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 To address the challenges posed by limited sample sizes and varying defect sizes on strip-
steel surfaces in industrial applications, in this paper, we introduce a small-object detection you-
only-look-once (YOLO) network (SODY-Net) specifically designed for such surfaces by machine 
learning technology. Initially, we build upon the YOLOv5s framework and develop a multiscale 
path aggregation network that incorporates an attention mechanism to improve the model’s 
capability to predict across multiple scales. Next, we present an adaptive coordinate-decoupled 
head module for resolving the conflict between the classification and regression tasks. Finally, 
we propose a bounding box regression loss function that integrates the Wasserstein distance to 
enhance detection accuracy for small defects. Experimental results indicate that our SODY-Net 
surpasses other small-object detection frameworks when evaluated on a few-shot dataset of 
strip-steel surface defects, making it particularly suitable for defect detection tasks in industrial 
settings.

1. Introduction

 The challenges of detecting small-object samples, particularly in identifying small objects in 
aerial imagery, have been thoroughly explored in various studies.(1–3) Such studies include the 
identification of defects in solenoid connectors used in electrical systems(4) and surface 
imperfections on magnetic rotors(5) among others. The difficulties related to small-object sample 
detection arise from a limited number of samples, insufficient diversity in sample locations, and 
a lack of distinct features among the samples. These factors make it a challenging area in the 
research on object detection network models.
 Hot-rolled steel, an essential industrial material, has widespread applications in 
manufacturing production, the aerospace industry, and various other fields. The hot rolling 
process leads to surface defects in steel, such as cracks, roll marks, and oxidized iron layers, 
which negatively affect wear resistance, corrosion resistance, and fatigue strength owing to 
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manufacturing processes and equipment limitations.(6,7) Currently, many companies still rely on 
manual inspection methods to detect these defects, which are often costly and inefficient.(8)

 As deep learning algorithms have advanced, the method for defect detection utilizing 
convolutional neural networks has increasingly replaced manual inspections combined with 
memory-based systems and traditional machine vision techniques.(7) To improve the detection 
network’s capability to represent sample characteristics and enhance feature reuse, dense 
convolutional blocks were introduced in Ref. 9 for better feature extraction, leading to the 
development of a strip-steel surface defect detection model based on you-only-look-once 
(YOLO) using the YOLOv3 framework. Additionally, Yu et al. have proposed(10) a lightweight 
model for detecting defects on tile surfaces to address the inadequate identification capabilities 
of existing models for small surface defects, which significantly reduced false positives and 
missed detections of minor target defects in earlier models. 
 In previous studies, the superiority of models based on deep learning for defect detection 
tasks is highlighted. However, the impressive effectiveness of these models often relies on 
having a large amount of labeled training data. In industrial applications, defects in manufactured 
products are rare, leading to insufficient data that can result in poor model generalization and an 
increased risk of overfitting.
 To tackle the problem of limited sample availability, in Ref. 11, a customized small-sample 
learning model specifically designed for target detection was introduced. This model 
incorporates a meta-feature learner within the YOLOv2 architecture to enable end-to-end 
training suited for small-sample scenarios. Wang et al. contended in Ref. 12 that merely 
including meta-learners into pre-existing models can lead to decreased memory efficiency when 
the support set’s category count rises. As a remedy, they propose a two-stage detection 
framework for generalized small-object detection fine-tuning, which enhances accuracy for the 
reclassification dataset while preserving the dataset-based model’s performance. Nevertheless, 
these general algorithms face challenges when dealing with variations in shape and size typical 
in industrial applications. To address this issue, an advanced small-object detection model that 
employs multirelation aggregation along with an adaptive learning approach was presented in 
Ref. 13. This model functions within a dual-branch meta-learning training structure and 
leverages hidden relationships between queries and their associated supporting images. 
 In Ref. 14, Chen et al. integrated a defect highlighting module within a two-stage detection 
framework to optimize the exploitation of defect-free samples, thereby enhancing the 
characterization of defect regions and achieving superior detection results. In Ref. 15, a training 
framework for small-sample models based on Faster R-CNN was presented to strengthen the 
robustness of detection capabilities. These approaches for defect identification in industrial 
contexts demonstrate that small-sample learning techniques are indeed applicable in such 
scenarios. Nevertheless, they all fall within the purview of two-stage detection frameworks. 
Despite the attainment of satisfactory levels of accuracy by these strategies, their detection rates 
in previous studies(11–15) frequently fail to meet the requisites of actual industrial automation 
processes.
 The identification of defects encounters substantial impediments because of multiple factors 
affecting strip-steel surfaces, such as the meager contrast between the defects and the 
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background, the extensive size spectrum of the targets, and the profusion of small targets. 
Motivated by the findings of prior analyses, to overcome these aforementioned hindrances, in 
this study, we incorporate the small-sample learning technology. A specifically tailored small-
object detection YOLO network (SODY-Net) for strip-steel surfaces has been established on the 
basis of the YOLOv5s single-stage detection architecture.
 As a result, the significant contributions and innovative aspects of our study are clearly 
evident in multiple ways.
(1)  We propose a bounding box regression loss function known as Wasserstein distance-

intersection over union (WD-IoU) for improving detection accuracy for small target defects.
(2)  Additionally, we have designed a multiscale path aggregation network (PA-Net) that 

incorporates an attention mechanism, serving as the model’s neck to enhance its capabilities 
for multiscale predictions and feature extraction. 

(3)  Moreover, we introduce the adaptive coordinate-decoupled head (Coord-DH) module for 
target prediction, which seeks to effectively address the conflict between the classification 
and localization tasks when dealing with limited sample sizes. 

 This paper is structured into the ensuing sections. In Sect. 2, we present a succinct delineation 
of the original YOLOv5s model architecture and expound on the functionalities of its 
submodules. In Sect. 3, we introduce the SODY-Net architecture and proffer three approaches 
for improving the original YOLOv5s model, involving the characteristics of the WD-IoU loss 
function, the implementation of a multiscale PA-Net, and an adaptive Coord-DH module. In 
Sect. 4, we elaborate upon the training and efficacy verification of the proposed SODY-Net 
employing the NEU-DET dataset. Finally, a comprehensive summary is presented.

2. Architecture of YOLOv5s Model

 The YOLOv5s model architecture, as illustrated in Fig. 1, is structured into four primary 
modules, that is, the Input, Backbone, Neck, and Head. Each module within YOLOv5s is further 
delineated in Table 1.
 The comprehensive definitions and operational guidelines of these modules are available in 
Ref. 16. CSPDarknet53 is employed in the Backbone for feature extraction,(17) with the cross-
stage partial (CSP) module effectively reducing network parameters and computational load 
while enhancing feature extraction efficiency. Additionally, the spatial pyramid pooling fast 
(SPPF) module(18) consolidates feature maps of different scales into a single scale for efficient 
feature fusion. The Neck module utilizes the PA-Net(19) to merge feature maps from different 
levels using top-down and bottom-up approaches to obtain more extensive feature information. 
Finally, the Head module comprises three detection layers that predict targets of various scales 
(80 × 80 × 256, 40 × 40 × 512, and 20 × 20 × 1024), culminating in generating detection results 
through loss function calculation to predict bounding box position, size, and category for each 
target on the feature map.
 The loss function of the YOLOv5s model comprises three primary elements, that is, the 
positional regression’s loss function LIoU, the cross-entropy loss function for classification, Lcls, 
and the bounding box regression’s loss function Lreg. LIoU (intersection over union) is defined in 
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Table 1
Modules within YOLOv5s model.

Module Detail structure of module

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Fig. 1. (Color online) Architecture of YOLOv5s model.
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Eq. (1) as the ratio of the area of overlap between the predicted bounding box Apred and the 
ground truth bounding box Agt to their combined area.
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Both Lcls and Lreg utilize the binary cross-entropy loss.(20) Additionally, LIoU integrates the CIoU 
loss function.(21) The specific definition of the LCIoU function is as follows.
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The symbol ρ(Apred, Agt) represents the Euclidean distance between the centroids of Apred and 
Agt, whereas D denotes the diagonal length of the minimum enclosing rectangle that encompasses 
both boxes. The variables wgt and hgt denote the width and height of the ground truth frame, and 
wpred and hpred represent those of the predicted frame, respectively. Additionally, α is a positive 
trade-off parameter used in optimization algorithms, whereas υ measures the aspect ratio 
consistency between wgt/hgt and wpred/hpred.

3. SODY-Net

 Because of the imperfections present on strip-steel surfaces, several characteristics emerge. 
(1) There is a notably low contrast between the defects and their background. (2) The size range 
of these defects varies significantly. (3) Identifying these defects poses a challenging problem in 
terms of detecting small targets. Consequently, in academic applications, detecting defects on 
strip-steel surfaces represents a significant area of research.
 To address the challenges mentioned earlier, we employ small-object learning methods based 
on the YOLOv5s one-stage detection framework in this study. A specialized network for defect 
detection with a limited sample size, named SODY-Net, has been carefully developed for 
inspecting strip-steel surfaces. The configuration of SODY-Net presented in this study is 
illustrated in Fig. 2. There are two key differences between SODY-Net and YOLOv5s models. 
(1) The Neck module of SODY-Net incorporates a multiscale PA-Net that features an attention 
mechanism. (2) The Head module of SODY-Net utilizes an adaptive decoupling detection 
framework known as the adaptive Coord-DH module, which is specifically designed for target 
prediction.
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 SODY-Net operates as follows. First, the input image is processed by the Backbone module to 
generate feature maps at three different scales: 20 × 20, 40 × 40, and 80 × 80. These feature 
maps are then integrated into the Neck section for feature fusion. This architecture employs the 
content-aware re-assembly of feature (CARAFE) module to extract significant features from the 
Backbone module through upsampling, which helps retain detailed information. The shallow 
features are subsequently concatenated with these deeper features to achieve the multiscale 
integration of features. The resulting feature map is utilized by the C3SA module for global 
feature extraction, allowing for richer information capture. Finally, in the Head module, the 
detector predicts targets of various sizes (large, medium, and small) and calculates detection 
results using a loss function.

3.1 WD-IoU loss function

 The NEU-DET dataset,(22,23) commonly utilized for algorithm model training and validation, 
is a publicly available compilation specifically curated for the analysis of surface defects on steel 
materials. By examining the steel datasets, we computed the ratio of the surface defect area to 
the total image area for each picture, as detailed in Table 2. Results show that roughly 44.8% of 
all defects have an area ratio ≤10%, whereas about 24.2% of all defects have an area ratio ≤5%. 
This underscores the significance of small surface defects and small to medium-sized 
imperfections, such as inclusions, patches, roll scraps, and scratches in steel data.
 Utilizing the surface defect data of diverse steel materials in the NEU-DET dataset as 
detailed in Table 2, which includes defect targets of varying dimensions, we here introduce a 
calculation method for the WD-IoU loss function LWDIoU of the predicted bounding box. This 
approach is specifically tailored to concurrently accommodate targets of diverse sizes, thereby 
enhancing the regression accuracy of SODY-Net and optimizing the efficiency of detecting and 
identifying defect targets.

Fig. 2. (Color online) Architecture of SODY-Net.
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 The WD-IoU loss function LWDIoU is computed as 

 1WDIoU IoUL WD= − , (5)

 1 2( , )IoU gt pred IoUWD NWD N N Dis Aspλ λ= ⋅ + ⋅ − . (6)

In Eq. (6), the WDIoU metric is constrained within the range of [0, 1], where λ1, λ2 ∈ [0, 1] denote 
the scale coefficients, which are fine-tuned using the NEU-DET dataset. The specific process 
for selecting λ1 and λ2 is further expounded upon in Sect. 4. The computation of LWDIoU consists 
of three primary components, whose detailed calculation procedures are outlined below.
(1) Normalized Wasserstein distance NWD(Ngt, Npred)
 The rectangular box, defined by the vector R = [cx, cy, h, w]T representing its center 
coordinates (cx, cy), height h, and width w in the image map, can be accurately characterized as 
a bivariate Gaussian distribution. This model effectively captures the varying pixel intensities 
within the box, with the central pixel (cx, cy) exhibiting maximum weights with h and w, 
gradually decreasing towards the boundary along both axes. Mathematically, this representation 
aligns with a two-dimensional Gaussian distribution, N(μ, Σ): 
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where μ and Σ represent the covariance matrix of the mean vector and the Gaussian distribution, 
respectively. 
 The Wasserstein distance is a metric derived from optimal transport theory.(24,25) The 
Gaussian–Wasserstein distance between the two-dimensional Gaussian distributions 
m1 = N(μ1, Σ1) and m2 = N(μ2, Σ2) can be formally defined as
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Thereby, the vector R representations of the ground truth and predicted bounding boxes are 
denoted as Rgt = [cxgt, cygt, hgt/2, wgt/2]T and Rpred = [cxpred, cypred, hpred/2, wpred/2]T, respectively. 
In this context, the coordinates (cxgt, cygt) are used to represent the central point of the ground 
truth bounding box, whereas hgt and wgt describe its size. Similarly, the coordinates 
(cxpred, cypred) indicate the central point coordinates of the predicted bounding box, with hpred 
and wpred representing its dimensions. After calculating Eq. (7), Ngt(μgt, Σgt) is obtained for 

Table 2
Ratio of defect area in NEU-DET dataset.
Ratio of area (Defect area / Total image area) Image count
Ratio of area ≤ 5% 1014
5% < Ratio of area ≤ 10% 863
Ratio of area > 10% 2312
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modeling the multivariate Gaussian distribution of the ground truth bounding box as well as 
Npred(μpred, Σpred) for the predicted bounding box. Subsequently, using Eq. (8), we compute 

2
2 gt pred( , ) [0, )W N N ∈ ∞ , which represents their dissimilarity obtained by Gaussian–Wasserstein 

distance measurements. NWD in Eq. (8) is further adjusted by applying an exponential function. 

 ( )2 2
2( , ) exp ( , ) [0,1]gt pred gt predNWD N N W N N γ= − ∈  (9)

Here, γ is a constant determined by the average absolute magnitude of the target in the dataset.
(2) Ratio of height difference to width difference, Asp
 As stated in Ref. 26, an effective bounding box regression loss should take into consideration 
the IoU values of the predicted and ground truth bounding boxes, along with their centroid 
distance and aspect ratio. The NWD introduced in Eq. (9) addresses both the IoU and centroid 
distance of two boundary boxes simultaneously. Therefore, to incorporate the aspect ratio, in 
this study, we adopt the formula for calculating the height-to-width difference ratio of ground 
truth and predicted bounding boxes from the EIoU loss function.(21)
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The variables wpred and hpred represent the dimensions of the predicted bounding box, whereas 
wgt and hgt denote the measurements of the ground truth bounding box. The terms ρ2(wpred, wgt) 
and ρ2(hpred, hgt) indicate the squared discrepancies between the widths and heights of the 
predicted and ground truth bounding boxes, respectively. Cw and Ch refer to the dimensions of 
the minimum enclosing rectangle that encompasses both sets of bounding boxes.
(3) Reassessment of positional regression for large predicted bounding boxes in object detection
 The concentration of the foreground within the central region of the bounding box for small 
targets, along with the predominant distribution of background along the periphery of the 
bounding box, necessitates utilizing NWD to represent the overlap area between the ground truth 
and predicted bounding boxes. This approach also takes into account their distance from the 
centroid, facilitating a gradual reduction in distribution weight from the center to the edge, 
thereby aligning with characteristics specific to small targets. Note that large targets may not 
necessarily adhere to this distribution pattern. Given that large targets constitute a significant 
proportion of our dataset as indicated by Table 3, further consideration is required for elements 
such as actual overlapping areas between two bounding boxes and distances between their 
respective centroids. The relevant calculation formula is provided below.
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The first term in Eq. (11) represents the ratio of IoU, whereas ρ(Apred, Agt) denotes the Euclidean 
distance between the centroid of the predicted bounding box Apred and that of the ground truth 
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bounding box Agt. In this context, D indicates the diagonal length of the minimum enclosing 
rectangle formed by Apred and Agt. This measure is commonly employed in object detection 
applications to assess spatial alignment between predicted bounding boxes and their 
corresponding ground truth annotations.

3.2 Multiscale PA-Net incorporating attention module

 Generally, the effective feature extraction of strip-steel surface defects is crucial for 
successful defect identification in input feature images because of the low contrast with the 
background and varying defect sizes. In this study, to meet practical application needs, we 
enhance the network’s feature extraction capability by integrating the CARAFE module(27) and 
the dual shuffle attention (SA) module(28) based on the multiscale PA-Net in the Backbone 
module. This allows for a more accurate distinction of defects in input images and improved 
recognition capability for different scales of strip-steel surface defect targets. Additionally, the 
integration of these modules provides the network with enhanced context awareness and the 
capability to better handle varying defect sizes, ultimately leading to more accurate and efficient 
defect identification.

3.2.1 CARAFE module

 The nearest-neighbor and bilinear interpolations are used in the YOLOv5s upsampling 
process. A reduction in computing complexity, a simple algorithm, and quick processing are the 
advantages of this approach. Instead of taking into account the values of other nearby pixels, the 
nearest-neighbor interpolation method just takes into account the gray-level binary values of the 
pixels closest to the sample point. As a result, there are some shortcomings of the first YOLOv5s 
upsampling technique, including a lack of sufficiently rich semantic information recorded and a 
significant amount of computation resulting from a larger number of parameters. Loss of image 
data and a reduction in object detection precision are possible outcomes of these deficiencies.(29,30) 
 Although the nearest-neighbor interpolation only considers the immediate pixel region 
surrounding the sample point, the CARAFE module aggregates continuous information from 
neighboring regions to enable upsampling across a wider receiving range.(27) More appropriate 
sampling for strip-steel surface defect characteristics and finer feature maps with low detail loss 

Table 3
Proposed novel modules. 

Module Detailed structure of module

(1) SA_BottleNeck ConvBNSiLU ConvBNSiLU ShuffleAttention

(2) C3SA × X
ConcatSA_BottleNeck

ConvBNSiLU

ConvBNSiLU ConvBNSiLU
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are achieved by the CARAFE module through the use of adaptive and optimized recombination 
cores at different places.
 The CARAFE module is a content-aware kernel reassembly operator that consists of two 
steps. Firstly, it predicts a reassembly kernel for each target location by analyzing its content, 
then it reassembles features using the anticipated kernels. The following formulas delineates the 
operating processes:

 ( ( , ))l l encoderW N X kψ′ = , (12)

 ( ( , ), )l l up lX N X k Wφ′ ′′ = , (13)

where the kernel prediction module is represented by ψ and the content-aware reassembly 
module by ϕ. The original feature map is denoted by X in this instance and the new feature map 
produced by upsampling is denoted by X'. The pre-upsampled target location is represented by 
the variable l, whereas the post-upsampled target position is indicated by l'. In essence, N(Xl, k)
represents the domain of Xl by symbolizing the k × k subregion of X centered at position l. The 
term Wl refers to the kernel prediction module ψ, which uses contextual data taken from Xl to 
predict a suitable kernel for each location l'.
 Moreover, kencoder is a convolution layer with a certain kernel size in Eqs. (12) and (13), 
whereas kup denotes the re-assembly kernel size. In this situation, an empirical formula such as 
kencoder = kup − 2 has been found to provide the best possible trade-off between efficiency and 
performance (see Ref. 27 for further information about the CARAFE module operation).

3.2.2 Fusion of the dual-path SA module

 The attention module primarily operates on diverse channels and spatial positions within the 
feature graph to attenuate less salient features. The integration of the attention module can 
facilitate the algorithm in efficiently discerning points of focus, particularly in scenarios with 
limited sample data. To minimize computational power consumption, we introduce a lightweight 
and efficient SA module,(28) which integrates a dual-path attention mechanism to fully leverage 
the relationship between spatial and channel attention. This enables a quicker convergence of 
loss values for the corresponding Coord-DH module in the algorithm model of the Head module.
 As demonstrated in Table 3(1), we propose the fusion of the SA module with the BottleNeck2 
module, as shown in Table 1(3), to form a novel SA_BottleNeck module. This integrated module 
is then incorporated into the CSP2 module to create the C3SA module, as shown in Table 3(2), 
which is subsequently positioned before the input of the three Coord-DH modules in the Head 
module. Following the feature fusion operation, the feature map undergoes global feature 
extraction through passage via the C3SA module prior to transmission to the Head’s detector, as 
shown in Fig. 2. Within the C3SA module, the integration of the SA_BottleNeck module into an 
attention module primarily aims at reducing computational load and obtaining more 
comprehensive gradient flow information than previously achieved. This not only ensures rich 
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scale feature information for various defects within a feature graph but also mitigates 
interference from redundant information on detectors within the Head module.
 Figure 3 illustrates the process of the SA module, which initially divides the feature graph F 
into g groups along its channel dimension, that is, F = [F1, ... , Fg], Fk ∈R(c/g)×h×w. The subfeature 
Fk is then split into Fk1 and Fk2 along the channel dimension and introduced into the channel 
attention branch and spatial attention branch, respectively. In Eq. (14), within the channel 
attention branch, Fk1 undergoes global average pooling to obtain its channel statistic s. 
Subsequently, as per Eq. (15), s undergoes weight convolution with the sigmoid function to yield 
the channel attention weight matrix, which is then multiplied by Fk1 to produce F'

k1. Here, W1 and 
b1 respectively represent the weight matrix and vector in channel attention.

 gp 1 1
1 1

1( ) ( , )
h w

k k
i j

s F F F i j
h w = =

= =
× ∑∑  (14)

 1 c 1 1 1 1( ( )) ( )k k kF F s F W s b Fσ σ′ = ⋅ = + ⋅  (15)

 In the spatial attention branch, the acquisition of spatial dimension information involves the 
utilization of group norm (GN)(31) for Fk2. Subsequently, the feature F'

k2 is obtained through a 
process that weights different spatial positions using Eq. (16).

 2 2 2 2 2( ( ) )k k kF W GN F b Fσ′ = ⋅ + ⋅   (16)

Upon the completion of consolidating the results from both branches through designated 
communication channels, the features are aggregated into F', followed by cross-group 
information exchange facilitated through channel shuffling.

Fig. 3. SA module.
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3.3 Adaptive Coord-DH module

 The feature map obtained after feature fusion is abundant in intricate and detailed location 
features, significantly enhancing the information utilized for object detection. In the original 
YOLOv5s algorithm model, the Head module is responsible for two pivotal tasks, target 
classification and location, both of which rely on the extracted features. 
 The classification task necessitates that the Head module accurately discerns the category of 
the target object while disregarding its spatial coordinates. This requirement ensures that 
categorization is solely based on intrinsic characteristics rather than the position within the 
image. Conversely, the location task demands a comprehensive understanding of the target’s 
spatial information, including precise positioning and size. This aspect holds particular 
significance in real-world scenarios where positional data plays a critical role.
 The inherent conflict between these tasks arises from their divergent objectives, that is, 
accuracy in classification versus precision in location The former focuses on correct 
identification, whereas the latter aims to pinpoint exact locations. This conflict becomes more 
pronounced in scenarios with limited training samples as the learning complex relationship 
between features and tasks becomes challenging, potentially leading to suboptimal performance 
in both classification and location. Further insights into this issue can be found in Ref. 32.
 Hence, in this study, the adaptive Coord-DH module is proposed for target prediction. 
Differing from the coupled detection structure of the original YOLOv5s algorithm model’s Head 
module, which integrates various information on a feature graph, the adaptive Coord-DH 
module presented in this study primarily separates classification and location tasks into two 
distinct branches. Furthermore, an adaptive learning mechanism is designed to enable these 
branches to independently address target classification and location requirements, thereby 
alleviating task conflicts and enhancing detection accuracy.
 The structure of the Adaptive Coord-DH module is depicted in Fig. 4. The input feature map 
undergoes dimensionality reduction through the 1 × 1 × Conv convolution module and is 
subsequently partitioned into two branches. The classification branch maintains translation 
invariance via the Coordinate-convolution (Coord-Conv) module, followed by a 1 × 1 × Conv 
convolution for classification operations. In contrast, the regression branch captures translation 
variability through the Coord-Conv module before being decomposed into two parallel branches 
for 1 × 1 × Conv convolution, one dedicated to positioning and the other to confidence detection.
 In the aforementioned statements, the Adaptive Coord-DH module can acquire diverse levels 
of translation invariance and variability, contingent upon distinct tasks, under the effect of the 
Coord-Conv module. The structure of the Coord-Conv module is delineated in Fig. 5. Although 
traditional convolution operations are well suited for classification tasks because of their 
translation invariance, they lack positional information, resulting in suboptimal localization 
effects. In this study, the adopted Coord-Conv module incorporates x- and y-coordinate channels 
from the original input into feature graph F, facilitating spatial information perception during 
the convolution process. Consequently, when the coordinate channel does not acquire any 
information, it behaves akin to traditional convolution with translation invariance. However, 
when it acquires specific information, it demonstrates discernible translation variability that 
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enables different branches within a decoupled detection structure to adaptively learn various 
tasks.

4. Experimental Design and Analysis of Results

 To verify the efficiency of the proposed method, we evaluated the model’s detection 
performance using the NEU-DET public dataset provided by Northeastern University.(23) The 
experimental setup utilized the Ubuntu 20.04 LTS operating system with 16 GB of memory, an 
AMD Ryzen 5 5600X CPU, and an NVIDIA GeForce RTX3060 GPU with 12 GB of VRAM. 
PyTorch version 1.10.1 and CUDA version 11.2 were employed for software implementation, and 
Python version 3.7 served as the primary programming language. 
 The training strategy remained consistent across all experiments, utilizing a batch size of 16 
and a fixed input image size of 640 × 640 pixels. The training process involved a total of 120 
epochs, commencing with an initial learning rate set at 0.01 and a momentum value at 0.937 
using stochastic gradient descent (SGD) as the optimizer with a regression coefficient set to 
optimize the model at a value of 0.0005.

4.1 Construction of experimental dataset

 The NEU-DET dataset covers six distinct defect categories, namely, cracks (Cr), inclusions 
(In), patches (Pa), pittings (Ps), rolling scraps (Rs), and scratches (Sc). Examples of these six 

Fig. 4. Structure of Adaptive Coord-DH module.

Fig. 5. Structure of Coord-Conv module.
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defect categories are shown in Fig. 6. Each category consists of a total of 300 high-resolution 
images measuring 200 × 200 pixels.
 In the field of steel defect databases, where sample sizes are limited, there is currently no 
established representative data repository. Therefore, in this study, we utilize the existing NEU-
DET dataset for reclassification and develop a training database specifically designed for 
network models aimed at detecting small-object sample defects on steel surfaces.
 In Ref. 15, a research methodology for the detection of surface defects in a few samples of 
strip-steel surface defects was introduced in terms of the NEU-DET dataset. In this work, the 
NEU-DET dataset is divided into two categories, that is, the base class, which includes In, Rs, 
and Sc, and the novel class, which comprises Cr, Pa, and Ps. The base class dataset BaseD  consists 
of T

BaseD , which has 720 training set images, and V
BaseD , which has 180 validation set images. T

BaseD  
and V

BaseD  are utilized for model pre-training and validation. Similarly, the novel class dataset 
NovelD  includes T

NovelD , which has 720 training set images, and V
NovelD , which has 180 validation 

set images. During the network fine-tuning stage, the k count of images from each category is 
randomly selected from T

NovelD  for training and validation on V
NovelD . Figure 7 illustrates the 

construction process for the dataset for small-object sample defects of strip-steel surfaces.
 In contrast to the approach outlined in Ref. 15, in this study, we employ a fine-tuning process 
on the pre-trained model using a composite dataset comprising T

BaseD  and T
NovelD , achieved by the 

random sampling of k instances from each category. Validation is subsequently conducted on the 
combined T T

Base NovelD D+  dataset at various k values of 5, 10, and 30.
 Figure 8 illustrates the training flow during the fine-tuning stage of SODY-Net. To enhance 
the model’s generalization capability, we apply the following strategies:
(1)  During each training iteration in both the network base training stage and the fine-tuning 

stage, an 80% probability of random scale change to the input image is made. This is done to 
improve the model’s scale invariance. 

(2) Additionally, a 50% probability of rotation is used to enhance rotational invariance. 

Fig. 6. Examples of defects in the NEU-DET dataset. (a) Cr, (b) In, (c) Pa, (d) Ps, (e) Rs, and (f) Sc.

(a) Cr (c) Pa (e) Rs

(b) In (d) Ps (f) Sc
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(3)  A 100% probability of mosaic data augmentation(33) is employed to enrich the training 
dataset.

 Moreover, according to Fig. 8, the training procedure for the network model proposed in this 
study is outlined as follows. 
(1)  In the initial phase of training, the images from the training set T

BaseD  are employed to train 
the model, whereas those from the verification set V

BaseD  are used for validation to acquire a 
pretrained model. 

(2)  The number of categories in the classifier of the randomly initialized detector aligns with that 
during the fine-tuning stage. 

(3)  The Backbone module of the pretrained model remains unchanged and undergoes fine-
tuning on the combined dataset T T

Base NovelD D+ , with validation also performed on the same 
combined dataset.

Fig. 7. Construction of dataset for small-object sample defects of strip-steel surfaces.

Fig. 8. Fine-tuning and training steps of SODY-Net.
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4.2 Ablation experiments

 To evaluate the impact of the refined modules (C3SA and Coord-DH) introduced in the study 
on network model performance, ablation experiments were conducted under various shot 
conditions using the small-object sample defect dataset derived from the NEU-DET dataset. The 
results of these experiments are presented in Table 4. In this table, the non-SA&CARAFE 
representation model employs the original PA-Net configuration of YOLOv5s for feature fusion, 
whereas all other parameters align with SODY-Net. The term ‘non-DH’ indicates that the 
standard detection header from YOLOv5s is used instead of the Coord-DH architecture, and all 
other configurations adhere to SODY-Net standards. Furthermore, the non-WD representation 
model applies the original bounding box regression loss function for the YOLOv5s model, 
ensuring consistency with SODY-Net in every other aspect.
 A thorough examination of the results presented in Table 4 reveals several important 
observations when compared with SODY-Net.
(1)  The absence of C3SA and CARAFE modules within the feature fusion framework 

significantly reduces detection accuracy for the non-SA&CARAFE network model by 4.11, 
3.74, and 3.54% under 5-, 10-, and 30-shot conditions, respectively. This highlights the 
essential contribution these two modules make towards enhancing the network’s feature 
extraction capabilities and their effectiveness in learning critical features.

(2)  Furthermore, not including Coord-DH in the detection setup leads to a notable decline in 
detection accuracy for the non-DH network model by 3.16, 4.88, and 5.12% across all three 
shot scenarios, indicating that Coord-DH effectively addresses conflicts between the 
classification and localization tasks, thus improving overall detection performance.

(3)  Additionally, failing to apply the WD-IoU loss function for optimizing prediction frame 
regression results in a drop in detection accuracy for the non-WD network model by 0.73, 
0.59, and 0.51% under the three shot conditions. This suggests that utilizing WD-IoU aids in 
achieving a more accurate identification of small targets.

4.3 Experimental analysis of WD-IoU loss functions

 In this section, we clarify the WD-IoU loss function utilized in this study and evaluate the 
effectiveness of the small-object sample defect dataset introduced in Sect. 4.1, focusing on the 
experimental analysis of the predicated bounding box loss function WDIoU. SODY-Net employs 
the WD-IoU loss functions as outlined in Eqs. (5) and (6). In this context, λ1 and λ2 represent the 
coefficients linked to the size distribution ratio among training samples. When small and 

Table 4
Results of ablation experiments.
Modules 5-shot 10-shot 30-shot
non-SA&CARAFE 58.13 63.18 69.07
non-DH 59.08 62.04 67.49
non-WD 61.51 66.33 72.10
SODY-Net (ours) 62.24 66.92 72.61
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medium-sized targets predominate within these samples, increasing the value of λ1/λ2 can 
amplify the effect of the NWD index. Conversely, decreasing the value of λ1/λ2 can enhance the 
significance of the intersection ratio DisIoU. Since fine-tuning requires training with various 
random samples, it implies that multiple parameter combinations (λ1, λ2) must be established for 
comparison. To expedite the efficacious determination of the appropriate (λ1, λ2), in this study, 
we impose the condition that λ1 + λ2 = 1 to streamline the exploration and deliberation. 
 In Table 5, the impacts of the CIoU loss function applied to the YOLOv5s model and the 
effects of the NWD and WD-IoU loss functions applied to SODY-Net are compared in detail 
using the small-object sample defect dataset under the 5-shot test. In this case, n is the defect 
area divided by the whole picture area, N is the total number of defects, and NS is the number of 
defect objects whose area percentage is less than n, and λ1/λ2 = NS/(N − NS). The associated loss 
function at this point is labeled WDIoU_n. Utilizing the NEU-DET dataset shown in Table 3, we 
further categorize WDIoU_n into three different scenarios: n = 0.05, 0.1, and 0.2.
 Table 5 illustrates that the NWD loss function significantly outperforms the CIoU loss 
function used in the YOLOv5s model, resulting in an increase of 0.81% in AP50. Furthermore, it 
demonstrates better detection performance for small and medium-sized objects, with APS and 
APM improving by 3.45 and 0.59%, respectively. On the other hand, the CIoU loss function 
shows improved detection capabilities for larger targets, achieving an APL value that surpasses 
that of the NWD loss function by 1.01%.
 The results presented in Table 5 indicate that the WDIoU_0.1 loss function can provide optimal 
detection performance. Specifically, the λ1/λ2 ratio was calculated from the count of targets 
whose area ratio is below 10% of the total number of other targets, resulting in an AP50 score of 
55.87%. This marks a 1.76% improvement over the CIoU loss function. Additionally, both small- 
and large-target detection precision peaked, with APS and APL values recorded at 15.38 and 
36.21%, respectively. Importantly, the gap between APS and APL when using the WDIoU_0.1 loss 
function was reduced to only 20.83%. These findings illustrate that the WDIoU loss function 
effectively refines target boundary box regression while enhancing model detection capabilities 
across various object sizes.

4.4 Compared experiments

 To assess the detection capability of the SODY-Net presented in this study, the YOLOv5s 
model is employed as the fundamental framework. Moreover, with the small-object sample 
defect dataset retrieved from the NEU-DET dataset, SODY-Net is compared with the prevalent 
two-stage fine-tuning approach (TFA)(12) and the Faster R-CNN incremental few-shot defect 
detection (IFDD)(15) model for the identification of small-object sample defects in industrial 
application scenarios. The experimental findings are illustrated in Table 6.
 As shown in Table 6, SODY-Net demonstrates superior detection performance under various 
conditions, that is, 5-, 10-, and 30-shot. Several important observations can be made. 
(1)  Specifically, under the training approach outlined in Sect. 3.1, the mean average precision 

(mAP) of SODY-Net improved by 7.36, 5.27, and 7.34% in comparison with that of the 
YOLOv5s model for each of the three shot conditions. 
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(2)  In the 5-, 10-, and 30-shot situations, the mAP of SODY-Net increased by 27.28, 26.88, and 
27.28%, respectively, in comparison with that of the TFA model. 

(3)  In comparison with that of the Faster R-CNN (IFDD) model, the mAP of  SODY-Net rose by 
11.19, 7.41, and 6.74% under the 5-, 10-, and 30-shot conditions, respectively.

 The results of the experiments strongly support the superior detection performance of SODY-
Net in industrial settings. Furthermore, the mAP of the TFA model is significantly lower than 
those of the other models, indicating that the commonly used small-object sample defect 
identification method, TFA, is poorly suited for defect detection tasks that involve various scales 
and shapes, making it unsuitable for direct application in industrial contexts.
 The mAP metric for SODY-Net shows a significant increase from 62.24 to 72.61% under 5- 
to 30-shot conditions. This trend is also observed in both the YOLOv5s and TFA models. This 
indicates that the training methodology proposed in Sect. 3.1 aligns well with small-object 
sample defect detection models, thereby improving the effectiveness of existing defect 
identification models (YOLOv5s and TFA) when dealing with limited sample defects.
 Moreover, the results of tests conducted on the YOLOv5s model, TFA model, and SODY-Net 
using the small-object sample defect dataset introduced in Sect. 4.1 are presented in Fig. 9. The 
results illustrated in Fig. 9 clearly indicate that SODY-Net demonstrates superior performance, 
whereas the detection capabilities of the other models are comparatively less effective.
(1)  The YOLOv5s model identified a sole defect in Cr samples yet miscategorized multiple 

defects in Ps samples as a solitary one. In contrast, SODY-Net precisely recognized the 
multiple defects as discrete defects, manifesting its preeminent capacity for extracting global 
information. 

(2)  Furthermore, the YOLOv5s model was unable to detect small defects in Pa samples, but 
SODY-Net was able to detect these slight irregularities with high sensitivity, highlighting its 
ability to detect anomalies on a small scale. 

(3)  Additionally, the TFA model failed to identify several defects during the detection of Pa 
samples and did not detect any anomalies in Cr and Ps samples, which is an inadmissible 

Table 5
Detection results of different loss functions under 5-shot condition.
Loss Function AP AP50 AP75 APS APM APL
CIoU 27.23 54.11 24.53 10.47 19.74 36.17
NWD 27.69 54.92 24.88 13.92 20.33 35.16
WDIoU_0.05 27.84 55.16 25.17 13.15 20.16 36.01
WDIoU_0.1 28.33 55.87 25.96 15.38 20.87 36.21
WDIoU_0.2 28.06 55.48 25.62 15.02 19.98 35.45

Table 6
Results of performance evaluation on the small-object sample defect dataset. 

Models mAP = AP50
5-shot 10-shot 30-shot

YOLOv5s 56.47 60.50 63.69
TFA(12) 36.55 38.89 43.22
Faster R-CNN (IFDD)(15) 52.64 58.36 64.29
SODY-Net (ours) 63.83 65.77 71.03
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situation in industrial applications. Consequently, SODY-Net demonstrates a more reliable 
detection performance and is eminently suitable for the task of detecting defects on strip-steel 
surfaces in industrial scenarios.

5. Conclusions

 To tackle the issue of insufficient defect samples in industrial contexts, in this study, we 
introduce SODY-Net, a model designed for detecting defects on strip-steel surfaces. A multiscale 
PA-Net module called C3SA was developed to enhance the model’s focus on defect 
characteristics and improve its capability to predict defects at various scales. Additionally, an 
adaptive decoupling detection framework named Coord-DH separates the model’s detection 
functions into a classifier and a locator that can flexibly handle their respective tasks, thus 
reducing conflicts between the classification and location tasks. We also propose a bounding 
box regression loss function, WD-IoU, which incorporates the Wasserstein distance to improve 
precision in detecting small target defects. Using a small-object sample defect dataset derived 
from the NEU-DET dataset, we conducted comparative experiments and ablation studies. The 

Fig. 9. (Color online) Detection results of three small-object sample defect detection models.
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results demonstrate both the complexity of SODY-Net and the effectiveness of each enhanced 
module within it.
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