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	 We applied a deep learning technique to detect defects on the glass used in a thin-film 
transistor liquid crystal display (TFT-LCD) utilizing a You Only Look Once v4 (YOLOv4) 
object detection model. TFT-LCD glass defect detection is a critical quality control step in 
electronics manufacturing. Defects on the glass indicate serious problems in production. Manual 
inspections are often inefficient and inconsistent, highlighting the need for automated methods. 
To enhance efficiency and accuracy in the automated detection of defects on the TFT-LCD glass, 
convolutional neural networks (CNNs) were used. By optimizing and training the YOLOv4 
model with a large labeled dataset, a highly efficient object detection method for multiple defects 
was developed. CNNs based on YOLOv4 showed superior performance in real-time detection 
and reduced defect detection time. Additionally, smart sensor CCD technology was employed to 
capture high-resolution images of glass surfaces for precise defect detection. The model 
leverages deep learning concepts such as feature extraction, data augmentation, and loss 
function optimization to improve performance. The developed YOLOv4 object detection model 
can be used for the quality control of automated TFT-LCD production and can help increase 
production efficiency and reduce defects of the final products. 

1.	 Introduction

	 The thin-film transistor liquid crystal display (TFT-LCD) is indispensable for numerous 
electronic products including smartphones, televisions, monitors, and laptop computers as it 
provides clear and high-resolution visual experiences. Despite the rapid development of TFT-
LCD production technology, defects on TFT-LCD glass in the manufacturing process are 
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inevitable. Such defects reduce product quality and affect the lifespan and reliability of the final 
products. Therefore, defect detection in the glass of TFT-LCD is critical to ensuring product 
quality, leading to the demand for automated, intelligent solutions. Traditional defect detection 
methods required labor and much time and was prone to inconsistency. This problem can be 
addressed by applying advanced machine learning methods, particularly deep-learning-based 
object detection algorithms.(1–5)

	 You Only Look Once (YOLO) is a neural network known for exceptional real-time 
performance and accuracy. It uses a feature pyramid network (FPN) framework to enhance 
iterative convergence. YOLO has been applied in face recognition, autonomous vehicles, 
automated manufacturing, and surface defect detection.(6–9) YOLO can be tailored to various 
specific needs owing to its versatility and effectiveness.(10–14)

	 Pan et al. combined YOLOx-Plus and field-programmable gate arrays (FPGAs) to detect 
defects on printed circuit boards (PCBs) in real time.(15) The YOLOx algorithm was enhanced 
with PAN+FPN, SimAM, and SIoU modules to boost detection accuracy. Additionally, 
parameter quantization and an FPGA accelerator were incorporated to achieve faster 
optimization. This method allowed for the effective detection of PCB defects and addressed the 
shortcomings of previous methods.(15) Du et al. developed the refined scale-enhanced (RSE)-
YOLO model for the detection, localization, and classification of defects in multilayer ceramic 
capacitor (MLCC) images.(16) The model was created using a residual coordinate weighted 
convolutional network (RCWCNet) to improve feature extraction and detection accuracy. To 
enhance feature fusion, the spatial attention pyramid pooling module (SAPPM) was introduced 
as SAPPM combines local and global information. The model employed a path-aggregated 
feature pyramid network (PAN) and efficient channel attention (ECA) for enhancing multiscale 
defect detection and generalization performance.(16) Zhang and Yin proposed an enhanced 
YOLOv5-based method for the defect detection of solar cells. They integrated deformable 
convolution into a constraint satisfaction problem (CSP) module to enable adaptive scale learning 
and perceptual domain sizes. The ECA-Net attention mechanism was also used to enhance the 
model’s feature extraction. The network structure was refined by adding defect prediction heads 
to enhance the detection accuracy in multiple scales.(17) Ancha et al. used the ‘mixed PCB defect 
detection dataset’ (MDD_PCB) and a YOLO model to detect multiple defects of PCB. They 
determined real-time inference on the Jetson Nano for more effective PCB defect detection.(18)

	 On the basis of such research results, we developed a YOLOv4 deep learning model to detect 
defects on the glass of TFT-LCD. Owing to its exceptional accuracy and real-time performance, 
YOLOv4 was applied to enhance detection accuracy, which contributes to increasing the 
efficiency of the automated production process. Our approach incorporates smart sensor CCD 
and advanced deep learning techniques such as multiscale detection, customized loss functions 
for class imbalance, and data augmentation to improve model robustness. The method reduces 
human errors, streamlines operations, and improves the accuracy and speed of detecting defects 
on the TFT-LCD glass. We developed datasets and a training process to optimize the model, 
which was evaluated through experiments and comparative analyses. The model can be used to 
enhance the quality and efficiency of TFT-LCD products. 
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2.	 Methods

2.1	 Automated optical inspection (AOI) 

	 Fine and minute scratches or cracks on glass cannot be detected accurately with ordinary 
lenses. To successfully detect scratches on the glass of TFT-LCD, a specialized optical inspection 
system is required. As the glass has high reflectivity and a rough surface, an internal coaxial 
light source is used to enhance the detection of topographical differences on the surface. 
Additionally, a line light source is used to accentuate the edges of test samples. In this study, the 
AOI method was used to inspect and examine the final products of TFT-LCD. AOI is widely 
used in electronic product manufacturing and semiconductor production, which demands high 
precision and efficiency in inspection. Cameras and lighting devices are used to detect defects in 
solder joints, components on PCBs, and the surfaces of semiconductor wafers. The AOI method 
is used to inspect the integration, placement, and quality of solder joints, the correct positions, 
orientations, and defects of the components of PCBs, and surface defects, cracks, scratches, or 
other imperfections of wafers. It also is used to assess the quality of texts, logos, and labels and 
measure the size of components on PCBs. The device used for the AOI method is shown in Fig. 
1.
	 In the TFT-LCD manufacturing process, the mother glass or plain glass is used. It is a large 
transparent component, similar to silicon wafers. The glass surface must be meticulously clean 
and perfectly flat to be suitable for TFT-LCD applications. Two alkali-free glass substrates are 
dry-etched to produce red, blue, green, and black colors precisely on their surfaces as a color 
filter. We designed an AOI method for detecting the defects on the glass of TFT-LCD (Fig. 2). 
We analyzed the properties of the glass of TFT-LCD and determined conditions under which 
defects were produced. Then, an appropriate optical mechanism and an imaging method were 
decided on for defect detection. Cracks and imperfections were detected as defects as shown in 
Fig. 2. A line scan camera was used to obtain the cross-sectional profile and information in a 
positioning process. 

Fig. 1.	 Device for AOI method: (a) front view and (b) top view.

(a) (b)
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2.2	 YOLOv4 models

	 YOLO is a technique that enables computers to quickly identify objects within an image and 
determine their locations. The acronym YOLO stands for “You Only Look Once,” which 
signifies that the computer only needs to glance at an image once to complete both object 
detection and localization tasks. Unlike other object detection methods that may use multiple 
convolutional neural networks (CNNs), YOLO employs a single CNN, making it highly efficient 
in object detection.(18)

	 The YOLO method divides an image into a grid of smaller cells and analyzes each cell to 
determine if an object is present and where it is located. After comparing the features of the 
objects, YOLO can accurately identify the type and position of the objects within the image. The 
advantage of YOLO lies in its capability to perform object detection and localization in a very 
short time, making it suitable for real-time applications, such as autonomous driving. To use the 
YOLO model, one simply needs to prepare a labeled dataset with the objects to be recognized, 
and then train the model. Once training is completed, the model can be used to detect whether 
the desired objects are present in an image (Fig. 3).(2)

YOLOv4 model(2)

a.	 Architecture (Fig. 3)
(a)	�Input: Images, image pyramids, etc.
(b)	�Head: This component predicts image features, generating bounding boxes (Bboxes) and 

predicted classes. It is divided into one-stage and two-stage architectures. As illustrated in 
the diagram, examples of a one-stage architecture include YOLO and SSD, whereas examples 
of a two-stage architecture include Faster R-CNN and R-FCN.

(c)	�Backbone: The backbone network is typically pretrained. Commonly used backbone 
architectures include VGG16 and Darknet53. YOLOv4 utilizes CSPDarknet53 as its 
backbone. CSPDarknet53 is a variant of Darknet53, where CSP stands for “Cross-Stage 
Partial.” This network structure is designed to enhance model performance, particularly in 
object detection tasks.

Fig. 2.	 Defects on glass of TFT-LCD.
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(d)	�Neck: Additional layers or blocks are used for feature extraction, such as the Feature Pyramid 
Network (FPN) and Path Aggregation Network (PANet). The choice of architecture is 
primarily based on the following three points:

i.	 The input resolution of the network should be sufficiently high to better detect small objects.
ii.	 The network should be deeper to cover a larger receptive field.
iii.	The network should have sufficient parameters, as more parameters improve the detection of 

objects of various sizes in the same image.
(e)	�Head: Same as YOLOv3 Head
	 The head of YOLOv3 is the core of the model, responsible for extracting features from the 

input image and generating object detection results, including object locations and class 
information.

(f)	Structure:
i.	 Convolutional Layers: The head of YOLOv3 includes multiple convolutional layers to extract 

features from the input image. These feature extraction layers convert the image into a 
representation suitable for object detection.

ii.	 Detection Layer: This structure represents the most critical component of YOLOv3’s head, as 
it is responsible for producing the final object detection outputs. The detection layer produces 
bounding boxes, object classes, and confidence scores. YOLOv3 typically contains multiple 
detection layers, each handling objects of diffeent sizes.

iii.	Nonmaximum Suppression (NMS): To remove redundant detection results, YOLOv3’s head 
includes a nonmaximum suppression layer. This process ensures that each object is reported 
only once and eliminates overlapping bounding boxes.

(g)	Backbone: CSPDarknet53
	 CSPDarknet53 is a deep learning model based on the YOLOv3 backbone network Darknet53, 

incorporating features from CSPNet to produce the backbone architecture. It combines the 
efficiency of the Darknet architecture with the feature integration capabilities of the CSP 
mechanism, handling multiscale and complex image data, and enhancing the model’s 
performance and versatility. It is mainly used for computer vision tasks, particularly for 
optimizing performance in object detection and image classification.

Fig. 3.	 (Color online) General framework for object detection.(2)
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b.	 Features and Structure(2)

(a)	Darknet Architecture: CSPDarknet53 is based on the Darknet architecture, which is a 
lightweight and efficient deep learning framework. Darknet is an open-source neural network 
framework, and Darknet53 is a deep neural network consisting of 53 convolutional layers, 
used as the backbone network for many object detection models. CSPDarknet53 improves 
upon Darknet53 by introducing the CSP module to enhance performance. The CSP module 
divides feature maps into two parts, performs convolution operations on one part, and then 
merges the result with the other part. This design helps improve the information flow and 
gradient propagation within the model, thus enhancing training and inference efficiency.

(b)	CSP Mechanism: The core mechanism of CSPDarknet53 is the CSP mechanism. This 
mechanism introduces cross connections of feature maps to enhance feature information 
transfer and integration. It helps in better handling the information flow between different 
feature layers, thereby improving the model’s performance.

(c)	Multiscale Features: CSPDarknet53 can habdle features at different scales, which is 
particularly important for tasks such as object detection. Multiscale features enable the model 
to address targets of varying sizes and complexities effectively.

(d)	Object Detection and Image Classification: The model is primarily applied to object detection 
and image classification tasks. It can identify objects within images or classify images, and it 
demonstrates excellent performance in these tasks.

2.3	 YOLO model evolution and architecture selection

	 In this study, we initially focused on the YOLOv4 architecture owing to its established 
balance between detection speed and accuracy, making it suitable for industrial applications. 
YOLOv4 integrates several key improvements over previous YOLO versions, including the 
CSPDarknet53 backbone, spatial pyramid pooling (SPP), path aggregation network (PANet) for 
feature fusion, and advanced training techniques such as mosaic data augmentation and CIoU 
loss.
	 As our research progressed, we also incorporated YOLOv7, a more recent iteration in the 
YOLO family released after the commencement of our study. YOLOv7 introduces several 
architectural enhancements over YOLOv4, including the following:
1.	 Extended Efficient Layer Aggregation Network (E-ELAN): An improved backbone structure 

that enhances gradient propagation and computational efficiency.
2.	 Model scaling for concatenation-based models: A novel scaling strategy that maintains an 

optimal balance between computational complexity and accuracy.
3.	 Auxiliary head for training stabilization: Additional network components that improve 

training stability and model convergence.
4.	 Re-parameterized convolution for effective feature aggregation: A technique that improves 

parameter efficiency without increasing inference time.
	 The inclusion of YOLOv7 in our analysis provides valuable insights into how architectural 
advancements in object detection models affect performance in the specific context of TFT-LCD 
glass defect detection. By comparing these two generations of YOLO models, we can better 
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understand the trade-offs between computational efficiency and detection accuracy in industrial 
inspection applications.
	 For our primary implementation and baseline experiments, we utilized YOLOv4 owing to its 
proven reliability and widespread adoption in industrial applications. YOLOv7 was subsequently 
introduced for comparative experiments to evaluate potential performance improvements and to 
assess whether the latest architectural innovations translate to significant benefits in our specific 
application domain.

2.4	 Model training and implementation

	 The initial phase of our experimental methodology focused on implementing and optimizing 
the YOLOv4 architecture for TFT-LCD glass defect detection. As described in Sect. 2.2, we 
later extended our investigation to include YOLOv7 to evaluate potential performance 
improvements offered by its architectural advancements. Both models were subjected to the 
same training protocol and evaluation metrics to ensure a fair comparison.

3.	 Results and Discussion

3.1	 Phase 1 training

	 The YOLOv7 model was trained on 116 images for 200 epochs. As shown in Fig. 4, the 
highest accuracy attained in defect detection was 77.22%. As the accuracy was not sufficiently 
high for the model, the results of phase 1 training were used as a reference for further training. 
	 In Fig. 4, ‘Box’ indicates the average error in detection. The smaller the average error, the 
more accurately the defects are detected. ‘Objectness’ indicates the error related to object 

Fig. 4.	 (Color online) Phase 1 training results.
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detection, where a smaller error indicates a higher detection accuracy. ‘Classification’ indicates 
the classification error. A smaller error indicates a more accurate classification. ‘val Box’ 
indicates a bounding box error on the validation dataset. ‘val Objectness’ shows the average 
object detection error on the validation set. ‘val Classification’ is the average classification error 
on the validation set. ‘Precision’ indicates the correctness of positive predictions, which is shown 
as the ratio of true positives to true and false positives. ‘Recall’ indicates the completeness of 
positive predictions, which is calculated as the ratio of true positives to true positives and false 
negatives. ‘mAP@0.5’ is the average mean average (mAP) greater than 0.5. ‘mAP@0.5:0.95’ is 
the mAP ranging from 0.5 to 0.95. Except for ‘val Classification’ and ‘Classification’, the x-axis 
indicates the number of epochs. There were no errors in the classification of defects using the 
test and validation datasets.

3.2	 Phase 2 training

	 The number of training images was increased to 1000, and the YOLOv4 model was used. The 
maximum number of batches was set to 45000, corresponding to the 300 epochs. The result is 
shown in Fig. 5. The mAP was recalculated, and the accuracy was improved to 92.9%.

3.3	 Phase 3 training

	 The YOLOv7 model was used with the same dataset as that used in the phase 2 training. The 
number of epochs remained at 300. The number of pixels of all images was changed to 640 × 
640, and the multi-labeling method was adopted to label images. All images for training 

Fig. 5.	 (Color online) mAP of Phase 2 training results.



Sensors and Materials, Vol. 37, No. 6 (2025)	 2393

underwent grayscale processing. The confusion matrix and the training results are shown in 
Figs. 6 and 7. The accuracy reached 96.00%.

3.4	 Phase 4 training

	 The YOLOv7 model was employed with mosaic data augmentation (Fig. 8), which is a deep 
learning training method to reorganize images with corresponding Bboxes. Through random 

Fig. 6.	 (Color online) Confusion matrix of phase 3 training. 

Fig. 7.	 (Color online) Results of phase 3 training.



2394	 Sensors and Materials, Vol. 37, No. 6 (2025)

scaling, cropping, and arrangement, images are combined to emphasize the background. By 
reducing the batch size, we can reduce the burden on the graphical processing unit. The 
augmentation method enhances the model’s training performance. The multilabeling method 
was also used for overlapped annotations to improve training effectiveness. 
	 The accuracy calculated on the basis of the confusion matrix was only 72%, and similar 
results were obtained in multiple tests (Table 1). It was found that mosaic data augmentation was 
only effective in images with complex backgrounds and multiple objects. For the grayscale-
processed images, mosaic data augmentation was not effective in training the YOLOv7 model 
but in training the YOLOv4 model.

3.5	 Discussion

	 Although YOLO-based models are customized for the material properties and defect 
characteristics of specific applications, accurately detecting low-contrast defects remains a 
common challenge in various industrial settings. Table 2 summarizes and compares our 
proposed method with several recently published approaches.

Fig. 8.	 Mosaic data augmentation.

Table 1
Results of training.
Training rounds Hours Precision
Round 1 14 0.62
Round 2 13 0.68
Round 3 18 0.65
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4.	 Conclusions

	 Detecting defects on TFT-LCD glass has challenges as defects such as scratches and 
imperfections are tiny and are not easily contrasted against the surface. This necessitates deep 
learning models to identify defects in large background noise. On a highly reflective or glare-
prone surface, detecting defects becomes challenging because the defects blend into the 
background. Additionally, defects on the glass can vary significantly in shape, size, and texture. 
Therefore, the detection model must be capable of distinguishing these diverse features 
accurately. To address these challenges, we developed an AOI method to replace conventional 
grayscale methods. By employing YOLO models, we enhanced training results and significantly 
improved the accuracy and effectiveness of defect detection.
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Table 2
Comparison of proposed method with three existing methods.

Aspect PCB defect 
detection(15,18)

Solar cell defect 
detection(17)

Steel surface defect 
detection(4) Our proposed method

Material properties Opaque, fixed color, 
high contrast

Semitransparent, 
consistent optical 

properties

Opaque metal, 
uniform background

Small, transparent 
components

Defect characteristics Pattern matching, 
lighting-insensitive

Contrast-based 
identification

Texture-based, 
consistent lighting

Small-area inspection, 
controlled lighting

Detection challenges Standard imaging, 
fixed patterns Back-illumination Direct illumination Specialized optical 

setups

Imaging technique Template matching, 
pattern recognition

Contrast feature 
detection

Texture/pattern 
anomaly detection

Small-scale aberration 
detection

Model adaptations PCB-specific YOLO 
adjustments

Solar-cell-specific 
YOLOv5 tuning steel

Steel-surface-specific 
YOLOv4 tuning

Optical-specialized 
WGSO-YOLO

Scale of inspection Small components Medium-sized cells Large surfaces Small, precise 
components

Production environment 
Constraints

Controlled lighting 
and positioning Consistent conditions Industrial settings Laboratory-like 

setups

Model architecture
Low-contrast 

transparent defect 
detection

Low-contrast 
transparent defect 

detection

Low-contrast 
transparent defect 

detection

Low-contrast 
transparent defect 

detection 

Key innovation
Low-contrast 

transparent defect 
detection

Low-contrast 
transparent defect 

detection

Low-contrast 
transparent defect 

detection

(FPN) / (PANet) used 
to enhance feature 

extraction
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