Sensors and Materials, Vol. 37, No. 6 (2025) 2307-2323 2307
MYU Tokyo

S & M 4057

Digital Integration of Data and Information
into System Model of Aerospace Equipment

Wengiang Yuan,' YongKang Chen,! Kun Peng,? Shigi Ma,’
Benli Yuan,* Yusheng Liu,’ Jianjun Li,'® and Chih-Cheng Chen”*

"Hangzhou Dianzi University, Xiasha Higher Education Zone, Hangzhou, Zhejiang 310018, China
ZBeijing Space Vehicle General Design Department, 104 Youyi Road, Haidian, Beijing 100094, China
3Hangzhou Hope System Technology Co., Ltd.,

SF Aoqiang Building, No. 6 Xiyuan Fifth Road, Xihu District, Hangzhou, Zhejiang 310030, China
4China Academy of Launch Vehicle Technology,

No. 1 Nanda Hongmen Road, Fengtai District, Beijing 100076, China
>Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
%Hangzhou Normal University, No. 2318, Yuhangtang Road, Yuhang District, Hangzhou, Zhejiang 311121, China
"Department of Automatic Control Engineering, Feng Chia University,

No. 100, Wenhua Road, Xitun District, Taichung City 40732, Taiwan (R.O.C.)

(Received January 27, 2025; accepted May 16, 2025)
Keywords: aerospace equipment, system modeling, knowledge integration

We have investigated how to integrate data and information and system modeling for the
effective management of aerospace equipment. The method of such integration can be developed
through the in-depth study of relevant data and information and the characteristics of system
models. Solutions and methods are proposed to design and develop efficient aerospace
equipment management. The proposed method is important for the technological advancement
and development of the aerospace industry and provides a reference for further development of
system models in other engineering applications.

1. Introduction

The global demand for space exploration, autonomous aircraft, and unmanned vehicles is on
the rise owing to the continuous advancements in science and technology. Data analysis, Al, and
other cutting-edge technologies have facilitated the automation of aerospace equipment through
digital integration. The design, manufacturing, and application of acrospace equipment require a
multidisciplinary understanding of design, structure, materials, dynamics, thermodynamics, and
other spacecraft-related technologies. Aerospace systems consist of multiple subsystems and
interconnected components, often requiring state-of-the-art technologies. Consequently,
research and development in this field represents the pinnacle of technological advancement.

Aerospace equipment must endure extreme environments, necessitating the use of
appropriate materials, components, systems, and processes to ensure safety and reliability.
Therefore, emerging technologies and materials along with advanced materials, 3D printing
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technology, new propulsion systems, high-performance computing devices, and advanced
sensors are increasingly applied to aerospace equipment.

System models abstract the complexity and details of a system (equipment) using a
mathematical model. Key characteristics and operations of the system are examined to simplify
and integrate the components and their interrelationships in the system. The mathematical model
is established to determine the parameters of the system to help understand and/or predict the
operation and performance of the system.(1:?) System models are constructed on different scales,
from micro- to macroscale, to enable engineers to analyze the characteristics of a system and
predict its malfunctions. The extension of a system model is necessary to increase its flexibility
and applicability to diverse operating conditions.

The system modeling (SysML) language is based on the unified modeling language and used
in system engineering.®) The SysML language is used to build a system model of a spacecraft to
analyze and predict the performance and operation of the components. By integrating existing
data, the SysML language is used for the abstraction and simplification of multiscale system
models owing to its scalability and practicality. It is also used for analyzing, designing, and
optimizing complex systems in aerospace equipment.)

Research on system modeling has been conducted by space agencies, enterprises, and
academia to improve the design, development, and operation of aerospace equipment and related
technology.®) Aerospace companies and research institutions have carried out various research
studies on the modeling and simulation of devices used in aerospace equipment and their
integration and verification. Digital transformation and digital twins have been introduced in the
aerospace industry to improve the efficiency and reliability of the equipment. Academicians
have also conducted research on system modeling for aerospace equipment. Using model-driven
methods, a series of functional, operational, and structural models have been established to
describe and analyze the safety and performance of aerospace equipment from diverse aspects.
Interdisciplinary collaborations have enabled experts in various fields to integrate their
knowledge to develop aerospace equipment.

NASA has extensive experience in applying system engineering and modeling based on
which it has developed aerospace components, propulsion systems, and navigation control
devices. Recently, Al and machine learning technology have been extensively used to analyze
and process a huge amount of data for decision-making and the optimization of equipment
design. The European Space Agency has been committed to the research on system modeling for
the design and operation of space missions. The aerospace industry has been involved in
research for the development of related technologies.

In such research, integrating existing data and information into system models is inevitable
in aerospace equipment. However, challenges remain in the acquisition, representation, and
verification of data and information for models. Therefore, research is mandatory to develop an
accurate, efficient, and reliable method of integrating data and information into system models
for the continuous innovation and development of acrospace equipment. In this study, we used
the SysML language to investigate how to integrate data into system models effectively to
maintain aerospace equipment effectively and efficiently.
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2. Methods

In integrating data and information into system models, their digital expression is critical.
The data and information include demands, functions, metrics, logical and physical architectures,
parameters, and sensor data of aerospace equipment. The system model is constructed on the
basis of a scenario, a standardized model library, and the digital expression of data (Fig. 1).

To build a metamodel, ontology technology is used to define and sort the components of
aerospace equipment and their complex relationships. Mapping and describing the components
are conducted for the metamodel. Then, the standard view from the perspective of each
component is defined to model aerospace equipment. By integrating aerospace equipment
ontology and standard views into the metamodel, a scenario is created for digital modeling based
on the model library. The defined scenario is used to determine the demands of the aerospace
equipment in mapping, comparing, and iterating the model library for multilevel engineering.
The scenario is described in hierarchical and item-based terms for the in-depth digital integration
of data into the model.

In this study, a system model of an aircraft landing gear was constructed for the analysis of
the model and its library. The general demands of the landing gear were considered to verify the
model design’s rationality.
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Fig. 1.  (Color online) Construction of system model and digital integration into system model.
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3. Model and Library

In the digital modeling of aerospace equipment, multiple tasks for users and their demands
are considered along with system boundaries in operating scenarios, including altitudes, signal
attenuation and interference, and the movement and characteristics of targets. Interaction with
other equipment and the status, operations, and constraints of operating resources are included
in the scenarios.®”) As shown in Fig. 2, the model library includes various standard views, the
ontology, the metamodel, and the model interacting with each other based on model-based
system engineering (MBSE).(8-)

3.1 Metamodel

Data and information on aerospace equipment need to be constantly collected and updated as
the system model keeps changing and new materials, technologies, and design concepts are
continually applied to the equipment, especially MBSE is applied to CubeSat.(!%1D) For the
digitization of the data and information, a language system for the model must be constructed to
integrate them and ensure that the prediction of the model is consistent with the real measurement
values and to ensure cybersecurity. To build the language system using digital engineering,(1?)
metamodels are necessary to determine the necessary data and information, attributes, and
explicit associations between the components of aerospace equipment. The construction of a
metamodel using the terminology related to rockets is shown in Fig. 3.

3.2 Model library

On the basis of the database for constructing a system model, a model library is established.
In this study, we established a model library of an aircraft landing gear. To establish the model
library, the corresponding model and database were constructed on the basis of the characteristics
of the landing gear and the demands for its maintenance.(!3) At the same time, the reliability and
integrity of the data were assessed for the design, development, and operation of its system
model. The model library comprised sublibraries of functions, operations, architecture, and
parameters (metric library) as shown in Fig. 4.

Ontology
-
Demand Functional Metric & A,
view view view - o
Logical Physical '. — . ™
architecture architecture Model Metamodel
view view

4 &

Fig. 2. (Color online) Standard views and interaction of ontology, metamodel, and model in digital model library.
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Fig. 3. (Color online) Metamodel construction using rocket terminology.

4. System Model of Aerospace Landing Gear

It is necessary to analyze the missions, architecture, and demands of equipment in the
development of the system model. The consistency of the architecture and parameters of the
model must be ensured to meet the system demands and ensure the comprehensiveness and
reliability of equipment operation at the task, system, hierarchy, and architecture levels. A
subsystem model of each component such as a task model or an architecture model needs to be
constructed for digital mapping to enhance the accuracy of the model (Fig. 5). Tasks, functions,
concepts, and architectures of aerospace equipment need to be determined in various scenarios
at multiple levels and from diverse perspectives to define or construct modeling semantics and
syntaxes. The functional logic and relationships between internal and external interfaces must
be understood through quantitative and qualitative demand analysis. In this study, we conducted
the digital mapping of the landing gear using SysML.(14.15)

4.1 Task model

The task model of the landing gear was designed to evaluate how well it met the requirements
of the standard views presented in Fig. 2. For the assessment, the rules of digital mapping were
established considering the necessary criteria and demands. Tasks in diverse situations were
defined in the modeling as shown in Fig. 6.
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(Color online) Digital mapping for system modeling aerospace equipment.
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Fig. 6. (Color online) Task model of landing gear.

4.2 Demand view

In the demand view, necessary tasks are constantly iterated through digital mapping. The
main task of demand analysis is to establish a complete library of demands. The demands in
written documents are sorted and listed in a hierarchical library on the basis of their
characteristics and difficulties at engineering, system, subsystem, and equipment levels. Items
for each demand are mapped in the system model using the modeling language. As shown in Fig.
7, the structural demands of the landing gear were refined in this study, including the retracting
mechanism, lower and upper lock design demands, and others. After establishing the demand
library, completeness analysis and change tracking are carried out to refine the demands for the
digital mapping in the system model. For numerous tasks, complex demands, and frequent
changes of demands, MBSE is used.

4.3 Functional view

On the basis of the tasks in the demand view, a scenario is created to understand the operation
of aerospace equipment in various situations and discover potential problems or possible
improvements. In various scenarios, the functional view is determined to describe the functions
of the equipment from the user’s perspective. The system of aerospace equipment consists of
multiple functional modules, so the functions of the modules and the relationship between them
are described. From the functional view, the functional components of the equipment and their
relationship can be understood for the design and development of the system model. The
functional view helps to understand the structure of the equipment and to effectively analyze
system demands and define necessary modules.

As shown in Fig. 8, the aircraft has a landing process involving “opening the door” and
“generating thrust for descent” in landing. To open the door, “door unlocking” and “door
actuating” must be carried out. To generate thrust for descent, three landing gear operations
must be conducted: “landing gear unlocking,” “landing gear actuation,” and “landing gear in
place.” After analyzing this operation, we can analyze the landing gear operations.
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Fig. 7. (Color online) Listed demands for landing gear tasks.

4.4 Logical architecture view

We determined the logical relationship between the modules of aerospace equipment to
understand its structure and the relationships between its components. The dependencies, data
flows, and information interactions between the components were analyzed for simulation and
optimization for effective management and troubleshooting and for ensuring consistent
interactions between the components.

Figure 9 shows the transition condition and the actions of each component of the aerospace
landing gear. When the “landing gear retraction and retraction actuator” receives the signal of
“landing gear unlocking”, the “standby” state of the landing gear is switched to the
“decentralized” state, and the landing gear is retracted. When the “action start” signal is sent to
the operation system, the “landing gear action” is executed to open the strut.

4.5 Physical architecture view

The physical architecture view is defined to describe the components of the equipment. The
functions of the components are listed in a library to understand their operations, effectively
assign tasks, and identify possible problems and risks. By understanding the structure and
functions, system deployment and maintenance can be conducted effectively. Figure 10 shows
that a landing gear is composed of the landing gear strut, the anti-sway mechanism, and the main
gear. The retraction and deployment subsystem consists of the landing gear uplock, landing gear
retraction actuator, downlock, power supply unit, hydraulic lines, valves, and gear door
retraction actuator.

4.6 Metric view

Aerospace equipment faces a wide range of operational demands. To optimize performance
and minimize the risk of malfunctions, these demands are categorized by subsystem. Figure 11
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(Color online) Landing gear operation analysis in landing.

shows the operational analysis of landing gear shutdown, which is conducted through balanced
landing gear load distribution. Figure 12 provides the parameters for the metric view of
subsystem operation.
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Fig. 10. (Color online) Physical architecture of aerospace landing gear.

4.7 Requirement verification

Demands are determined through verification and confirmation to ensure the correctness,
completeness, and consistency of aerospace equipment operation. For aerospace system
modeling, the demand view is vital as tasks and operations must be correctly defined to ensure
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Fig. 12. (Color online) Parameters for metric view of subsystem operation.

the appropriate operation and prevent problems. As shown in Fig. 13, the demands of the
subsystems are listed from the function library of the system model. Through the verification of
the demands, the equipment can operate reliably, safely, and efficiently, and the equipment can
be maintained effectively to prevent potential malfunctions.

Figure 14 shows the parameters in the demand view. The demands are defined at multiple
levels of the operations of the equipment and its subsystems and components. Each subsystem’s
and component’s demands must be defined correctly to monitor their operations efficiently using
various sensors. Through digital mapping and integration with functional, metric, logical
architecture, and physical architecture views, the system model can be verified. Then, signal
transmission, signal conversion, and the optimization of the equipment operation can be ensured.
To avoid data redundancy and inconsistency, a relationship matrix including demands and
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Fig. 14. (Color online) Parameters in demand view of system model of aerospace equipment.

parameters is constructed (Fig. 15). Digital mapping is of great significance in improving the
efficiency and quality of system engineering and management and contributes to collaborative

work among experts from different fields.
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Fig. 15. (Color online) Demand and parameter matrix of system model.

5. Integration of Sensor Data

As a series of mature products, sensors have a very complete data structure. However, when
applied in a system model, the metrics will be abstracted and simplified. This leads to the use of
inappropriate data analysis methods by the system model when processing sensor data and
analyzing the correlations among metrics. In addition, sensor data is highly specialized, and
only professionals in specific fields can deeply understand its meaning and potential value,
which also increases the difficulty of establishing correlations among metrics.

To integrate sensor data into the system model, sensor models that meet the requirements are
selected from the model library (Fig. 16). The model data in the model library is extensive and
comprehensive. In fact, during the construction of the system model, the selection is carried out
on the basis of the data in the standard model library. The selected models will be abstracted by
designers according to the system model. The system model integrates sensor data through
“value Property,” and the sensor models constrain the data range of the system model through
“constraint Property,” so as to achieve the integration and correlation of data.
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Figure 17 shows the integration method for the position sensor and the landing gear system
model. The calculation results of the ground loads of each component in the landing gear that
need to be restricted by the position sensor are stored in the ground load calculation module. The
load conversion module within the position sensor module transforms the overall load of the
landing gear into the sensor load. The load range module constrains the range of the sensor.
During the design of the landing gear, if the ground load of any component exceeds the load
range permitted by the sensor, the design metrics need to be modified. The design is considered
reasonable only when the ground load is within a reasonable range.
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Fig. 16. (Color online) Sensor data set in the model library.
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Fig. 17. (Color online) Integration of sensor data and system model.
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System modeling methods exist to address the design of complex systems. Metrics possess
very obvious emergent properties. However, the determination of component metrics precedes
the design of system metrics. Therefore, system design metrics must be restricted by component
metrics. Nevertheless, the design of component metrics usually involves multiple fields or
manufacturers, which leads to a rapid increase in communication costs. Hence, when integrating
component metrics into the system model, restricting all metrics through a constraint module
can effectively ensure the rationality and applicability of the design metrics.

6. Conclusions

Integrating data and information into the system model of aerospace equipment enhances its
design, development, and reliable management. Given the multidisciplinary nature of aerospace
equipment and the extensive data collected from various sensors and past operations, it is crucial
to incorporate data and information from aerospace, mechanical, electronic engineering, and
other fields. Design guidelines, technical specifications, and engineers’ experiences also need to
be included in the system model. By establishing a system model that comprises architectural,
mathematical, verification, and simulation components, the structure, function, performance,
and elements of aerospace equipment can be analyzed, monitored, and maintained. This model
enables the analysis of component correlations and interactions, identifies performance-affecting
factors, and supports optimal design and decision-making. It facilitates parameter optimization
and performance analysis. Additionally, the system model provides essential data for resource
allocation, risk assessment, diagnosis, and identifying potential issues, ultimately improving the
quality, reliability, and safety of aerospace equipment.
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