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	 Photographs of five distinct rice varieties were classified using the new diffusion 
convolutional neural network (DCNN) technique to create a rice detection system. In this study, 
we employed a 48-megapixel iPhone 16 Plus camera, which utilizes sensor technology to take 
1000 sample photos under various lighting conditions, such as day and night. Regarding the 
technical approach, a DCNN based on deep learning was used to categorize rice. By calculating 
the indication of each performance metric, the examined classes generated an overall accuracy 
of 99.0% using the dataset for training, testing, and validation. In addition, six supervised 
learning and two deep learning algorithms were tested on these rice varieties and the results 
were compared. Finally, the practicality of the DCNN tests employing a larger input publicity 
dataset was assessed, along with their accuracy, loss, and training time. Statistical analysis and 
comparison showed that our technique achieved a 99% classification rate. They also explain the 
benefits of DCNN technology compared it with other models, achieving higher performance for 
agricultural data. On the other hand, integrating GPS into rice seed classification is an actual use 
of sensor technology, especially in DCNN methodology related to machine learning.

1.	 Introduction

	 Rice is one of the world’s most essential and ancient crops. It is a staple diet for half of the 
world’s population and has been cultivated for over 5000 years. Approximately 8000–9000 years 
ago, rice was first cultivated in China, where it is believed to have originated. Since then, rice 
cultivation has spread to Japan, Southeast Asia, India, and other regions of Asia. Today, rice is 
grown in over 100 nations and ranks second in cereal production globally after maize. It is a vital 
component of numerous traditional Asian dishes and is used in various recipes, such as sushi, 
risotto, and paella. Warm and humid weather, with abundant water, is ideal for rice growth. Rice 
is a globally produced staple food, with different genetic varieties grown in numerous countries. 
As different rice varieties are cultivated, identifying specific varieties has become increasingly 
challenging. Rice classification is one solution to this problem; however, it is time-consuming 
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and prone to human error. We developed a smart and intelligent system for classifying rice into 
distinct major varieties of popular Myanmar rice. 
	 The Association of Southeast Asian Nations (ASEAN) countries, including Indonesia, 
Vietnam, Thailand, Myanmar, and the Philippines, account for 25% or more of the world’s 
annual rice production, ranking among the top rice-producing countries worldwide. In fiscal 
year 2022–2023, Myanmar’s exports of rice and broken rice reached 2.17 million tons, earning 
821.30 million dollars. During this fiscal year, the countries to which Myanmar export rice were 
mainly China, the Philippines, Spain, Italy, Belgium, Poland, Togo, and Madagascar.
	 The classification of rice seed varieties is an exploratory research topic. In exploratory 
research, broad concepts are examined, and why and how things occur are explored. In place of 
GPS, the novel diffusion convolutional neural network (DCNN) model is utilized to identify 
multiple types of rice using the dataset of personal rice photos. In machine learning, sensor-
based technology is linked to DCNN. The main goal of this study was to determine the 
effectiveness of rice seed varieties. The remainder of this paper is organized as follows.
	 •	 The motivation and contributions of this study are highlighted in Sect. 2, followed by a 

summary of the relevant literature. 
	 •	 In Sect. 3, we describe the comprehensive approach, which covers data collection, 

preprocessing, and the findings of the exploratory data analysis. 
	 •	 The main conclusions and suggestions are presented in Sect. 4.
	 •	 Finally, in Sect. 5, we provide a summary and recommendations for further study.

1.1	 Problem statement

	 Laborers manually examine rice grains. Identifying rice varieties has become increasingly 
challenging as different types are cultivated. This requires considerable time and is prone to 
human mistakes. Accordingly, we must develop a system that can quickly and accurately 
recognize the varieties of rice grains. Specifically, the solution to classifying rice varieties is a 
mixed strategy based on deep learning techniques. An online/off line intelligent rice 
classification system is required to evaluate the quality of rice samples. Rice species can then be 
recognized promptly and precisely.

1.2	 Challenges

	 •	 For an average individual, visually identifying a specific type of rice is challenging. 
	 •	 Accurately determining the genus of rice grains requires precise analysis.
	 •	 An efficient, affordable, and reliable system for classifying rice types was developed on the 

basis of computer vision and machine learning techniques.

1.3	 This study’s primary benefit

	 An iPhone 16 Plus sensor camera was used to identify different types of rice using the unique 
DCNN model on a dataset of personal rice images taken under various light conditions. Because 
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of the GPS-generated seed types, a smart recommendation system suitable for many conditions, 
including soil, longitude, latitude, and states, was created.

2.	 Literature Review

	 The first study about point cloud data in three dimensions of rice seed surfaces captured  
using a Ray Trix light field camera was reported in 2021.(1) Eight distinct rice varieties were 
classified using an improved Point Net deep learning model with an average classification 
accuracy of 89.4% following data processing. Furthermore, the second study examined the 
categorization of rice seed varieties using Soft Independent Modeling of Class Analogy (SIMCA) 
in combination with near-infrared spectroscopy (NIRS).(2) The method’s excellent accuracy 
rates demonstrated the potential of NIR spectroscopy in seed classification. The third research 
study employed several methods, such as backpropagation neural networks (BPNNs) and Bayes 
classifiers, to identify various types of rice seed.(3) The study's objective was to enhance seed 
quality control by automating the identification of rice seed varieties. In the next study, an image 
processing method to classify the genotypes of Thai rice seeds was developed.(4) Thailand’s rice 
seed classification automation technique appears to have potential owing to its high classification 
accuracy. In this research, the authors introduced the Fused Net model, which integrates multiple 
data modalities, for rice seed classification.(5) The model aimed to improve classification 
accuracy by combining multiple feature extraction techniques. 
	 A previous study used a five-class dataset comprising data on Indica and Japonica rice, and 
the ResNet34 model achieved 98.0% classification success.(6) Another study used NIR and HS-
SPME–GC–MS to analyze 1399 images of data from 34 classes with an accuracy of 98.0%.(7) 
The deep 3D-CSAM-2DCNN algorithm achieved a 98% success rate in a trial that used both 
single and 14 diverse rice types.(8) In this study, a deep convolutional neural network (CNN)-
based nondestructive method was developed classifying grains and hyperspectral imagery. With 
six types of paddy rice data, the accuracy of the suggested technique was 91.09%, whereas SVM 
with both spatial and spectral information yielded an accuracy of 79.23%.(9) In another 
investigation, researchers employed a CNN for classification following feature extraction and 
achieved 88.07% success with 200 data points and three different types of rice.(10) 
	 The results showed that the model is applicable to the identification of not only rice but also 
other crops. When using 10600 photographs of rice seeds, the residual network yielded an 
accuracy of 95.13%. Marketing subpar rice as excellent rice is problematic because it damages 
the finances of farmers and seed producers.(11) Another study used SIMCA and NIRS to analyze 
200 data points from 16 classes and achieved an accuracy of 87.16%.(12) The deep CNN 
algorithm achieved a success rate of 95.5% in the trial, which included 7399 pieces of data and 
three classes. In Ref. 13, the performance analysis of rice variety classification focuses on 
misclassifications and several models (LeNet, GoogLeNet, and ResNet) are discussed. In a 
different investigation of the effects of rising global temperatures on rice productivity and 
quality, researchers employed a CNN for classification operations following feature extraction, 
with an overall success rate of 91.33%.(14) Using the SVM technique for classification operations 
following feature extraction, researchers of the most recent study, which involved 17000 types of 
Oryza sativa, achieved an 83.9% success rate.(15)
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	 In the subsequent study, the 18-layer CNN called Rice Net was investigated to classify seven 
different types of rice grown in Pakistan.(16) The model outperformed other CNN models such 
as VGG-19, ResNet50, and Google Net (Inception-V3), achieving a perfect classification 
accuracy of 100% for each variety.(17) The authors examined many deep learning architectures 
to classify rice grains, such as ResNet, VGG, Efficient Net, and Mobile Net. According to this 
study, MobileNet provided faster processing, whereas EfficientNet showed the highest 
classification accuracy.(18) This study assessed seven machine learning methods for rice variety 
classification using UAV-based multispectral sensing. These algorithms included neural 
networks, decision trees, SVM, random forests, naïve Bayes, and logistic regression. It 
highlighted the significance of feature selection at various phases of development. 
	 After that, the use of automated machine learning (AutoML) and bagging approaches for rice 
variety classification was examined.(19) Another study showed how well these techniques 
increase classification efficiency and accuracy. The final part of the literary works is a CNN-
based automatic framework for categorizing various rice grain types.(20) The model attained a 
perfect ROC curve and high accuracy. Furthermore, LIME and SHAP revealed insightful 
information about the model’s decision-making procedure.
	 Recently, rice quality and classification have been assessed using various digital image 
attributes. These include the length, perimeter, fracture rate, whiteness, and cracks in the rice 
grains. Image-processing-based methods can be used to extract different grain product 
properties. Several machine-learning algorithms have been used to classify these features, 
including CNN,(9,10,14,20)  SVM,(15) LeNet, Google Net, and ResNet.(13) Table 1 summarizes 
these studies.

3.	 Materials and Methods

	 DCNN is a type of machine learning method. Thus, the application of DCNNs is regarded as 
a form of deep learning, which is followed by machine learning. This is consistent with sensors 
that classify rice seed varieties using machine learning concepts. Rice grains were gathered 
from the rice warehouses depicted in Fig. 1. Figure 2 shows the overall process of this 
investigation, which classifies rice pictures obtained at various GPS locations. The four 
components of the rice variety classification system are data collection, processing, 
augmentation, and classification. The DCNN determines the types of rice in a rice image 
dataset. Finally, the generated results were compared with those obtained using conventional 
machine learning models.

3.1	 Data gathering

	 In this study, ten varieties of rice were used for classification: white sticky rice, red sticky 
rice, black sticky rice, Shan rice, Shwe Bo Paw San, Ma Jan Taw rice, Ayeyar Min rice, Ayeyar 
Padaythar, Shwe War Win, and Lone Thwe Mwe. A 48-megapixel iPhone 16 Plus camera was 
used to capture 1000 photographs of these different types of rice. Sensor technology is used by 
the iPhone 16 Plus, especially in its camera system. We created a customized dataset, called the 
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Table 1
Summary of literature regarding crop variety classification research.
References Data Pieces Rice Types Classifiers Accuracy (%)
(1) Point cloud data 8 Point Net deep learning model 89.4

(2) Kenjing No. 5, No. 6, and No. 9 
samples 3 Combined SIMCA and NIRS 90

(3) Three varieties 3 BPNN and Bayes classifiers 92.68

(4) Two rice cultivars 2 Color filtering and ratios of 
physical features 96

(5) 90 distinct types of rice 5 Fused Net model 86.87
(6) 75000 5 ResNet34 98.0
(7) 1399 images 34 NIR and HS-SPME-GC-MS 98.0
(8) Hyperspectral imaging 14 3D-CSAM-2DCNN 98

(9) Hyperspectral imaging 6 CNNs 91.09
SVM 79.23

(10) 200 3 CNN 88.07
(11) 10600 10 Residual network 95.13
(12) 200 16 SIMCA and NIRS 87.16
(13) 7399 3 LeNet, Google Net, and Resnet 95.5
(14) 200 5 CNN 91.33
(15) 50000 14 SVM 83.9

(16) 2000 7 VGG-19, ResNet50, and Google 
Net 100

(17) 75000 5 ResNet, VGG network, Efficient 
Net, and Mobile Net models 99.76.

(18) UAV-based multispectral sensors 3 Neural network (NN) algorithm 80

(19) 3810 data points 2 Light Gradient Boosting Machine 
- LGBM 93.54

(20) 75000 5
CNN, 

integration of explainability 
techniques

98

Fig. 1.	 (Color online) (a) Rice store from where the grains were collected, (b) rice varieties, and (c) rice fields.

(a) (b) (c)
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Dataset of Different Rice Seed Varieties (DDRSV). Data was collected from multiple rice farms 
in different cities, in collaboration with rice stores. Figure 1 shows the rice stores from which 
rice grains were collected. Rice grain classification cannot be performed without the cooperation 
of rice stores, making data support challenging. 
	 We also used various GPS locations to determine the temperature, water availability, and soil 
conditions in various weather zones. Samples were collected in a wide range of scenarios across 
different meteorological conditions, such as bright days, light precipitation events, and nighttime, 
for many periods within the study area to guarantee the flexibility and resilience of our model. 
These scenarios? were considered during data collection. Table 2 shows the data collected from 
different longitudes and latitudes in different geographic regions. Rice samples were collected 
from diverse soil depths in Myanmar’s Magway Region, Shan State, Sagaing Region, Mandalay 
Region, and Nay Pyi Taw Union Territory. The samples of only three types of rice (Ayeyar 
Padaythar, Lone Thwe Mwe, and Shwe War Win) are shown in Fig. 3 from the numerous images 
of the various types of rice in the personal dataset. 

3.2	 Data preprocessing and data augmentation

	 The images were preprocessed before model training to enhance the model’s performance 
and standardize their dimensions. The images in the DDRSV were enhanced using various 

Fig. 2.	 (Color online) Rice variety categorization diagram using a diffusion CNN with a dataset of personal 
images.
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techniques, such as image flipping, random rotation, random brightness adjustments, and 
contrast enhancement or reduction. These enhancements improved the model’s generalization 
capability, increased its robustness, and helped prevent overfitting or underfitting.
	 Techniques for data augmentation create fresh training samples from preexisting samples, 
thereby artificially expanding the dataset size. The model can learn from a wider variety of 
examples owing to this larger dataset, which lowers the possibility of overfitting and enhances 
generalization capabilities. A total of 1000 photos were collected. Because the dimensions of the 
collected data were small, data augmentation was performed on each folder with 200 rice grain 
subfolders. Figure 4 shows the distribution of classes in the datasets. The DDRSV was then 
partitioned into training, validation, and test sets at an 8:2:1 ratio. Table 3 provides details on the 
distribution of rice grain samples.

Table 2
Geographical locations, soil depth, latitudes, and longitudes of rice types.  

No. Types of Rice 
(Myanmar's name) Types of Rice Myanmar's State and 

Division
Latitude and 
Longitude Soil Depth Info

1 Sticky Rice (White) Kauk Hnyin Hsan 
(White) Magway Region 20.274°, 94.736° Thick/Medium

2 Sticky Rice (Red) Kauk Hnyin Hsan 
(Red) Magway Region 20.274°, 94.736° Thick/Medium

3 Sticky Rice (Black) Kauk Hnyin Hsan 
(Black) Magway Region 20.274°, 94.736° Thick/Medium

4 Shan Rice Shan Hsan Shan State 21.512°, 98.009° Thick/Medium

5 Shwe Bo Paw San Paw San Hmwe 
(Shwebo) Sagaing Region 21.878°, 95.979° Medium

6 Ma Jam Taw Rice A Shay Taw (Ma 
Jam Taw) Mandalay Region 20.987°, 95.765° Thick/Medium

7 Ayeyar Min Rice E Ya Min Hsan Mandalay Region 20.987°, 95.765° Thick/Medium
8 Ayeyar Padaythar A Yar Pa Da Thar Mandalay Region 20.987°, 95.765° Thick/Medium

9 Shwe War Win Shwe Wa Win Nay Pyi Taw Union 
Territory 20.280°, 96.265° Thick/Medium

10 Lone Thwe Mwe Lone Thwel Hmwe Magway Region 20.274°, 94.736° Thick/Medium

Fig. 3.	 (Color online) Samples of three different types of rice from the personal DDRSV.
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3.3	 Classification using CNN-combined diffusion model

	 A generative AI model, a diffusion model, is useful for denoising, feature extraction, and 
image creation. Diffusion modeling is an advanced technique that uses generative modeling to 
extract and classify rice grain features. Figure 5 shows the diffusion model architecture of the 
rice classification process. Overall, there are six steps.
1.	 Input Layer: This layer provides the model with the image of rice grains.
2.	 Forward Diffusion: Adding noise extracts the latent space features from the rice image.
3.	 Reverse Diffusion: The denoised rice image is extracted using U-Nets to eliminate noise.
4.	 Feature Extraction Module: This module extracts rich features from the bottleneck layer.
5.	 Classifier Head: CNN classifies the rice grain variety using the extracted features.
6.	 Output Layer: This layer provides the type of classified rice grain.
	 Diffusion models are generative models that gradually learn to denoise images, facilitating 
feature classification and extraction. They extract features from intermediate diffusion process 
phases and feed them into a CNN classifier for categorization. The latent diffusion model 
enhances the data for synthetic rice grain images and subsequently classifies them using a CNN 
for rice seed varieties at different GPS locations. The CNN diffusion model architecture for rice 
grain classification is shown in Fig. 6, and Table 4 presents the pseudocode for the diffusion 
CNN model design. Table 5 lists the parameters of the proposed classifier for the rice variety 
dataset. There are two primary steps in the denoising diffusion probabilistic model, as follows:

Fig. 4.	 (Color online) DDRSV’s class distribution.

Table 3
Rice image training, testing, and validation.
Dataset Training Testing Validation Total number of samples
Ayeyar Padaythar

800 100 100 1000
Lone Thwe Mwe
Ma Jan Taw Rice
Shwe War Win
Shan Rice
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i.	 Forward diffusion process: Adds noise to input images.
	 •	 Given an input rice grain image x0, N: Gaussian noise is added over T timesteps, βt: a slight 

variation in noise.
	 •	 The image gradually turns into pure noise.

Fig. 5.	 (Color online) Diffusion model architecture for rice classification.

Fig. 6.	 (Color online) Diffusion CNN model architecture.

Table 4
Pseudocode of proposed model architecture.
Step 1: Diffusion Model for Feature Generation and Enhancement
conditioned_input = prepare_condition (features)

Step 2: CNN Architecture for Classification
CNNInput = Input (shape = EnhancedFeatures.shape)  

Step 3: Train the Model
CNNModel.fit(train_generator, epochs=numepochs, validation_data=test_generator, 
callbacks=[checkpoint_callback, reduce_learning_rate])

Step 4: Generate the Prediction
prediction = Classifier (test_generator, verbose=1)
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	 •	 A Markov chain defines the forward process: 

	 ( )1 1( | ) 1 , .t t t t t tq x x N x x Iβ β− −= − ⋅ ⋅ 	 (1)

ii.	 Reverse diffusion process: Acquires the capability to eliminate noise and restore the original 
image.

	 •	 A neural network (U-Net) learns to reverse the noise process using ϵθ(xt,t).
	 •	 The model predicts the noise added at each step and reconstructs the clean image.

	 ( )1 ,t t t tx x x tθβ− = − ⋅ 	 (2)

4.	 Results and Analysis

	 The model in this study was trained and tested on a PC running on Windows 11 Pro with an 
NVIDIA GeForce RTX 3080 and 12th Gen Intel(R) Core (TM) i9-12900 at 2.40 GHz. The batch 
size was eight, with 30 iterations (epochs), and the network input sizes were (224, 224, 3). Setting 
the initial learning rate to 0.01 and loading pretrained weights into the backbone network 
initialize the network model. Python 3.13.2 serves as the programming language, while 
TensorFlow 2.19.0 and the CPU function as the deep learning framework.
	 In this project, we aim to use DCNNs to classify different types of rice. Table 6 lists the 
DCNN results of the experiments using statistical classification methods. The rice seed 
performance on the rice grain dataset is presented. We achieved a very good precision of nearly 
100%. Even for the testing dataset, the loss remained below 0.05, indicating excellent 
performance.
	 To monitor its performance, we compared the performance of the proposed model with that 
of eight previously trained models. We created and trained CNN models on our dataset and 

Table 5
Summary of proposed classifier's parameters for dataset of rice varieties.
Parameter Description 
Input shape (224, 224, 3)
Batch size 32 and 64
Number of classes Five rice varieties
Convolution layers Layers with increasing filters (32 to 64)
Kernel size (3,3)
Activation function Relu for hidden layers, SoftMax for output layer
Pooling layer (MaxPooling2D (pool size = (2, 2)) after each layer
Dropout rate Dropout (0.5) to prevent overfitting
Fully connected layers Fully connected layer with 64 and 512 units
Optimizer Adadelta (learning_rate = 0.01)
Loss function loss = categorical_crossentropy
Epochs numepochs = 30
Training Total training time: 650.36 s (CPU)
Early stopping Patience = 5
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achieved excellent accuracy in classifying rice varieties. Our findings demonstrate that the 
DCNN algorithm outperforms the other algorithms in terms of precise grain classification. The 
results of the tests comparing the deep learning and supervised learning algorithms are shown in 
Table 7. This advancement can result in an increased farm productivity, enhanced crop 
management, and improved crop forecasting. Furthermore, Table 8 displays the accuracy, loss, 
and training duration of the DCNN experiments with various input images. 
	 Figure 7 illustrates the confusion matrix of the model for the test sets. The across-diagonal 
indicates significantly higher values. The percentage of incorrectly classified samples was lower 
than that of correctly classified samples. The classification accuracy of the model improved 
significantly. The confusion matrix for the rice varieties is shown in Fig. 7. This matrix shows a 
fairly accurate prediction. According to these figures, the current research has excellent accuracy 
and high applicability. DCNN accuracy, loss, and learning rate are shown in Fig. 8.
	 The accuracy trend of the model throughout the training times or iterations is shown by an 
accuracy curve. This demonstrates the accuracy of the model’s label prediction. Typically, 
accuracy is given as a percentage, which shows the proportion of accurate predictions for all 
guesses. The model achieved an accuracy of 99.00% and a loss of 0.24031. Figure 9(a) shows the 
training and validation accuracy curves. Figure 9(b) shows the accuracy and loss table. 

4.1	 Comparative analysis

	 In the comparative analysis, eight model algorithms were evaluated, and the results were 
compared with those of previous studies. We compared two deep learning algorithms for Alex 
Net and Mobile Net to classify rice grain varieties, as shown in Table 7. The accuracy, mean 
square error (MSE), and R2 scores of the algorithms were also assessed. Additionally, Table 7 
presents the results of evaluations of the six supervised learning algorithms: support vector 
classification, decision tree, gradient boosting regressor, K-nearest neighbors, random forest, 
and linear regression methods, and two deep learning models: Alex Net and Mobile Net.
	 Since the DCNN design is scalable, as the amount of rice seed data increases, its performance 
does not decrease.  Finally, an additional large dataset is used to examine the accuracy, loss, and 
training time of DCNNs. The findings are shown in Table 8.

Table 6
Performance  in terms of accuracy, precision, recall, and F1 score of the proposed model on the rice grain dataset. 

Detailed classification report
Rice grain types Precision Recall F1-score Support
Ayeyar Padaythar 1.00 1.00 1.00 20
Lone Thwe Mwe 1.00 0.94 0.97 18
Ma Jan Taw Rice 1.00 1.00 1.00 22
hwe War Win 1.00 1.00 1.00 24
Shan Rice 0.94 1.00 0.97 16
Accuracy 0.99 100
Macro avg 0.99 0.99 0.99 100
Weighted avg 0.99 0.99 0.99 100
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Fig. 7.	 (Color online) Confusion matrix of the model for the test sets in the comparative experiment.

Fig. 8.	 (Color online) Learning rate, loss, and accuracy of DCNNs.

Table 7
Results of tests comparing algorithms for supervised and deep learning.
Model Accuracy MSE R2_score
Alex Net 0.4399 1.2982 1.2982
Mobile Net 0.4401 1.2982 0.4401
Linear Regression 0.339088 1.376062 0.339088
Random Forest 0.680011 0.666238 0.680011
Gradient Boost 0.753266 0.513717 0.753266
KNN 0.812955 0.389440 0.812955
Decision Tree 0.210399 1.644000 0.210399
Support Vector 
Classification 1.0000000 1.0000000 1.0000000

Table 8
Comparative findings from an investigation using a larger publicity dataset.
Model Input Image Model Accuracy Loss Model Training Time
DCNNs 5000 99% 0.02639 9054.19 s
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	 We used the publicly accessible Rice MSC Dataset, which includes several rice grain photos 
arranged by variety and was made available by Koklu et al.(21) for this research at https://www.
muratkoklu.com/datasets/. The comparative experimental results are shown in Table 7. The 
accuracy, loss, and training time of the DCNN tests using different input images are shown in 
Table 8. Images of 5,000 rice grains were obtained from another larger publicly available dataset. 
This study is novel in that it explicitly show the applicability of DCNN in the agricultural area, 
such as rice seed categorization. A DCNN is a graph that shows the connections between 
locations and the commonalities among different types of seed. The proposed study’s findings 
are compared with those of the other three previous studies. Table 9 provides the details view of 
the year, accuracy, highlights, method, and dataset used.  

Table 9
Outcomes of our study compared with those of other previous studies.
Study Year Dataset Used Method Used Accuracy (%) Highlights

Proposed Method 2025 Custom Myanmar 
Rice Dataset

DCNN (Diffusion 
CNN) 99 Location-aware, 

better generalization

Reference (2) 2022 NIRS combined with 
SIMCA

Principal Component 
Analysis (PCA) 90 Rapid identification of 

rice varieties.

Reference (3) 2017 1156 paddy seeds
Back Propagation 
Neural Network 

(BPNN)
92.68 Three paddy seeds are 

effectively identified.

Reference (15) 2020 50000 seeds  SVM method 83.9 Practical design of 
rice classification. 

(a) (b)

Fig. 9.	 (Color online) (a) Accuracy curve for training and validation, (b) accuracy and loss table.

https://www.muratkoklu.com/datasets/
https://www.muratkoklu.com/datasets/
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5.	 Conclusion

	 In this study, we used a DCNN model to classify different types of rice. To monitor its 
performance, we compared the performance of the proposed model with that of previously 
trained models. In a comparative analysis, eight algorithms for the models were assessed, and 
their performances were compared according to predetermined metrics and standards. The 
proposed DCNN increased farm productivity, enhanced crop management, and improved crop 
forecasts. 
	 DCNN lowers the possibility of making mistakes in manual classification. It can accurately 
identify different types of rice seed when combined with GPS data. Table 6 shows the results. 
Results from another larger publicity dataset are shown in Table 8. DCNN does well with both 
its customized dataset and another larger dataset. Lastly, we compared the outcomes of our 
research with those of previous studies in Table 9. 
	 To sum up, even though this study does not provide details about the sensors used, precision 
agriculture utilizes GPS data, which has been successfully integrated with DCNN to categorize 
rice seed types in various places. The DCNN in machine learning is associated with sensor-
based technology. We intend to use rice grain classification to distinguish rice types in 
agriculture, consumer, industry, marketing, export, and factory screening improvement. 
	 In our future study, we intend to incorporate additional data from various geographical 
regions, creating and distributing extensive datasets to support rice seed categorization research 
and development, and developing techniques to visualize and interpret model predictions.
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