw</u> <u>https://doi.org/10.18494/SAM5550</u> However,  $\text{SnO}_2$  has some shortcomings such as low sensitivity and slow response, which seriously hindered the development and application of humidity sensors.<sup>(18–20)</sup> To solve this problem, numerous research studies have been devoted to improving the humidity-sensing performance of  $\text{SnO}_2$ -based sensors. As a typical carbon material, graphene has a large specific surface area and excellent electrical performance, and can be considered as an ideal material to improve the sensing performance of  $\text{SnO}_2$  humidity sensors.<sup>(21,22)</sup> Notably, reports have demonstrated that graphene decorated with metal oxide nanoparticles is effective for constructing high-performance sensors. Although there are humidity sensors prepared using  $\text{SnO}_2$ , graphene and derivatives, most of them reflect humidity changes based on the change in capacitance.<sup>(23)</sup> However, the difference in this paper lies in the use of a dynamic flow system and the change in impedance to reflect humidity.

In this study, a Gr/SnO<sub>2</sub> nanomaterial-based humidity sensor is proposed. The electrical characteristics, chemical structure, surface morphology, and humidity-sensing properties of the prepared Gr/SnO<sub>2</sub> humidity sensor were studied using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDXS), transmission electron microscopy (TEM), and chemical impedance analyses. The results of the experiment showed that the prepared Gr/SnO<sub>2</sub> humidity sensor demonstrates outstanding performance for humidity detection, which is dated in terms of response in a quick/short recovery period, small drift in humidity, and high humidity sensitivity.

# 2. Sensor Fabrication

#### 2.1 Components used

Graphene with high purity (>99%) was purchased from UniRegion Bio-Tech. Ethanol (anhydrous) was purchased from Echo Chemical Corporation Limited, Taiwan. Polyvinyl alcohol (PVA) and sodium stannate ( $Na_2SnO_3$ ·3H<sub>2</sub>O) were purchased from Sigma–Aldrich Co. Ltd. (USA). Distilled and deionized (DI) water was collected from a Milli-Q water purification system (Millipore Corp.). All the purchased materials were used as is and without further processing or treatment.

# 2.2 Synthesis

A known amount of  $Na_2SnO_3 \cdot 3H_2O$  was dissolved in an anhydrous ethanol solution (20 ml) and then sonicated for 0.5 h. Subsequently, a stoichiometric amount of graphene was sonicated with the aforementioned solution for 1 h. The solution was kept in an electric oven at 50 °C for 24 h. The desired product was obtained by calcination at 400 °C for 2 h. Graphene/SnO<sub>2</sub> abbreviated as  $Gr/SnO_2$  was the final composite obtained. Tests were performed on nanocomposite sensing materials fabricated using graphene at various ratios (10, 20, 30, 40 and 50 wt%).

## 2.3 Characterization

Structural and particle size analyses, TEM, and FTIR spectroscopy were performed to characterize the samples. Structural analysis was conducted using XRD from Shimadzu (Model no. 6000) over a range of 10–80° ( $2\theta$ ) at 2° min<sup>-1</sup> using Cu K $\alpha$ 1 radiation ( $\lambda$  = 1.5404 Å) at 35 kV and 35 mA. Average particle size was evaluated using  $\kappa\lambda/\beta\cos\theta$  for Gr/SnO<sub>2</sub>. The samples were suspended in ethanol using ultrasound and dispersed in a copper grid prior to TEM analysis using an electron microscope from JEOL (Model no. JEM2010) to visualize the surface morphology. For FTIR spectroscopy, the samples were pulverized with KBr prior to analysis. An Agilent Cary Fourier transform spectrometer that covered the wavelength range from 400 to 4000 cm<sup>-1</sup> was used to obtain the spectra.

#### 2.4 Fabrication of humidity sensor

The clips for sensors were fabricated by dip-coating (Binder: PVC) the prepared material on an alumina substrate ( $10 \times 5 \text{ mm}^2$ ; rotation speed, 1000 rpm), which appeared like a pair of comb-like gold electrodes. Subsequently, the gas-sensitive layer was dried at 80 °C for 30 min, followed by calcination at 300 °C for 4 h. Two wires were used to connect the two gold electrodes to the sensor circuit.

### 2.5 Humidity-sensing measurements

Figure 1 shows a schematic diagram of the experimental setup used for measuring the electrical response of the sensor, which was investigated using a dynamic flow system equipped with a thermo-hygrometer for temperature and relative humidity (RH) monitoring. The humidity sensor was optimized according to Taiwan's Center of Measurement Standard/Industrial Technology Research Institute (ITRI) standards. The designed sensors were placed inside an



Fig. 1. (Color online) Experimental setup.

airtight glass chamber prefilled with water. The RH inside the chamber was controlled by injecting air into the water, generating water vapor. The system was allowed to reach equilibrium for 15 min. The RH response (S) of the sensor and the error in the hysteresis of humidity (H) were calculated using the following equation:

$$S = \frac{R_d}{R_h}.$$
 (1)

Here,  $R_d$  is the 12% RH-produced resistance, which can be under dry conditions, and  $R_h$  is the specific-humidity-produced resistance.

$$H = \frac{\Delta fmax}{ffs} \tag{2}$$

Here,  $\Delta fmax$  is the maximum hysteresis error and ffs is the full-scale response output. RH was varied from 12 to 90%, then back to 12% to evaluate the humidity hysteresis properties of the sensors. When the total impedance can have a drift of 90%, the time was estimated as the response time. Different ratios of air to water and RH at 12 and 90% were used to estimate the sensor behavior under dynamic conditions. RH was monitored using a Rotronic hygrometer. The impedance response of the sensing material to ambient humidity was measured using a chemical impedance analyzer (Delta United, USA Model no. 6010); the input voltage and frequency were 1 V and 1 kHz, respectively.

#### 3. Results and Discussion

## 3.1 Structure characterization

The FTIR investigation was conducted to determine the structural information of the functional groups of different contents for  $Gr/SnO_2$  nanocomposites as presented in Fig. 2. The FT–IR spectra of graphene exhibit a band at 2363 cm<sup>-1</sup> associated with the C=O stretching mode, which may have resulted from the environmental adsorption of CO<sub>2</sub> on the graphene surface.<sup>(24)</sup> Broad and weak bands at 856 and 1450 cm<sup>-1</sup>, respectively, indicate the occurrence of O-Sn-O bonding.<sup>(25)</sup> The wide band at 3400–4000 cm<sup>-1</sup> might be caused by the vibration of water molecules on the surface of the Gr/SnO<sub>2</sub> nanocomposite.

Figure 3 shows the XRD patterns of the samples. All the as-synthesized samples have a diffraction peak at about 26.3 and 54.0°, which can be attributed to the (002) and (004) crystal planes of graphene.<sup>(26)</sup> In all the as-synthesized Gr/SnO<sub>2</sub> samples with different SnO<sub>2</sub> contents, the prominent diffraction peaks at 26.7, 33.9, 51.8, 54.6, 57.5, 64.5, and 65.7° can respectively be ascribed to the (110), (101), (211), (220), (002), (112), and (301) planes of SnO<sub>2</sub> related to the standard value (JPCDS 41-1445).<sup>(27)</sup> The synthesis produced a high-purity material as no other crystalline phase was observed.



Fig. 2. (Color online) FT-IR spectra of different contents for Gr/SnO<sub>2</sub> nanocomposites.



Fig. 3. (Color online) XRD analyses of (a) graphene, (b)  $SnO_2$ , and (c)–(g) 10, 20, 30, 40 and 50 wt% Gr/SnO<sub>2</sub> nanocomposites.

In the case of the  $Gr/SnO_2$  nanocomposite, it is very difficult to find the peak at 26.3 and 54.0° because  $SnO_2$  is highly crystalline, whereas that of the graphene nanosheet may provide the disordered stack nature in the nanocomposite.

The morphologies of  $SnO_2$ , graphene, and  $Gr/SnO_2$  materials were visualized using TEM, as illustrated in Figs. 4(a)-4(d). Figure 4(a) shows that the  $SnO_2$  material exhibits inconsistent



Fig. 4. (Color online) TEM images of (a and b) SnO<sub>2</sub>, (c) graphene, (d) 30 wt% Gr/SnO<sub>2</sub>, and (e) EDX spectrum of 30 wt% Gr/SnO<sub>2</sub> nanocomposite.

morphology and particle agglomeration. Figure 4(b) shows the fringe spacing (0.33 nm) indexed to the (100) crystallographic planes of  $\text{SnO}_2$ .<sup>(28)</sup> Figure 4(c) shows the stacking behavior with the irregularities of assembled graphene sheets. Figure 4(d) shows the aggregation of  $\text{SnO}_2$  on the surface of the 30 wt% Gr/SnO<sub>2</sub> nanocomposite. The presence of tin, carbon, and oxygen was estimated from the EDX spectra in Fig. 4(e) for the Gr/SnO<sub>2</sub> composite prepared in 30 wt% ratio. These results confirmed the phase purity and formation of nanocomposites in the samples.

#### 3.2 Humidity-response properties of as-prepared samples

The as-prepared Gr/SnO2 nanocomposite samples with different graphene contents have been used as humidity sensors, and their humidity sensing properties under various RH have been measured. The measurements were carried out at a suitable AC voltage of 1V and frequency of 1 kHz. The impedance values of the as-prepared samples (SnO<sub>2</sub>, graphene, and Gr/SnO<sub>2</sub> with different graphene contents) decreased with increasing RH values as shown in Fig. 5(a). In addition, 30 wt% Gr/SnO<sub>2</sub> exhibited the highest sensitivity (80770) in the RH range of 12–90% (a change of approximately four orders of magnitude ), as shown in Fig. 5(b).

When humidity sensors are utilized in the adsorption and desorption processes, the most important characteristic that should be evaluated for humidity sensor reliability is the difference in maximum RH. This property is known as humidity hysteresis. Compared with previously







(b)

Fig. 5. (Color online) (a) Variations in impedance with RH (%) of as-prepared samples. (b) Variations in sensitivity with RH (%) of as-prepared samples.

reported sensors,<sup>(23)</sup> Table 1 shows that 30 wt%  $Gr/SnO_2$  displayed good humidity hysteresis (the maximum humidity hysteresis was 5.48%) in the RH range of 12–72%.

Response and recovery times can be regarded as one of the crucial characteristics for the assessment of humidity sensor performance and practical applications. Figure 6 shows that the impedance of 30 wt%  $Gr/SnO_2$  abruptly changed inversely with increasing RH and then returned to its original value with decreasing RH. In addition, Fig. 6 also shows that the response and recovery times of 30 wt%  $Gr/SnO_2$  were 28 and 140 s, respectively, when the RH range between 12 and 90%.

| Table 1   |                                      |                                  |
|-----------|--------------------------------------|----------------------------------|
| Maximum h | numidity hysteresis errors of 30 wt% | Gr/SnO2 under various RH values. |
| RH (%)    | Maximum hysteresis error (%)         | -                                |
| 12        | 0.13                                 | -                                |
| 32        | 1.12                                 |                                  |

5.19

5.48



Fig. 6. (Color online) Response and recovery characteristics of 30 wt% Gr/SnO<sub>2</sub> nanocomposite.

Table 2 shows the response and recovery times of 30 wt%  $Gr/SnO_2$  sensors from this work and previous works.<sup>(18,29–32)</sup> Moreover, compared with the reported humidity sensor based on  $SnO_2$  in Table 2, the 30 wt%  $Gr/SnO_2$  sensor shows good performance with response and recovery times of 28 and 140 s, respectively.

#### 3.3 Sensing mechanism

Figure 7 shows the humidity-sensing mechanism models of adsorption for 30 wt% Gr/SnO<sub>2</sub> nanocomposite. The sensor exhibits both high conductance and extremely high impedance as shown in Fig. 5. The adsorption occurs via two adsorption processes: water molecules are absorbed through physical and chemical adsorption processes via van der Waals forces<sup>(28)</sup> and hydrogen bonding.<sup>(13)</sup> At low humidity, only a few H<sub>2</sub>O or H<sub>3</sub>O<sup>+</sup>molecules were adsorbed on the surface of Gr/SnO<sub>2</sub>; thus, it is difficult to transport conduction ions. Upon increasing RH, the sensor surface exhibits a continuous adsorption of H<sub>2</sub>O molecules, which further forms hydrogen bonds with the existing primary water layers. The Gr/SnO<sub>2</sub> nanocomposite surface with irregularly stacked smooth graphene sheets is filled with water owing to capillary

52

72

Table 2

| Summary of Gr/SnO <sub>2</sub> sensor performance from this work and previous works. |                    |             |                   |           |  |  |
|--------------------------------------------------------------------------------------|--------------------|-------------|-------------------|-----------|--|--|
| Material                                                                             | Fabrication method | Meas. range | Res./rec. time    | Ref.      |  |  |
| Al/SnO <sub>2</sub> Co-doped                                                         | Hydrothermal       | 11–95%RH    | 100 s/88 s        | (18)      |  |  |
| SnO <sub>2</sub> /RGO                                                                | Spin-coating       | 11–95%RH    | 52 s/100 s        | (29)      |  |  |
| RGO/SnO <sub>2</sub>                                                                 | Hydrothermal       | 11–97%RH    | 6-102 s/6-9 s     | (30)      |  |  |
| RGO/SnO <sub>2</sub>                                                                 | Hydrothermal       | 11–97%RH    | 100 s/100 s       | (31)      |  |  |
| SnO <sub>2</sub> nanowire                                                            | Hydrothermal       | 30-85%RH    | 120–170 s/20–60 s | (32)      |  |  |
| Gr/SnO <sub>2</sub>                                                                  | Hydrothermal       | 12-90%RH    | 28 s/140 s        | This work |  |  |

Adsorbed water layer Graphene H<sub>1</sub>O H<sub>1</sub>O SnO<sub>2</sub>

Fig. 7. Adsorption models for 30 wt% Gr/SnO<sub>2</sub> nanocomposite.

condensation when RH is significantly high. The transfers of  $H_2O$  and  $H_3O^+$  were accelerated by the serial water layers. Agmon<sup>(33)</sup> and Casalbore-Miceli *et al.*<sup>(34)</sup> showed  $H_2O/H_3O^+$  transfers on the serial layers with the following chemical reaction:  $H_2O + H_3O^+ \rightarrow H_3O^+ + H_2O$ .

Therefore, the conductivity of Gr/SnO<sub>2</sub> nanocomposites is enhanced by the free movement of conductive ions. The Gr/SnO<sub>2</sub> nanocomposites have fast and high sensing response and recovery times.

# 4. Conclusions

In this study, the humidity-sensing properties of a  $Gr/SnO_2$  nanocomposite were determined by experiment studies. The experimental results revealed that the nanocomposite with 30 wt%  $Gr/SnO_2$  provided a high sensitivity (S = 80770), which is a change of approximately four orders of magnitude. Compared with previously reported sensors, the proposed sensor exhibits fast response/recovery (28/140 s) and good hysteresis (~5% RH). The results indicate that  $Gr/SnO_2$ based humidity sensors are good candidates for humidity-sensing applications (e.g., precision instrument protection, food safety, and agricultural manufacturing).

## References

- 1 Y. Zhang, W. Zhang, H. Gong, Q. Jia, W. Zhang, and Z. Zhang: Mater. Lett. **328** (2022) 133123. <u>https://doi.org/10.1016/j.matlet.2022.133123</u>
- 2 P. Zhu, Y. Wei, Y. Kuang, Y. Qian, Y. Liu, F. Jiang, and G. Chen: Carbohydr. Polym. 292 (2022) 119684. <u>https://doi.org/10.1016/j.carbpol.2022.119684</u>
- 3 U. Patil, L. Khandare, and D. J. Late: Mater. Sci. Eng. B 284 (2022) 115874. <u>https://doi.org/10.1016/j.</u> mseb.2022.115874
- 4 M. U. Khan, Y. Abbas, H. Abunahla, M. d. Rezeq, A. Alazzam, N. Alamoodi, and B. Mohammad: Sens. Actuators, B 393 (2023) 134188. <u>https://doi.org/10.1016/j.snb.2023.134188</u>
- 5 A. Kumar, P. Kumari, M. S. Kumar, G. Gupta, D. D. Shivagan, and K. Bapna: Cer. Inter. **49** (2023) 24911. https://doi.org/10.1016/j.ceramint.2023.05.020
- 6 S. Kumar, L. Kumar, T. Islam, and K. K. Raina: Mater. Today: Proc. 18 (2019) 822. <u>https://doi.org/10.1016/j.matpr.2019.06.508</u>
- 7 S. Yu, H. Zhang, C. Lin, and M. Bian: Curr. Appl. Phys. 19 (2019) 82. https://doi.org/10.1016/j.cap.2018.11.015
- 8 X. Yu, X. Chen, X. Ding, X. Chen, X. Yu, and X. Zhao: Sens. Actuators, B 283 (2019) 761. <u>https://doi.org/10.1016/j.snb.2018.12.057</u>
- 9 R. Qi, T. Zhang, X. Guan, J. Dai, S. Liu, H. Zhao, and T. Fei: J. Colloid Interface Sci. 565 (2020) 592. <u>https://doi.org/10.1016/j.jcis.2020.01.062</u>
- 10 A. S. Kalyakin, A. N. Volkov, and M. Y. Gorshkov: J. Taiwan Inst. Chem. Eng. 111 (2020) 222. <u>https://doi.org/10.1016/j.jtice.2020.02.009</u>
- 11 H. M. Mutee ur Rehman, M. Khan, M. M. Rehman, S. A. Khan, and W. Y. Kim: Sens. Actuator, A 343 (2022) 113662. <u>https://doi.org/10.1016/j.sna.2022.113662</u>
- 12 M. T. Zahoor, G. A. Khan, M. B. Nawaz, S. Farouk, Z. Imran, and W. Ahmed: Sens. Actuator, A **362** (2023) 114651. <u>https://doi.org/10.1016/j.sna.2023.114651</u>
- 13 W.-D. Lin, R.-Y. Hong, M.-h. Chuang, R.-J. Wu, and M. Chavali: Sens. Actuator, A 330 (2021) 112872. <u>https://doi.org/10.1016/j.sna.2021.112872</u>
- 14 H. Zhang, H. Zhang, J. Man, and C. Chen: Sens. Actuator, A 362 (2023) 114644. <u>https://doi.org/10.1016/j.sna.2023.114644</u>
- 15 Z. Li, M. Teng, R. Yang, F. Lin, Y. Fu, W. Lin, J. Zheng, X. Zhong, X. Chen, B. Yang, and Y. Liao: Sens. Actuators, B 361 (2022) 131691. <u>https://doi.org/10.1016/j.snb.2022.131691</u>
- 16 P. Li and F. Yang: Mater. Sci. Eng. B **298** (2023) 116902. <u>https://doi.org/10.1016/j.mseb.2023.116902</u>
- 17 C. Yang, H. Zhang, W. Gu, and C. Chen: Curr. Appl. Phys. 43 (2022) 57. <u>https://doi.org/10.1016/j.cap.2022.08.006</u>
- 18 S. Blessi, A. Manikandan, S. Anand, M. M. L. Sonia, V. M. Vinosel, A. M. Alosaimi, A. Khan, M. A. Hussein, and A. M. Asiri: Phys. E: Low-dimens. Syst. Nanostruct. 133 (2021) 114820. <u>https://doi.org/10.1016/j.physe.2021.114820</u>
- 19 P. Kumar, S. Khadtare, J. Park, and B. C. Yadav: Mater. Lett. 278 (2020) 128451. <u>https://doi.org/10.1016/j.matlet.2020.128451</u>
- 20 D. Feng, H. Zheng, H. Sun, J. Li, J. Xi, L. Deng, Y. Guo, B. Jiang, and J. Zhao: Sens. Actuators, B 388 (2023) 133807. <u>https://doi.org/10.1016/j.snb.2023.133807</u>
- 21 Z. Cai and S. Park: J. Mater. Res. Technol-JMRT. 26 (2023) 6581. https://doi.org/10.1016/j.jmrt.2023.09.049.
- 22 B. Jiang, T. Zhou, L. Zhang, J. Yang, W. Han, Y. Sun, F. Liu, P. Sun, H. Zhang, and G. Lu: Sens. Actuators, B 393 (2023) 134257. <u>https://doi.org/10.1016/j.snb.2023.134257</u>
- 23 B. Tao, L. Feng, F. Miao, and Y. Zang: Vacuum 202 (2022) 111126. <u>https://doi.org/10.1016/j.vacuum.2022.111126</u>
- 24 W. D. Lin, H. M. Chang, and R. J. Wu: Sens. Actuators, B 181 (2013) 326. <u>https://doi.org/10.1016/j.snb.2013.02.017</u>
- 25 J. Wang and D. Zhang: Mater. Chem. Phys. 277 (2022) 125488. <u>https://doi.org/10.1016/j.</u> <u>matchemphys.2021.125488</u>
- 26 R. Siburian, L. W. Tang, Y. Alias, A. I. Y. Tok, R. Goei, C. Simanjuntak, K. Tarigan, S. Paiman, B. T. Goh, I. Anshori, and C. Kurniawan: Nano-Struct. Nano-Objects 36 (2023) 101061. <u>https://doi.org/10.1016/j.nanoso.2023.101061</u>
- 27 M. K. Shabbir, W. Ali, U. Khanum, K. H. Memon, J. Akhtar, M. Iqbal, F. Bhutta, J. M. Ashfaq, K. H. Choi, and K. H. Thebo: Results Eng. 20 (2023) 101520. <u>https://doi.org/10.1016/j.rineng.2023.101520</u>
- 28 F. Yang and P. Li: Mater. Sci. Eng. B 290 (2023) 116329. https://doi.org/10.1016/j.mseb.2023.116329
- 29 Y. Yao, X. Chen, X. Li, X. Chen, and N. Li: Sens. Actuators, B 191 (2014) 779. <u>https://doi.org/10.1016/j.snb.2013.10.076</u>

- 30 D. Zhang, H. Chang, P. Li, R. Liu, and Q. Xue: Sens. Actuators, B 225 (2016) 233. <u>https://doi.org/10.1016/j.snb.2015.11.024</u>
- D. Zhang, H. Chang, and R. Liu: J. Electron. Mater. 45 (2016) 4275. <u>https://doi.org/110.1007/s11664-016-4630-</u>
  <u>2</u>.
- 32 Q. Kuang, C. Lao, Z. L. Wang, Z. Xie, and L. Zheng: J. Am. Chem. Soc. **129** (2007) 6070. <u>https://doi.org/110.1021/ja070788m</u>
- 33 N. Agmon: Phys. Lett. 244 (1995) 456. <u>https://doi.org/10.1016/0009-2614(95)00905-J</u>
- 34 G. Casalbore-Miceli, M. J. Yang, N. Camaioni, C. M. Mari, Y. Li, H. Sun, and M. Ling: Solid State Ion 131 (2000) 311. <u>https://doi.org/10.1016/S0167-2738(00)00688-3</u>