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	 Micro-electromechanical system (MEMS)-based sensors play a vital role in the future of 
smart sensing applications owing to their small size, low power consumption, and cost-
effectiveness. The issue of cross-axis sensitivity is of utmost importance when designing two-
dimensional acceleration sensors. In this paper, we present the design of a two-dimensional 
acceleration sensor and investigate how the vibrations in different directions affect its sensitivity. 
A theoretical model, in which the effects of fabrication errors and air damping are considered, is 
built to investigate the sensor’s operation characteristics and optimize the sizes of the sensor’s 
spring systems in order to reduce cross-axis sensitivity. The results show that the cross-axis 
sensitivities in two-dimensional acceleration sensors have very small values, namely, 0.014% in 
the X-direction and 0.00649% in the Y-direction. The findings of this study are useful for the 
computation and development of two-dimensional acceleration sensors for high-precision 
measurements.

1.	 Introduction

	 The development of micro-electromechanical system (MEMS) technology has resulted in the 
production of a wide range of small-scale devices, namely, accelerometers.(1) Acceleration 
sensors can be one-, two-, or three-axis accelerometers.(2) Acceleration sensors are extensively 
used in many areas, including portable mobile devices and the aerospace industry.(3–5) They are 
employed in motion sensing for wearable devices and smartphones to detect changes in 
orientation and gestures. They are also employed in tilt sensing for level sensors and 
inclinometers to measure tilt angles. Furthermore, two-axis accelerometers are utilized in 
industrial equipment to measure vibrations along two axes. Stabilization systems are included in 
camera stabilization systems and drones to counteract motions along two axes. Accelerometers 
exhibit various parameters based on their unique use, such as sensitivity, bandwidth, offset, 
nonlinearity, and cross-axis sensitivity. Of these factors, cross-axis sensitivity is particularly 
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important for high-precision measurements.(6,7) The cross-axis sensitivity corresponds to the 
measured output signal along a sensor axis while acceleration is applied along its orthogonal 
axis. The cross-axis error is usually caused by faults in fabrication or design problems. The 
cross-axis sensitivity is often quantified as a percentage, which is determined by dividing the 
sensitivity measured in the cross-direction by that recorded in the sensing direction. A few 
models of one-axis accelerometers with low cross-axis sensitivity have been reported. They are 
based on an improved suspended spring system, which is compliant with the sensing direction 
while being robust to other undesired vibration directions.(8–11) For example, Qifang et al. 
developed a highly symmetric MEMS sandwich accelerometer using a double-device-layer 
silicon-on-insulator wafer.(9) In their design, a proof mass is suspended by two layers of L-shaped 
beams symmetrically arranged on the upper and lower device layers. With such a two-layer 
spring system design, the single-axis (z-axis) sensing mode of the accelerometer is successfully 
decoupled from other variation modes. The cross-axis sensitivity of the accelerometer is as low 
as 0.356%. Jianqiang et al. designed a piezoresistive accelerometer consisting of a proof mass, 
eight supporting beams, and four sensing beams.(11) The gravity center of the proof mass lies 
within the neutral plane of the supporting beams. Experimental results show that the cross-axis 
sensitivities under X and Y accelerations are only 1.67 and 0.82%, respectively, compared with 
the z-axis sensitivity. Two-axis acceleration sensor models have also been introduced in the 
literature.(12,13) In these models, a proof mass is directly suspended by straight beam springs that 
are simultaneously compliant to two orthogonal sensing directions. For these models, 
displacement in one direction is related to the remaining direction. Therefore, this causes the 
cross-axis sensitivity to increase. Several two-axis displacement models capable of decoupling 
the two orthogonal sensing directions have been introduced. In these models, the proof mass is 
connected to a frame by a straight beam system.(14) The frame is suspended by another straight 
beam system that is orthogonal to the proof mass’s suspension spring system. Thus, the proof 
mass and the frame are independently compliant to the two orthogonal displacement directions. 
Multiple-axis MEMS gyroscope/accelerometers with such decoupled structures have been 
proposed.(15) In addition, it is well known that the folded beam springs have advantages in 
designing the stable, large-displacement actuators.(16) However, there are no reports on the two-
axis accelerometer with decoupled x- and y-sensing directions using folded beam springs. 
Furthermore, the sensors can use sensing mechanisms such as capacitive, piezoresistive, optical, 
and magnetic sensing mechanisms.(17) Micromachined accelerometers with a capacitive sensing 
mechanism have the advantages of high sensitivity, low noise, low temperature sensitivity, and 
low power consumption.(18) A differential capacitive sensing mechanism has also been explored 
and found to exhibit high linearity and large signal-to-noise ratio.(19) On the other hand, the 
dynamic behavior of most MEMS accelerometers is greatly affected by the movement of 
microstructures in an air environment.(20) MEMS accelerometers exhibit two main forms of 
damping: squeeze-film air damping and slide-film air damping. Squeeze-film air damping is 
accomplished through the interactions between the sensing and comb electrodes, while slide-
film air damping is achieved through the movement of the proof mass in response to input 
acceleration.(21,22) Although there are reports on design models and experimental works on two-
axis acceleration sensors, a theoretical model for investigating the operation characteristics of 
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two-axis acceleration sensors, including their oscillation amplitudes and sensitivities, and the 
effect of manufacturing errors on cross-axis sensitivities, has not yet been reported.  
	 In this work, we present a design of a two-axis MEMS accelerometer that utilizes the 
capacitive sensing mechanism. The sensor has low cross-axis sensitivity as a result of employing 
suspension springs that are compliant to the desired movement while being robust to other 
undesired movements. A comprehensive analytical model for investigating the operation 
characteristics and the cross-axis sensitivity of the two-axis MEMS accelerometer is built on the 
basis of elastic mechanical theory and air flow dynamics. 

2.	 Model of Two-axis MEMS Accelerometer 

	 The design of the sensor is shown in Figs. 1(a)–1(c). It consists of an outer movable frame M1  
linked to the fixed frames by four folded springs (K1) and a proof mass M2 connected to frame 
M1 by four U-shaped springs (K2). Here, we have used the folded beam springs, which have been 
commonly used in designing the decoupling systems. The model in Fig. 1 provides an overview 
of the sensor’s structural components, and the actual scale has been omitted. Additionally, there 
are sets of two comb electrodes, arranged as shown in Fig. 1(a), to detect the sensor’s acceleration 
in both the X- and Y-directions. The differential, parallel-plate capacitor sensing mechanism is 
used for detecting accelerations. In this mechanism, capacitance variation is based on the 
perpendicular displacement of the movable comb electrodes to the fixed comb electrodes. If the 
sensor is operated in the X-direction, the outer comb electrodes will act as a differential 
capacitive sensor to detect acceleration in the X-direction, while the inner comb electrodes will 
move parallel to each other without limiting the movement. For sensing acceleration in the 
Y-direction, the explanation is the same as that in the X-direction. Therefore, the overlap length 

Fig. 1.	 (Color online) (a) Sensor model with the outer movable frame M1 and inner mass M2. (b) Dimensions of a 
single-fold spring (K1). (c) Dimensions of a U-shaped spring with different beam length (K2). (d) Forces and moments 
applied at the centroid of a proof mass attached to the free end of a U-shaped spring.
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of the comb electrodes does not affect the sensor’s movement in the X- and Y-directions. 
However, the asymmetrical design of comb electrodes can cause the electrostatic rotation 
moment. To eliminate this effect, we can use a symmetrical design of comb electrodes and/or a 
robust mechanical design that is only compliant with oscillations in the X- and Y-directions. 
Furthermore, for a non-ideal decoupling design, the movement of sensing comb electrodes in 
one direction will affect the movement in the remaining direction. The dimensional parameters 
of the sensor are denoted in Figs. 1(a) –1(c). The values of these parameters are shown in Table 1 
for the outer movable frame M1, the inner proof mass M2, and sensing comb fingers, and in Table 
2 for the springs K1 and K1.   
	 Here, we consider two orthogonal oscillation systems, one along the X-axis and the other 
along the Y-axis. The spring constants of the first system with four folded springs in the 
directions of the X- and Y-axes, K1x and K1y, are respectively evaluated using(23) 
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Table 1
Parameters of the outer movable frame M1, the inner proof mass M2, and sensing comb fingers.
Component Parameters (symbol) Values

Outer movable frame M1
Length (L1); width (W1); height (H1) 4000 µm; 4000 µm; 20 µm

Length (L1h); width (W1h); height (H1h) 2000 µm; 2000 µm; 20 µm
Proof mass M2 Length (L2); width (W2); height (H2) 1900 µm; 1600 µm; 20 µm

Sensing comb fingers

Overlapping length (Lv1); width of movable comb 
(B1); width of fixed comb (B1F); thickness (Tk1); 

gap distance (d1); lager gap distance (g1); number 
of movable comb fingers (N1)

100 µm; 5 µm; 5 µm; 20 µm; 
1.5 µm; 3 µm; 400

Inner sensing comb fingers

Overlapping length (Lv2); width of movable comb 
(B2); width of fixed comb (B2F); thickness (Tk2); 

gap distance (d2); lager gap distance (g2); Number 
of movable comb fingers (N2)

100 µm; 5 µm; 5 µm; 20 µm; 
1.5 µm; 3 µm; 200

Table 2
Parameters of springs K1 and K2.
Component Parameters (symbol) Values

K1

Thickness of folded spring (h) 20 µm
Length of one beam (lkb) 160 μm
Width of one beam (wkb) 15 μm

Width of connection beam (wka) 35 μm
Length of connection beam (lka) 35 μm

Spring constant of folded springs in X-direction (K1x) 5167 N/m
Spring constant of folded springs in Y-direction (K1y) 35989 N/m

K2

Thickness of U-shaped spring (h) 20 µm
Length of connecting beam between M2 and M1 (Lb2) 160 μm
Width of connecting beam between M2 and M1 (Lb1) 170 μm

Width of U-shaped spring beam (w) 10 μm
Length of connecting beam (Lt) 25 μm

Spring constant of U-shaped springs in X-direction (K2x) 123805 N/m
Spring constant of U-shaped springs in Y-direction (K2y) 1417 N/m
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Here, 3
, / 12z a kaI hw=  is the inertial moment of the beam with length lka, 3

, / 12z b kbI hw=  is the 
inertial moment of the beam with length lkb, and , ,/ka z b ka z al I l I= . The Young’s modulus of 
silicon, E, is 168.9 GPa.
	 The ratio between the spring stiffness K1 in the X-axis direction and that in the Y-axis 
direction is derived as
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	 The spring constants of the second system with four U-shaped springs in the directions of the 
X- and Y-axes, K2x and K2y, are respectively evaluated as(24) 
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	 In the following section, we will use the above derived spring constants to evaluate cross-axis 
sensitivities. 

3.	 Cross-axis Displacement Computation Model 

3.1	 Cross-axis displacement computation model for the inner spring system 

	 The energy method is utilized to derive the equations for the spring constants. The free end 
of the springs is subjected to an applied force (or moment) in the desired direction, and the 
resulting displacement is calculated symbolically as a function of the design variables and 
applied force. Various boundary conditions are applied in these computations to account for 
different modes of deformation in the spring. When forces (or moments) act on the ends of the 
flexure, the total deformation energy U is evaluated as(25)
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In Eq. (6), Li denotes the length of the i-th beam in the flexure, Mi is the bending moment 
transmitted through the i-th beam, and Young’s modulus of the structural material is represented 
by E, while Ii stands for the moment of inertia of the i-th beam about the pertinent axis. The 
bending moment can be described as a linear function of the applied forces and moments at the 
flexure’s endpoints. The calculation for the displacement at any given direction of the flexure’s 
endpoint, denoted as ζ, is expressed as

	 ,U
Fζ

δζ ∂
=
∂ 	 (7)

where Fζ stands for the force exerted at the endpoint in a particular direction. Similarly, applied 
moments can be associated with angular displacements. Our aim here is to determine the 
displacement in a particular direction as a result of the applied force (or moment) in a different 
direction. Utilizing the boundary conditions, as depicted in Fig. 1(d) and Table 3, we derive a set 
of linear equations that incorporate the applied forces, moments, and the unknown displacement. 
Solving this equation set results in a linear connection between the displacement and the applied 
force, especially for the cross-axis spring constant in question. The spring constant is determined 
by the physical dimensions of the spring through the constant of proportionality. Similarly, we 
derive models for the out-of-plane cross-axis spring constants using a comparable method.
	 Kxy represents the elastic coupling between the translational modes x and y (applied force Fx, 
displacement δy ≠ 0). 

zxK φ  denotes the elastic coupling between the translational mode x and the 
rotational mode ϕz (applied force Fx, displacement δϕz ≠ 0). 

zyK φ  indicates the elastic coupling 
between the translational mode y and the rotational mode ϕz (applied force Fy, displacement 
δϕz ≠ 0). The analytical expression describing the elastic coupling between x, y, and modes for 
one spring in the U-shaped spring configuration is(26)
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Table 3
Boundary conditions and equations solved for calculating spring constants.
Spring constant Boundary conditions Force/moment
Kxy δx = 0; δϕz = 0 Fx
K(xϕz) δx = 0; δy= 0 Fx
K(yϕz) δx = 0; δy = 0 Fy
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In Eq. (8), D is calculated as
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Here, Izb and Izt are the moments of inertia of the U-shaped spring about their individual z-axis 
and are calculated as
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	 Manufacturing variations naturally occur as part of any fabrication process. 
zxK φ  and 

zyK φ  are 
caluculated as
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In Eqs. (11) and (12), the expressions for calculated A and B are presented as follows:
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	 Variations in spring beam widths can cause elastic cross-axis coupling. In MEMS fabrication 
processes, it is acknowledged that the geometric property can vary by up to 10% across a 
wafer.(26) Therefore, in the following analysis, we consider the variations in beam widths within 
individual springs.
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	 The stiffness matrices for the component springs TL, TR, BL, and BR {TL, TR, BL, and BR 
represent spring K2 at the top-left, top-right, bottom-left, and bottom-right positions, respectively,  
relative to mass M2 [Fig. 1(a)]} are determined by(26)
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	 The hypothetical beam width is assumed to be w in the absence of manufacturing errors. In 
the presence of manufacturing errors w1 = (1 + Δ) depicted in Fig. 2, we can estimate the 
stiffness variation due to a fractional width adjustment Δ (where Δ represents the percentage 

Fig. 2.	 (Color online) Sensor models with manufacturing error. (a) Case 1: only the TR spring is subject to Δ error, 
i.e., Δ1 = Δ, Δ2 = Δ3 = Δ4 = 0. (b) Case 2: the TR and BL springs are subject to Δ error, while the TL and BR springs 
are subject to −Δ error, i.e., Δ1 = Δ3 =  Δ and Δ2 = Δ4 = −Δ. (c) Case 3: the springs TL, TR, BL, and BR are subject to 
the respective errors of −Δ2, Δ1, −Δ1, and Δ2 (i.e., Δ2 + Δ4 = 0, Δ1 + Δ3 = 0, and Δ1 ≠ Δ2).
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error of the width) with the knowledge that stiffness is proportional to w3. In the presence of a 
slight fractional alteration Δ in width, we can approximate the fractional variation in the initial 
stiffness of a single spring K0 using a factor of 3Δ. The spring stiffness due to manufacturing 
errors, K', is calculated as K' = K0(1 + 3Δ). Therefore, the in-plane segment of the stiffness 
matrix can be expressed as(26)
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Here, Δ1, Δ2, Δ3, and Δ4 represent manufacturing errors on the TR, TL, BL, and BR springs, 
respectively.
	 Here, we study three cases of manufacturing errors related to U-shaped springs. The first two 
cases are shown in Fig. 2, where Fig. 2(a) shows the sensor model with the manufacturing error 
Δ arising only in the TR spring, i.e., Δ1 = Δ, Δ2 = Δ3 = Δ4 = 0 (case 1), while Fig. 2(b) shows the 
sensor model with the manufacturing errors Δ arising in the TR and BL springs and −Δ in the TL 
and BR springs, i.e., Δ1 = Δ3 =  Δ and Δ2 = Δ4 = −Δ. (case 2).
	 Starting from Eq. (17), we have the stiffness matrix of the spring in cases 1 and 2 as 
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where KT1 and KT2 are the stiffness matrices of the U-shaped spring in cases 1 and 2, 
respectively. The third case of investigation is shown in Fig. 2(c). Here, the springs TL, TR, BL, 
and BR are subject to the respective errors of −Δ2, Δ1, −Δ1, and Δ2, (i.e., Δ2 + Δ4 = 0, Δ1 + Δ3 = 0, 
and Δ1 ≠ Δ2). Derived from Eq. (17), we have the stiffness matrix of the spring in the third case 
as 
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Here, KT3 is the stiffness matrix of the U-shaped spring in case 3. The relationship among force, 
displacement, and system stiffness is(25) 
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	 We consider case 1:  
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From the above system of equations, it can be inferred that
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When there is no force in the y-direction, the ratio of y displacement to x displacement |y/x| in 
case 1 (Ycar-1) is given as 
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	 In case 2, the analysis is similar. Ycar-2 is therefore derived as
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	 In case 3, there exists no direct coupling between the two in-plane translational modes 𝑥 and 
𝑦. However, there is a second-order coupling through the rotational mode. The mode x initially 
couples to the rotational mode Φz, which subsequently couples to the mode y. Therefore, the ratio 
of y displacement to x displacement in this case (Ycar − 3) is calculated as

	
( )( )
( )( )-3 ,

 
z z

z z

x i y i
car

yyi i

K KyY
x K K

Φ Φ

Φ Φ

∑ ∑
= =

∑ ∑
	 (26)

where 2 2
2 2z zi xxi yyiK K L K WΦ Φ = + .

3.2	 Cross-axis displacement computation model for the outer spring system

	 Figure 3 shows the model of the sensor with the total proof mass (M1 + M2) suspended by four 
folded springs; the symbols of the springs are shown in the figure. We assume that the fabrication 
error of the spring on the right corner is denoted as ΔF. Ly represents the distance between two 
springs along the Y-axis, and Lx is calculated as the width of the proof mass along the X-axis.  
	 The stiffness matrix of the entire system is calculated as(27) 

	

4 0 3

0 4 3 .

3 3 4

z

z

z z z z

xx x F

yy y F

x F y F

K K

K K K

K K K

φ

φ

φ φ φ φ

′

 ∆
 

= ∆ 
 

∆ ∆  

	 (27)

	 The ratio (Xcar) of x displacement to y displacement (referring to Fig. 4) when there is no force 
in the x-direction is given by

Fig. 3.	 (Color online) X-axis acceleration sensing sensor model with the total proof mass (M1 + M2) taking into 
account the effect of fabrication error (ΔF) on the width of the spring beam.
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( )( )
( )( )
 ,z z

z z

x i y i
car

xxi i

K KxX
y K K

Φ Φ

Φ Φ

∑ ∑
= =

∑ ∑
	 (28)

where 

	
zx i xxi yK K LΦ = , 

zy i yyi xK K LΦ = , and 2 2
z zi xxi y yyi xK K L K LΦ Φ = + .	 (29)

For the folded spring, we have yyi xxiK K , so 2
z zi yyi xK K LΦ Φ = .

	 Substituting the values of ( )
zx iK Φ∑  and ( )

zy iK Φ∑  from Eq. (27) into Eq. (28), we obtain 

	
( )( )
( )
3 3

 .
( )

z z

z z

x F y F
car

xxi i

K KxX
y K K

φ φ

Φ Φ

∆ ∆
= =

∑ ∑
	 (30)

Substituting the values of 
zxK φ  and 

zyK φ  from Eq. (29) into Eq. (30), we obtain

	
( )( )

( )( )
2

2

3 3 9
.

164 4
xx y F yy x F y F

car
xxx yy x

K L K L L
X

LK K L

∆ ∆ ∆
= = 	 (31)

In this case, Xcar depends on the distance ratio (Ly/Lx) and is quadratically proportional to ΔF.

4.	 Acceleration Model Excited along the X- and Y-axes and Sensitivity of the 
Sensor

	 Now, we consider the sensor excited by the input accelerations ax = bsin(ωt) along the X- axis 
and ay = asin(ωt) along the Y-axis, as shown in Fig. 1(a). Here, the amplitudes a and b of ax and 
ay are set at the same value of 9.8 m/s2. The oscillation models of the sensor along the X- and 

Fig. 4.	 (Color online) (a) Oscillation model of the sensor along the X-axis. (b) Oscillation model of the sensor along 
the Y-axis.
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Y-axes are shown in Figs. 4(a) and 4(b), respectively. The parameters denoted in Fig. 4 are 
explained as follows: m1 is the mass of the outer frame of the sensor M1, m2 is the proof mass 
inside the sensor M2, K1x and K1y are the stiffnesses of spring K1 in the X- and Y-axis directions, 
K2x and K2y are the stiffnesses of spring K2 in the X- and Y-axis directions, C1x and C1y are the 
damping coefficients of M1 relative to the base along the X- and Y-axes, and C2x and C2y are the 
damping coefficients of M2 relative to M1 along the X- and Y-axes, respectively. In addition, C3x 
and C3y are the damping coefficients of M2 relative to the base along the X- and Y-axes, 
respectively. In general, when ignoring the direction of oscillation, we have the following 
amplitudes of frame M1 and mass M2.(28) 

	
( ) ( )

2 2
1 1 1 3 2 1 1 2

2
2 22 2 2 3 2 2

 m c j k c j m A m a m a
A m ak c j m c c j k

ω ω ω ω

ω ω ω

 − + + − +   
  =   
 − + − + + +     

	 (32)

Here, A1 is the amplitude of frame M1; A1 is the amplitude of mass M2; a represents the amplitude 
of the input acceleration; c1, c2, and c3 and k1 and k2 are damping coefficients and spring 
constants, respectively. When considering oscillation in the X-direction, the coefficients c1, c2, 
and c3, the constants k1 and k2, and input acceleration take the values c1x, c2x, and c3x, k1x and 
k2x, and b, respectively. At that time, the oscillation amplitudes in the X-direction of M1 and M2 
are Am1-x and Am2-x, respectively. Similarly, while analyzing the oscillation in the Y-direction, 
with the damping coefficients, spring constants, and input acceleration being c1y, c2y, and c3y, k1y 
and k2y, and a, respectively, the oscillation amplitudes of M1 and M2 are Am1-y and Am2-y, 
respectively.
	 If the sensor oscillates in the X-direction, a displacement will be induced in the Y-direction, 
Ycad, evaluated as

	 -1,2,3 2- -1,2,3 .Cad m x carY A Y= 	 (33)

The oscillation of the sensor in the Y-direction leads to a displacement in the X-direction, XCad, 
evaluated as

	 1-Cad m y carX A X= .	 (34)

To calculate the damping coefficients Cix and Ciy, we consider air damping to be the dominant 
damping mechanism in the sensor. Air damping consists of two main components: slide film air 
damping and squeeze film air damping. In the case of slide film air damping, the gap distance 
(distance from the proof mass and the frame to the substrate), denoted as dt, is significantly 
smaller than δ (the effective decay distance 2 /δ µ ρω= , in which ρ is the density of air, μ is 
the coefficient of viscosity of air, and ω is the frequency of the sensor). The damping coefficients 
of slide film air damping force at the bottom can be calculated using the Couette-flow-type 
model as(29)
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	 - ,q
Couette flow

t

A
C

d
µ= 	 (35)

where Aq is the surface area of the moving objects, mass proof, and frame. In a scenario where 
the moving structure is situated far from any objects positioned above it, the damping force 
acting on the moving parts follows a Stokes-flow pattern. The corresponding damping 
coefficient is described as

	 q
Stokes- flow

A
C µ

δ
= .	 (36)

The assessment of the air drag force on the moving mass M2 and the moving frame M1 is 
complex. Therefore, an approximation of its damping coefficient is given by(29)  

	  
32
3Drag forceC lµ= .	 (37)

Here, l represents the characteristic dimension of the moving structure, which may be considered 
as half the width of the proof mass. In the case of squeeze film air damping, the coefficient of 
damping force for the rectangular fingers, Csqueeze, is calculated as(29) 

	
3

3
0

,s s
squeeze

B L NC
d

µ
= 	 (38)

where d0, Ls, B, and Ns represent the gap distance, overlapping finger length, finger width, and 
the number of comb fingers of the sensing combs in the X- and Y-directions, respectively.
	 Therefore, the total damping coefficient is derived using Eqs. (35)–(38) as

	
3

3
03

.32  q q s
total s

t

A A B LC l N
d d

µ
µ µ µ

δ
= + + + 	 (39)

	 Applying the above formula to the outer frame M1 and inner mass M2, we obtain the 
following calculation formulas for the damping coefficients Cix and Ciy: 
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	 (40)

where Aq1 is the surface area of the outer frame M1 and Aq2 is the surface area of the proof mass 
M2. 
	 To derive the sensitivity of the sensor, we start by determining the variation in sensing 
capacitance under changing displacement in each motion direction. The static sensing 
capacitance of the sensor in the X-direction is given by C1 = C2 = N1εL1B1/d.(30) Here, ε represents 
the dielectric constant of air. C1 and C2 respectively represent the upper and bottom comb 
capacitances in Fig. 1(a). When an acceleration asin(ωt) is applied in the X-direction, the proof 
mass undergoes a displacement x. The change in capacitance is derived as 

	 1 1 1 1 1 1
1 2

1 1

    and .L B N L B NC C
d x d x

ε ε
= =

− +
	 (41)

Hence, the differential change in capacitance can be expressed as

	 1 1 1
1 2 2 2

1

2  .
 

L B N xC C C
d x
ε

∆ = − =
−

	 (42)

	 The differential change in capacitance in the Y-direction is derived by following the same 
procedure as in the X-direction described above. In this case, C1 and C2 respectively represent 
the left and right comb capacitances in Fig. 1(a). The common electrode for the movable comb 
fingers is denoted as VG. The electrode pads on the left and on the right are for supplying 
voltages (Vs+, y, Vs−, y) to the remaining ends of the differential capacitance for sensing acceleration 
along the Y-direction, while Vs+, x and Vs−, x are supplied to the top and bottom fixed comb 
electrodes of the differential capacitance for sensing acceleration along the X-direction.   
	 The accelerometer’s sensitivity, often called its scale factor, refers to the ratio of the sensor’s 
electrical response to the detected mechanical input. The formula for sensitivity is expressed as 
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	 --; ; ; .y y crossx x cross
x y xc yc

C CC CS S S S
b a a b

∆ ∆∆ ∆
= = = = 	 (43)

Here, Sx represents the sensitivity of the sensor along the X-axis, Sy represents the sensitivity 
along the Y-axis, Sxc denotes the sensitivity caused by cross-axis effects on the X-axis when an 
input acceleration (a) is applied along the Y-axis, and Syc denotes the sensitivity caused by cross-
axis effects on the Y-axis when an input acceleration (b) is applied along the X-axis. In this 
context, ΔCx and ΔCy represent the changes in the capacitances of the outer and inner sensing 
comb fingers, respectively. Moreover, ΔCx-cross and ΔCy-cross represent the impacts of cross-axis 
effects on the outer and inner sensing comb fingers, respectively.

5.	 Results and Discussion

5.1	 Relationship between spring stiffness K1 values in X- and Y-directions

	 Figure 5(a) presents the stiffness ratios in the Y- and X-directions of the folded spring system, 
K1y/K1x, investigated as a function of lkb/lka for various wkb/wka values. Thus, K1y/K1x primarily 

Fig. 5.	 (Color online) (a) Stiffness ratios in the Y- and X-directions of the folded spring system, K1y/K1x, investigated 
as a function of lkb/lka with various wkb/wka values. (b) Frequency f1y/f1x  ratios in the Y- and X-directions of frame M1 
investigated as a function of lkb/lka with various wkb/wka values. (c) Stiffness ratios in the Y- and X-directions of the 
U-shaped spring system, K2x/K2y, investigated as a function of Lb1 with various Lb2 values. (d) Frequency f2x/f2y  
ratios in the Y- and X-directions of proof mass M2 investigated as a function of Lb1with various Lb2 values.
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depends on lkb/lka and is less affected by the wkb/wka ratio. In a practical design, a high K1y/K1x 
value is required so that the stiffness in the Y-direction is significantly greater than that in the 
X-direction in order to prioritize the oscillation along the X-axis and limit the oscillation along 
the Y-axis for the outer frame M1. With wkb/wka = 0.428 and lkb/lka = 4.57, K1y/K1x is obtained to 
be 6.96. Therefore, we can increase lkb and decrease lka to achieve a higher K1y/K1x ratio, which is 
preferable for optimizing the system. In Fig. 5(b), it is shown that at wkb/wka =0.428 and 
lkb/lka = 4.57, f1y/f1x takes the value of 2.61. When f1y/f1x is large, decoupling the two modes of 
oscillation in the X- and Y-directions of M1 becomes effective.(31,32)

	 Figure 5(c) presents the stiffness ratios in the Y- and X-directions of the U-shaped spring 
system, K2x/K2y, investigated as a function of Lb1 with various Lb2 values. We can see that 
K2x/K2y increases with Lb1. In addition, for the same value of Lb1, when Lb2 decreases, K2x/K2y 
also decreases. When Lb1 = 170 μm and Lb2 = 160 μm, K2x/K2y takes the value of 87.37. This 
value ensures the stiffness of spring K2 in the X-direction and the flexibility in the Y-direction 
when the sensor is in operation. Figure 5(d) presents the frequency f2x/f2y in the Y- and 
X-directions of the proof mass M2 investigated as a function of Lb1 with various Lb1 values. The 
relationship of f2x/f2y with Lb1 and Lb2 is similar to that of K2x/K2y with the investigated parameter 
ranges. These results indicate that the f2x/f2y ratio is higher than 8.1 for Lb1 ≥ 150 μm, which 
leads to the complete decoupling of the oscillations of the mass M2 in the X- and Y-directions.(18,33) 

5.2	 Oscillation amplitudes of frame M1 and proof mass M2

	 Figures 6(a) and 6(b) respectively present the relationships of the oscillation amplitudes of the 
frame M1(Y1) and proof mass M2(Y2) with the frequency of the input acceleration along the Y- 
direction. Thus, when the spring stiffness K1y increases, the oscillation amplitude of the frame 
M1 decreases [Fig. 6(a)]. Similarly, when the spring stiffness K2y increases, the oscillation 
amplitude of the proof mass M2 also decreases [Fig. 6(b)]. In this study, we use the values 
K1y = 35989 N/m and K2y = 1417 N/m by using the spring parameters in Table 2. At K1y = 35989 

Fig. 6.	 (Color online) (a) Oscillation amplitudes of frame M1 along the Y-axis (motion relative to the ground). (b) 
Oscillation amplitudes of proof mass M2 along the Y-axis (motion relative to frame M1) with input acceleration a = 1g 
(g is the value of gravitational acceleration).
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N/m and K2y = 1417 N/m, we obtain the corresponding amplitudes of Y1 = 0.067 μm in Fig. 6(a) 
and Y2 = 0.105 μm in Fig. 6(b).
	 Figures 7(a) and 7(b) show the relationship between the oscillation amplitude of the frame 
M1(X1) and the proof mass M2(X2) with the frequency of the input acceleration. In Fig. 7(a), we 
observe that as the stiffness of spring K1 in the X direction decreases, X1 increases. Similarly, 
this also occurs with X2 of the proof mass M2 with different values of the stiffness of spring K2 in 
the X-direction. From Figs. 7(a) and 7(b), we see that X1 and X2 take the values of 0.211 μm and 
1.63 nm corresponding to the values K1x = 5167 N/m and K2x = 123805 N/m, respectively. The 
stiffness of spring K1 in the X direction, K1x = 5167 N/m, and the stiffness of spring K2 in the X 
direction, K2x = 123805 N/m, are calculated using Eqs. (1)–(5) with the parameter set of the 
spring shown in Table 2. In the above investigations, we used the damping coefficients 
C1x = 3.55 × 10−4 Ns/m, C1y = 1.412 × 10−4 Ns/m, C3x = 3.191 × 10−5 Ns/m, C2y = 1.082 × 10−4 

Ns/m, and C3y = C3x calculated using Eq. (40) with the parameters of the sensor shown in Table 
1.
	 Now, we will consider the quality factor (Q) of the sensor. The Q values of the sensor in the 
X-direction (Qx) and Y-direction (Qy) are calculated using the expressions Qx = m1s2πf1x/C1x and 
Qy = m2s2πf2y/C2y,(34) where m1s = 5.6852 × 10−7 (kg) is the mass of M1 and the outer sensing 
comb fingers, and m2s = 1.4632 × 10−7 (kg) is the mass of M2 and the inner sensing comb fingers. 
In addition, f1x = 13.804 (kHz) and f2y = 16.464 (kHz) are the resonance frequencies of M1 and 
M2 when M1 oscillates in the X-direction and M2 oscillates in the Y-direction, respectively. The 
values of f1x and f2y are determined from Figs. 7(a) and 6(b). C1x(= 3.55  × 10−4 Ns/m) and C2y(= 
1.082  × 10−4 Ns/m) are the damping coefficients whose values are determined in Sect. 5.2. 
Thus, Qx and Qy are calculated to be 138.9 and 139.9, respectively. The Qx and Qy values in the 
present study are similar to those in other high-sensitivity accelerometer designs.(35,36) The 
sensor’s Q value can be adjusted by varying its design parameters such as spring stiffness, mass, 
and damping.

Fig. 7.	 (Color online) (a) Oscillation amplitude of the frame M1 along the X-axis (relative motion to the ground). (b) 
Oscillation amplitude of the proof mass M2 along the X-axis (motion relative to frame M1) with input acceleration a = 
1g (g is the value of the gravitational acceleration).
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5.3	 Y-cross-axis displacement in three cases (YCad-1,2,3) and X-cross-axis displacement 
(Xcad)

	 The dependence of YCad-1 is investigated as a function of frequency with different values of 
the U-spring beam width error Δ in cases 1 and 2, and the results are shown in Fig. 8. From Fig. 
8(a), we can see that as the error of the spring beam increases from 0.01 to 0.03, the Y-cross-axis 
displacement in case 1 (YCad-1) also increases proportionately. At Δ = 0.03, YCad-1 = 6.6  × 10−6 
μm.
	 The relationship between Δ and Y-cross-axis displacement in Fig. 8(b) is similar to that in Fig. 
8(a). At Δ = 0.03, YCad-2 = 1.1 × 10−4 μm. Thus, the Y-cross-axis displacement in case 2 (YCad-2) is 
16.6 times larger than that in case 1 (YCad-1).
	 Figure 9(a) shows YCad-3 investigated as a function of frequency for different values of the 
U-shaped spring beam width error Δ2 in case 3, keeping error Δ1 (= 0.04) constant. The 
dependence of YCad-3 on frequency and Δ2 is similar to those in Figs. 8(a) and 8(b). However, 
with the same error values, the magnitude of YCad-3 is tens times lower than those of YCad-1 and 
YCad-2. For example, at Δ2 = 0.01 (which matches the designed spring beam width of 10 μm with 
a fabrication error of 0.1 μm), YCad-3 reaches a fabrication-error-induced displacement value of 
5.2 × 10−7 μm, which is 211 times lower than that of YCad-2 (1.1 × 10−4 μm). Moreover, from Fig. 
9(b), we can see that when the beam width error ΔF increases from 0.01 to 0.03, corresponding to 
fabrication errors in the spring beam width of 1, 2, and 3%, XCad increases markedly. At 
ΔF = 0.03 (corresponding to a designed beam width of 15 μm with a fabrication error of 0.45 
μm), XCad is 3.2 × 10−5 μm. In this study, from the values presented above, we used the 
fabrication errors suitable for the present fabrication conditions. 

Fig. 8.	 (Color online) (a) Dependence of YCad-1 on frequency with different values of the U-spring beam width 
error ∆ in case 1. (b) Dependence of YCad-2 on frequency with different values of the U-shaped spring beam width 
error ∆ in case 2.
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5.4	 Cross-axis sensitivities  

	 Figure 10(a) presents the relationship between Sx and Sxc for different values of the input 
acceleration. Here, the input acceleration is measured in units of the gravitational acceleration 
(g). Although the X-axis sensitivity exhibits a linear relationship with the input acceleration and 
achieves a high value, Sx = 0.693 pF/g, the XCross-Axis sensitivity conversely achieves a much 
lower value, Sxc = 0.0001 pF/g. At an acceleration of a = 1g and with a fabrication error of 
0.45 µm in the beam width (ΔF = 0.03 = 3%), Sxc/Sx = 0.0001(pF/g)/0.693(pF/g) = 0.014%. Figure 
10(b) also shows low cross-axis sensitivity in the Y-direction. On the basis of the results of the 
analysis in Sect. 5.3, among the three cases of Y-cross-axis displacement errors, case 2 has the 

Fig. 9.	 (Color online) (a) Dependence of YCad-3 on frequency with different values of the U-spring beam width 
error ∆ in case 3. (b) Dependence of XCad on frequency with different values of the folded spring beam width error 
∆F; here, Ly/Lx=0.94.

Fig. 10.	 (Color online) (a) Relationship between the variation in sensing capacitance ΔC and input acceleration for 
the X-axis and X-cross-axis sensitivities. (b) Relationship between the variation in sensing capacitance ΔC and input 
acceleration for the Y-axis and Y-cross-axis sensitivities in case 2 in which the fabrication-error-induced 
displacement is the largest.
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most significant impact. Therefore, we will use the results from this case to calculate the effect 
of input acceleration on capacitance variation. With a fabrication error of 0.1 µm in the beam 
width (Δ2 = 1%) in case 2 and a = 1g, Syc/Sy = 1.3 × 10−4 (pF/g)/0.154(pF/g) = 0.08%. In contrast 
to earlier studies, the cross-axis value found in our research is notably reduced. For example, in 
automotive airbag systems, accelerometers typically have a range of ± 50 g with a cross-axis 
sensitivity lower than 5%. However, for navigation applications, the required range is around ±1 
g, with cross-axis sensitivities less than 0.1%.(37,38) 

6.	 Conclusion 

	 We presented a model of a two-axis accelerometer with minimized cross-axis sensitivity by 
using folded spring systems and optimizing their sizes. A theoretical model was established for 
comprehensively investigating the operation characteristics of the sensor, such as the operation 
frequency, the amplitude of oscillation, sensitivity, and cross-axis sensitivity depending on air 
damping and fabrication errors. Under the present conditions, the sensitivities of the sensor in 
the X- and Y-axes were 0.693 and 0.154 pF/g, respectively. The cross-axis sensitivities in the X- 
and Y-axis directions were only 0.014 and 0.08%, respectively. The findings of this study are 
useful for the computation and development of two-axis acceleration sensors with insignificant 
cross-axis sensitivities.
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