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	 In recent years, autonomous technology has advanced rapidly, with the real-time obstacle 
avoidance capability of autonomous vehicles on the road being a primary concern for ensuring 
safety. Therefore, we propose an innovative path planning and control methodology to enhance 
the real-time obstacle avoidance performance of autonomous vehicles. In terms of path planning, 
we propose a global path planning approach based on an optimized A* algorithm, incorporating 
a dynamic weighting method and cubic-spline curve smoothing. This improves path search 
efficiency by 20% and enhances path smoothness by 3%. Additionally, we introduce a local path 
planning method based on fifth-degree polynomial interpolation curves. Regarding the control 
approach, we design a position-velocity double-layer proportional-integral-derivative controller 
for longitudinal control and a feedforward linear quadratic regulator controller for lateral 
control. Finally, we validate the proposed methodology through control system design, driving 
path simulation analysis, and real-world vehicle tests using sensor measurements. The 
application of this innovative control method in a campus environment demonstrates a clear 
improvement in the real-time driving capability of autonomous vehicles, increasing the obstacle 
avoidance success rate by 5%. Furthermore, it enables autonomous vehicles to achieve precise 
control and navigation on the road, reducing the vehicle’s lateral control error and shortening the 
longitudinal control response time by 0.1 s. These findings provide a valuable technical reference 
for path planning and control in autonomous vehicle systems.

1.	 Introduction

	 The widespread use of cars has considerably improved convenience in daily life but has also 
introduced several challenges, such as traffic accidents and urban congestion. Statistics show 
that human error accounts for up to 90% of traffic accidents, including issues such as drunk 
driving, speeding, overloading, and fatigue driving, while the proportion of accidents caused by 
mechanical failures or design defects is significantly lower. The advent of autonomous driving 
technology offers a promising solution to enhance traffic safety by mitigating human errors. It 

mailto:m18316252102@126.com
https://doi.org/10.18494/SAM5572
https://myukk.org/


2352	 Sensors and Materials, Vol. 37, No. 6 (2025)

enables rapid responses in emergencies, effectively preventing accidents caused by driver 
mistakes, and significantly improves the overall safety of road travel.(1) 
	 As a cutting-edge technology in the automotive field, autonomous driving technology is 
pivotal in addressing current traffic and mobility challenges. By integrating hardware 
components such as computing processors, storage management units, interface communication 
modules, and communication systems with software platforms and algorithms, a comprehensive 
hardware and software system is established. This system enables vehicles to perform a wide 
range of complex autonomous driving tasks without human intervention, including 
environmental perception, sensor fusion, decision-making and planning, control execution, and 
vehicle-to-road coordination. These capabilities effectively reduce traffic accidents caused by 
human factors such as driver fatigue and judgment errors, significantly enhancing the safety of 
road travel.
	 The Society of Automotive Engineers (SAE) classifies the automation levels of autonomous 
cars into six categories, ranging from L0 to L5.(2) In recent years, with advancements in big data 
and artificial intelligence technologies, autonomous cars have become a focal point of research 
in the automotive industry. As a key area of autonomous driving technology, path planning is 
essential for addressing current traffic challenges. Path planning involves determining a safe 
driving route from the starting point to the destination based on the evaluation criteria of the 
road environment. An optimal path not only enhances driving efficiency but also reduces energy 
consumption. Solving the path planning problem for autonomous vehicles requires addressing 
several sub-problems, including obstacle avoidance,(1) route determination,(3) the consideration 
of vehicle kinematic constraints,(2) and effective tracking control.(4)

	 The system of autonomous cars consists of four key components, namely, perception, 
decision-making, planning, and control, forming a closed-loop system, as illustrated in Fig. 1. 
This integrated system ensures the safe operation of the vehicle across various complex road 
environments. The perception module serves as the car’s senses, continuously gathering 
environmental data such as the presence of pedestrians, vehicles, and traffic signs. This 
information provides the foundation for subsequent decision-making. The decision-making 

Fig. 1.	 (Color online) Framework of autonomous driving technology.
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module processes the collected data to develop a logical driving plan based on traffic rules, real-
time road conditions, and the driver’s objectives. Once a driving plan is established, the planning 
module calculates the optimal driving path, considering factors such as obstacle avoidance, time 
efficiency, and energy conservation. The planned path is then relayed to the control module, 
which fine-tunes the vehicle’s steering, acceleration, and braking to ensure precise adherence to 
the planned trajectory. These four components are interconnected and interdependent, working 
seamlessly together to guarantee the stable and reliable operation of autonomous cars. 
	 Autonomous car technology traces its origins back to the 1970s, when the U.S. Defense 
Advanced Research Projects Agency (DARPA) funded the Automated Land Vehicle Research 
Project.(5) In the development of autonomous technology, the primary focus is on path planning 
and control algorithms, which enable autonomous vehicles to navigate roads, overcome various 
obstacles, and ensure safe driving. Path planning methods for autonomous cars can be 
categorized into four main types: search-based planning methods, artificial potential field (APF) 
methods, rapidly exploring random tree (RRT) algorithms, and discrete optimization-based 
planning methods.(6)

	 The RRT algorithm is a fundamental global pathplanning method. Its core principle involves 
starting at an initial point and incrementally expanding through the environment by random 
sampling until the goal point is reached. Regardless of the complexity of the environment, this 
algorithm reliably identifies a viable path. However, its convergence rate tends to be relatively 
low.(5) To accelerate the convergence of the RRT algorithm, techniques such as gradually 
adjusting the sampling region and increasing the sampling rate can be employed. These 
modifications not only enhance the convergence speed but also enable the algorithm to discover 
suitable paths more efficiently.(7,8) Nevertheless, the increased randomness introduced by these 
adjustments can lead to excessive redundancy in the form of unnecessary branches during the 
sampling process.(6) The probabilistic roadmap (PRM) stochastic algorithm is an efficient 
pathplanning method, particularly wellsuited for scenarios requiring obstacle avoidance.(9,10) To 
address the optimal pathplanning problem, researchers have proposed asymptotically optimal 
motion planners,(11–13) which significantly reduce the computational cost of generating the 
roadmap in the PRM algorithm. While traditional PRM and RRT algorithms can effectively 
solve optimal obstacle-avoidance trajectory planning problems, they are less suitable for 
scenarios with specialized optimization objectives.(14) Local path planning, on the other hand, 
involves continuously collecting information about the surrounding environment using the 
vehicle’s sensors to design a collision-free, optimal path from the current position to the target 
destination.
	 Commonly used pathplanning algorithms(15–17) include the artificial potential field method, 
the timed elastic band algorithm, and the dynamic window approach. Both global and local 
pathplanning algorithms have inherent limitations. To enhance their performance, many 
researchers are actively exploring advancements in pathplanning techniques, achieving notable 
progress by improving and integrating traditional algorithms. For instance, Tang et al.(18) 

proposed an improved method for filtering redundant nodes in the A* algorithm and optimized 
the path’s folded sections using cubic spline curves. This approach reduced the number of nodes 
and produced smoother paths. However, this method is not suitable for path planning in 
environments with dynamic obstacles. Wu et al.(19) combined the APF algorithm with the RRT 
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algorithm by incorporating the virtual force field from the APF algorithm into the search tree 
expansion process of the RRT algorithm. This integration improved the convergence speed and 
search efficiency of the RRT algorithm. Nonetheless, this approach is primarily effective in 
relatively simple experimental environments.
	 In the control of autonomous vehicles, commonly used methods include the proportional-
integral-derivative (PID) control, tracking control, model predictive (MPC) control, optimal 
control, sliding mode control, prescan control, and fuzzy control.(20) Ma et al.(21) decoupled 
lateral and longitudinal control through path prescanning and tracking, using signal feedback for 
real-time deviation correction to achieve the precise lateral and longitudinal control of unmanned 
vehicles. However, challenges remain regarding system stability in complex road environments. 
Shakouri et al.(22) proposed an adaptive cruise control method by comparing gain-scheduling 
proportional-integral and quadratic-regulator controllers to enable effective speed and distance 
tracking in various traffic scenarios. Similarly, Alcala et al.(23) introduced an autonomous 
vehicle control strategy that combines Lyapunov theory with the linear quadratic regulator 
(LQR), optimizing controller parameters to ensure vehicle stability. Mekala et al.(24) proposed 
another approach integrating Lyapunov theory and LQR with a MPC controller. This strategy 
leverages LiDAR data to achieve smooth and safe speed control, addressing longitudinal vehicle 
motion while considering obstacles, lead vehicles, and pedestrians.
	 To address the challenges identified in the above studies, we propose a novel methodology for 
obstacle avoidance control and path planning, with integrated verification, for autonomous 
vehicles using sensor data. 
	 The path planning algorithm comprises two key components:
(1)	�Global Path Planning: We introduce a cost evaluation function that incorporates directional 

guidance to enhance the efficiency and accuracy of the path search process.
(2)	�Local Path Planning: We propose a method based on fifth-degree polynomial interpolation 

curves, which significantly improves the obstacle avoidance capability of autonomous 
vehicles on local paths.

	 The control methodology includes the following:
(1)	a longitudinal control strategy, utilizing a position-velocity two-layer PID controller, and
(2)	�a lateral control strategy, employing a feedforward LQR for precise transverse motion 

control.
	 This integrated approach aims to improve both the safety and efficiency of autonomous 
vehicle navigation.

2.	 Theoretical Foundation
	
2.1	 Vehicle motion model 

	 The parameters of the adopted vehicle dynamics are defined in Table 1, and the coordinate 
system employed is illustrated in Fig. 2. The vehicle’s motion model, considering two degrees of 
freedom, which describe the relationship between lateral acceleration, transverse angular 
acceleration, and tire rotation angle, is expressed as follows.
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2.2	 Autonomous vehicle path planning algorithm

2.2.1	 Global path planning based on A* algorithm

2.2.1.1	 Principle of A* algorithm

	 The A* algorithm(25) is a global path planning method based on sampling search, widely 
applied in the path planning of autonomous vehicles. It combines the systematic approach of 
Dijkstra’s algorithm with the directional guidance of the Greedy Best-First Search (GBFS) 
algorithm. The A* algorithm is capable of finding the shortest path while incorporating 
directional guidance, ensuring both efficiency and accuracy in path planning.
	 The core of the A* algorithm lies in its cost evaluation function, as shown in Eq. (2).

	 f(n)=g(n)+h(n),	 (2)

where g(n) is the real cost function and h(n) is the predictive cost function. 

Table 1
Parameters of vehicle dynamics model.
Parameter Symbol Parameter Symbol
Mass m Force on front, rear tire along x-axis Fxf, Fxr
Lateral velocity v Force on front, rear tire along y-axis Fyf, Fyr
Longitudinal velocity u Front, rear tire bias angle αf, αr
Swing angle φ Front, rear tire bias stiffness Cf, Cr
Swing angular velocity φׂ Front, rear axis distance to mass center Lf, Lr
Moment of inertia I Distance between front and rear tire center L
Front wheel angle α Center-of-mass lateral deflection β

Fig. 2.	 Coordinate system of two-degree-of-freedom vehicle motion.
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	 We implemented the A* algorithm in Visual Studio Code by following its core principles. 
First, we constructed a 70 × 70 map, added obstacles, and defined the starting and ending points. 
Next, we evaluated the cost function for the surrounding paths, using the Euclidean distance to 
estimate the distance between nodes. The node with the smallest cost function was selected as 
the current node, and the process continued iteratively until the target point was reached. Once 
the path was identified, the shortest route from the starting point to the endpoint was 
reconstructed by backtracking through the nodes. The results are shown in Fig. 3.

2.2.1.2	 Optimization of A* algorithm

	 We dynamically adjust the value of the weighting function on the basis of the distance from 
the target position. The updated cost function is presented in Eqs. (3) and (4).

	 ( ) ( ) ( ) ( )f n g n w n h n= + ,	 (3)

	 ( ) 1 cdw n
d

= + ,	 (4)

where w(n) is the weighting function, dc is the distance from the current node to the target node, 
and d is the distance from the start node to the target node. 
	 After optimization using the improved A* algorithm, we obtained an updated map, as shown 
in Fig. 4. It is evident that the number of search points (yellow crosses) across the entire map has 
been significantly reduced compared with that shown in Fig. 3. This reduction in search area 

Fig. 3.	 (Color online) Path planning of A* algorithm.



Sensors and Materials, Vol. 37, No. 6 (2025)	 2357

indicates a decrease in unnecessary computational overhead and a substantial improvement in 
search efficiency.
	 The paths are further refined using the cubic spline technique with Hermite interpolation 
functions.(26) The resultant path is shown in Fig. 5. By cubic spline interpolation, a smoother and 
more continuous path is achieved, effectively reducing the number of sharp turns and folds in 
the original path. The smoothed path is better suited for seamless and efficient vehicle navigation 
on a real road.

2.2.2	 Local path planning using fifth-degree polynomial interpolation curves

	 The matrix representations of the fifth-degree polynomial interpolation curves are provided 
in Eqs. (5) and (6).
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Fig. 4.	 (Color online) Path planning using improved A* algorithm.
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Here, X represents the horizontal start and end point coordinate matrix, Y represents the vertical 
start and end point coordinate matrix, and T is the coordinate transformation matrix. Using the 
position coordinate data X, Y, and T obtained from various positioning sensors (16-line LiDAR, 
mmWave radar, and Ultrasonic radar), along with calculations based on Eqs. (5) and (6), we can 
determine the vehicle’s trajectory. Furthermore, by analyzing the position data from these 
sensors, the autonomous vehicle’s control system can calculate the required speed (as the change 
in position over time) and acceleration (as the change in speed over time) at each point along the 
trajectory.
	 On the basis of a local pathplanning scheme utilizing fifth-degree polynomial interpolation 
curves, we designed a vehicle bypass scenario, as illustrated in Fig. 6. In this scenario, the front 
vehicle remains stationary while the rear vehicle must navigate around it following the planned 
path. During the maneuver, the control points include the edge position of the front vehicle and 
points near the current position of the rear vehicle. By substituting the position coordinates of 
these control points into Eqs. (5) and (6), we determine the theoretical position of the vehicle at 

Fig. 5.	 (Color online) Path planning of A* algorithm with cubic spline smoothing.
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each moment. This process results in a vehicle trajectory, as shown in Fig. 6(a). Under control, 
the vehicle successfully follows the planned obstacle-avoidance path, as depicted in Fig. 6(b). 
The trajectory planning achieved through the fifth-degree polynomial interpolation curve 
effectively fulfills the vehicle’s bypassing task.

2.3	 Autonomous vehicle travel control algorithm

2.3.1	 Longitudinal control

	 PID control is widely used in autonomous vehicles.(20) The formula of PID control is

	
1

Y( ) ( ) ( ) [ ( ) ( 1)],
n

p d
i

it K e t K e t K e t e t
=

= + + − −∑ 	 (7)

where Y(t) is the output at time t, Kp is the proportional coefficient, Ki is the integral coefficient, 
Kd is the differential coefficient, and e(t) is the error between the real-time detected data by 
sensors and the desired theoretical data.
	 In this study, we employed a two-layer PID controller design consisting of a position-velocity 
closed-loop controller and an open-loop controller, which utilizes a throttle-brake calibration 
table to achieve the precise control of the vehicle’s longitudinal motion. As illustrated in Fig. 7, 
this hybrid controller enables the autonomous vehicle to determine its steering position, velocity, 
and acceleration, ensuring that it follows the planned trajectory. With onboard position sensors 
(16-line LiDAR, mmWave radar, and Ultrasonic radar), a velocity compensation signal is first 
generated by the position controller on the basis of the deviation between the desired and actual 

Fig. 6.	 (Color online) Car obstacle-avoidance tracks: (a) local path planning track and (b) local path planning track 
under control. 

(a)

(b)
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positions. This signal is then transmitted to the velocity controller, which adjusts itself according 
to the speed difference. 
	 The outputs of the two controllers jointly determine the required acceleration compensation, 
which is then adjusted to match the desired acceleration, producing the final output acceleration. 
This output acceleration is calculated via a calibration table to generate a control signal for the 
brakes and throttle. The control signal is ultimately transmitted to the autonomous vehicle to 
regulate its brakes and throttle for longitudinal motion control. Simultaneously, the vehicle’s 
actual speed and position are fed back to the position and velocity controllers, enabling the 
system to adapt the control strategy in real time to ensure that the vehicle remains on the planned 
path.

2.3.2	 Lateral control

	 We employ the LQR controller for the lateral motion control of the vehicle with the control 
strategy illustrated in Fig. 8. On the basis of the previously mentioned vehicle motion model, the 
state-space equations governing the vehicle’s lateral motion can be derived using Eq. (8).
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Fig. 7.	 Longitudinal motion control using two-layer PID controller.
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where e1 is the lateral error, e2 is the heading angle error, δ is the wheel angle, and φdes is the 
road curvature.
	 The LQR controller allows us to determine the vehicle’s control conditions using the state 
feedback matrix data, enabling the state vector to converge quickly and optimizing the vehicle’s 
performance. The LQR controller is cost-effective, easy to tune, and capable of improving the 
stability of vehicle motion. Compared with the traditional PID control algorithm, the LQR 
controller offers superior robustness and adaptability in complex road-steering scenarios.

3.	 Simulation of Lateral and Longitudinal Motion Control

	 We utilize CarSim simulation software (developed by Mechanical Simulation Corporation, 
USA, 2024) to simulate the lateral and longitudinal motion control of autonomous vehicles. Its 
outstanding capabilities in analyzing and predicting vehicle behavior, specifically in handling 
stability, braking efficiency, smoothness, power performance, and fuel economy, make it a vital 
auxiliary tool for the research and development of modern automotive control systems.
	
3.1	 Longitudinal motion control simulation

	 The primary function of the longitudinal controller is to regulate the acceleration and 
deceleration of the vehicle. In practical applications, the direct control of the vehicle’s speed is 
not possible; instead, adjustments are made to the throttle opening angle and braking pressure. 
Using the Simulink simulation software tool (developed by The MathWorks Inc., USA), we 
designed a two-layer position-velocity PID controller, as illustrated in Fig. 9. With this PID 
controller, the vehicle’s speed and acceleration are first input, after which the calibration table is 
used to determine the optimal throttle opening angle and braking pressure. This process 
ultimately achieves the desired vehicle acceleration and deceleration.
	 With our designed position-velocity two-layer PID controller, the resulting position, velocity, 
and acceleration of the unmanned vehicle’s movement are shown in Figs. 10(a)–10(c), 
respectively. The results demonstrate that the PID controller accurately guides the vehicle to 
follow the preset conditions. Even during acceleration and deceleration, the vehicle’s motion 
trajectory remains smooth and aligns well with expectations.

Fig. 8.	 Lateral motion control using LQR controller.
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Fig. 9.	 (Color online) Position and velocity obtained using two-layer PID controller.

Fig. 10.	 (Color online) Variations in position, velocity, and acceleration of the vehicle using PID controller.

(a) (b)

(c)
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3.2	 Lateral motion 

	 We first accomplish all the relevant settings for vehicle lateral steering control in CarSim 
software and transfer the configured vehicle model to Simulink. Following the feedforward-
LQR control principle described in the previous section, we then develop the feedforward-LQR 
lateral controller in Simulink, as illustrated in Fig. 11.
	 By fine-tuning the parameters of the feedforward-LQR lateral controller, we achieve a 
smoother time-dependent curve of the vehicle’s steering wheel angle, as shown in Fig. 12.
	 Moreover, we obtain the final motion control results of the vehicle, as shown in Fig. 13. 
Figures 13(a)–13(d) respectively depict the vehicle’s straight-line motion, left-turn motion, right-
turn motion, and U-turn motion. All driving conditions meet the expected performance using 
the feedforward-LQR lateral controller.

4.	 Vehicle Driving Control Simulation and Road-driving Demonstration 

4.1	 Vehicle driving control simulation 

	 We use Apollo’s Dreamview software platform(27) for vehicle driving control simulation. 
This software is an autonomous visualization and interaction platform that enables users to 
monitor multiple functional modules of the self-driving vehicle in real time, such as sensing, 

Fig. 11.	 (Color online) Feedforward-LQR lateral controller.
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localization, planning, and control. It also displays the vehicle’s state, sensor data, and dynamic 
trajectory. Dreamview supports the simulation of multiple driving scenarios, allowing developers 
to validate algorithms without the need for real-vehicle testing conditions.

Fig. 12.	 (Color online) Time variation of the vehicle's steering wheel angle.

Fig. 13.	 (Color online) Vehicle’s lateral motion: (a) straight-line motion, (b) left-turn motion, (c) right-turn motion, 
and (d) U-turn motion.

(a) (b)

(c) (d)
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4.1.1	 Vehicle cruise driving simulation

	 In the vehicle cruise driving simulation, we need to consider how to ensure that the 
autonomous car can follow the predetermined path at the preset stable driving speed while 
simultaneously monitoring changes in the surrounding environment to adjust the car’s speed in a 
timely manner or make an emergency stop if necessary. By using the Dreamview platform, we 
have performed both straight-line and curve path cruise simulations, as shown in Figs. 14(a) and 
14(b). It is observed that the autonomous vehicle exhibits excellent pathtracking ability while 
maintaining speed along the preset route, and it can drive stably even during transitions from 
straight to curved paths.

4.1.2	 Simulation of vehicle driving for pedestrian avoidance

	 The simulation results of the vehicle traveling to avoid pedestrians, including detecting 
pedestrians, slowing down to yield, and replanning to accelerate forward, using Dreamview are 
shown in Figs. 15(a)–15(c), respectively.

Fig. 14.	 (Color online) Vehicle cruise driving simulation: (a) straight-line path cruise and (b) curve path cruise.

(b)

(a)
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4.1.3	 Vehicle travel with bypass simulation

	 The simulation of vehicle travel using a lane-borrowing bypass, built by using Dreamview, is 
shown in Fig. 16. The autonomous vehicle begins traveling on the road according to the preset 

(a)

(b)

(c)

Fig. 15.	 (Color online) Simulation of vehicle traveling for pedestrian avoidance: (a) detecting pedestrians, (b) 
slowing down to yield, and (c) replanning to accelerate forward.
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path and speed. When the vehicle’s sensors detect an obstacle ahead, the car performs a lane-
borrowing detour [Fig. 16(a)], traveling to another lane to bypass the obstacle [Fig. 16(b)], and 
then looks for an appropriate time to return to the original lane and continues along the initial 
route [Fig. 16(c)].

Fig. 16.	 (Color online) Simulation of vehicle traveling on a detour: (a) going straight, (b) avoiding an obstacle, and 
(c) returning to the original lane.

(c)

(a)

(b)

(a)
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4.2	 Verification with real-vehicle controlled driving test
	
	 We conducted two scenario-based validation tests for path planning and vehicle control using 
the Baidu Apollo Standard-S unmanned driving development kit.(28) These tests involved an 
autonomous vehicle equipped with the Apollo Standard-S software platform, as shown in Fig. 
17. The platform integrates cameras, LiDAR, mmWave radar, GPS/IMU, and other sensors to 
enable the comprehensive perception of the surrounding environment. Building on this platform, 
we carried out the secondary development of autonomous driving technologies. Our 
contributions include developing a dynamic vehicle model, designing path planning algorithms, 
and creating control strategies. These developments were validated through both simulation 
testing and real-world driving experiments in scenarios such as constant-speed cruising, 
pedestrian avoidance, and lane-changing maneuvers.

4.2.1	 Real-vehicle cruise driving test

	 The experimental vehicle is first positioned at the planned location on the campus road. The 
recorder in the vehicle is activated to record the speed and trajectory data during driving. Next, 
the remote controller is switched to the automatic driving mode, and the vehicle begins to travel 
on the road. The results are shown in Fig. 18. It can be observed that the autonomous vehicle 
moves smoothly along the established trajectory, maintaining stable steering throughout the 
entire journey and consistently avoiding obstacles in a timely manner.

4.2.2	 Test of real-vehicle driving for pedestrian avoidance

	 The result of the real-vehicle cruise driving is shown in Fig. 19. First, the autonomous vehicle 
moves forward at a normal speed. Suddenly, a pedestrian steps into the lane from the curb 

Fig. 17.	 (Color online) Autonomous vehicle with Apollo Standard S platform.



Sensors and Materials, Vol. 37, No. 6 (2025)	 2369

Fig. 18.	 (Color online) Test of real-vehicle cruise driving: (a) getting started, (b) straight-line deceleration, (c) 
straight-line acceleration, (d) turning left, (e) obstacle avoidance, (f) returning, (g) turning left, and (h) stopping.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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without warning. The vehicle promptly decelerates and stops in time to avoid the pedestrian’s 
movement, based on the pedestrian’s behavior [Figs. 19(a) and 19(b)]. After the pedestrian 
passes, the vehicle gradually accelerates [Figs. 19(c) and 19(d)]. 

5.	 Conclusions

	 We proposed a novel real-time path planning and vehicle control strategy for autonomous 
vehicles navigating obstacles. In path planning, we developed an optimized A* algorithm with 
dynamic weighting and cubic spline curve smoothing, while a fifth-degree polynomial 
interpolation curve was used for local path planning. This approach not only enhanced the 
efficiency of path searching and smoothing but also allowed for flexible responses to obstacles 
and real-time obstacle avoidance along the local path. For autonomous vehicle control, we 
designed a position-velocity two-layer PID controller for longitudinal control and a feedforward-
LQR controller for lateral control. The proposed strategy improved the path search efficiency by 
20%, increased the path smoothness by 3%, and boosted the obstacle avoidance success rate by 
5%.
	 The feasibility and stability of these control strategies were verified through joint simulations 
using CarSim and Simulink software. In the simulation analysis, scenarios were modeled via the 

Fig. 19.	 (Color online) Test of real-vehicle driving for pedestrian avoidance: (a) detection of pedestrian, (b) braking, 
(c) straight-line acceleration, and (d) passing through.

(a) (b)

(c) (d)
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Apollo software platform, including constant-speed cruising, pedestrian avoidance, and lane 
borrowing for obstacle bypassing. The simulation results demonstrated that the proposed 
methodology effectively recognizes environmental changes and performs timely path 
adjustments and speed control. 
	 Moreover, a real vehicle with the Apollo Standard S platform was used on the campus road. 
Under the detection of various sensors, the test autonomous car conducted experiments such as 
constant-speed cruising and pedestrian avoidance on the basis of the proposed path planning and 
control strategies. The test results indicated that the vehicle safely followed the predefined path 
and avoided obstacles in a timely manner, meeting the traveling requirements in a campus road 
environment.
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