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 In this study, we applied multiple unmanned aerial vehicles (UAVs) and visual sensors with 
deep learning neural networks, You Only Look Once (YOLO), to quickly and effectively 
recognize significant areas of debris. Information on debris locations, area sizes, and images is 
sent to the monitoring system. Then, the debris distribution is analyzed, and the source of the 
debris can be found. The pattern recognition process uses a variety of feature detection methods, 
description, and point matching for real-time image stitching of the scene. The UAVs can obtain 
large-area scene images and check whether undetected debris exists. A comparison with 
different YOLO models is given. The effects of debris recognition and the consequences of 
various types of data and image stitching during the image stitching process are applied to 
analyze the real-time image stitching effects by different methods.

1. Introduction

 Many cities have rivers of different sizes. Bridges are built in the river environment, so there 
are numerous banks, embankments, and piers. Even with laws and regulations, it is difficult to 
curb the problem of littering. For the preservation of the living environment and ecological 
protection, we use a real-time unmanned aerial vehicle (UAV) waste monitoring system(1) with 
artificial intelligence to recognize debris and stitch river scene images so that government 
officials can effectively and clearly understand the area of debris status and make efforts to 
control the source of debris. We developed a real-time UAV waste monitoring system that uses 
the You Only Look Once (YOLO) object detection architecture,(1) and we also created the Haida 
garbage dataset,(2) which can provide training for the YOLO dataset. The system can be used in 
different scenes, and the identified debris can be processed using a cloud site as the source of 
real-time image stitching. Kumareswaran et al. used drones to perform image stitching in near 
real time(3) and compared various feature detectors such as binary robust invariant scalable 
keypoint (BRISK), scale-invariant feature transform (SIFT),(4) unmodified SIFT, oriented 
features from accelerated segment test (FAST), rotated binary robust independent elementary 
features (BRIEF) (ORB),(5) and accelerated-KAZE (AKAZE).(6) They then used the image 
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stitching process and compared the calculation speed and qualitative evaluation. They concluded 
that it is most suitable to use ORB and AKAZE for real-time image stitching because the 
calculation time is short. In Ref. 7, the theoretical foci of various feature detection and description 
methods are listed, and their performances are compared. In Ref. 8, the shortcomings of 
AKAZE are pointed out, method improvements are proposed, and the feature extraction 
efficiency and matching accuracies of SIFT, ORB, AKAZE, and the improved AKAZE are 
compared. In Ref. 9, two types of feature detection and description were used, SIFT and 
speeded-up robust features (SURF), and different methods for eliminating mismatch points, 
such as random sample consensus (RANSAC) and M-estimate sample consensus (MASC), were 
used for comparison. The conclusion is that SURF has better computation time and matching 
accuracy than SIFT. SURF is compared with MSAC and RANSAC, and it is found that MSAC is 
the most stable and fastest, and the matching accuracy is the highest. Wang et al. built a deep 
learning model of YOLOv7 by improving the previous YOLO architecture and model scaling 
concepts, and compared the data with those of other YOLOs, showing that it is fast and 
accurate.(10) 
 To accurately obtain the UAV’s Global Navigation Satellite System (GNSS) coordinate 
position and direction angle, refer to the research of Wang,(11) who used the same two sets of 
GNSS receivers and real-time kinematic (RTK) technology, with which the error of the 
coordinate position can be obtained at the centimeter level. The high-precision coordinate 
position enables the acquisition of an accurate direction angle of the UAV. Combined with the 
above method, we improved the UAV GNSS coordinate accuracy, calculated a stable direction 
angle, then used a real-time UAV waste monitoring system with YOLOv5 and YOLOv7 for 
debris recognition, and used different feature detection and description methods and feature 
identification point matching for dynamic real-time image stitching. The real-time UAV waste 
monitoring system(1) was applied in this study. This system is based on YOLO for object 
detection; YOLOv5 and YOLOv7 are used for debris recognition, and the training status and 
identification results are compared. This system also achieves UAVs’ real-time dynamic image 
stitching, mainly through feature detection and description, feature matching, and homography 
matrix computation. Feature detection and description is accomplished with SIFT, ORB, and 
AKAZE. A brute-force matcher with K-nearest neighbors (K-NN) and a fast library for 
approximate nearest neighbors (FLANN)-based matcher with K-NN matching are used for 
feature matching. The homography matrix can use RANSAC and progressive sample consensus 
(PROSAC) to eliminate mismatches. Various combinations of the above methods yield 12 image 
stitching methods, the results of which can be compared.

2. System Design

 The real-time UAV waste monitoring system consists of several components and sensors and 
is divided into nine parts. The sender and the receiver are set up on the laboratory computer 
server, except for UAV images and data. The images are transmitted to the Video Streaming 
Server, kafka, as a real-time data connection. mongoDB is used for data storage and real-time 
monitoring, which can be displayed on the website. Figure 1 shows the monitoring system. The 
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sender uses the embedded system and 4G network to send real-time images, UAV’s GNSS 
coordinates, and garbage information to the server. Real-time image stitching can also be done 
through this system. Figure 2 shows the architecture of the UAV sender.
 The embedded system and 12 V battery are afixed on the UAV. A 4G dongle provides the 
network connection to the embedded system to send the UAV’s GNSS coordinates, debris 
identification results, size of area, and real-time images to the laboratory computer server. The 
video equipment includes a USB video class (UVC) webcam such as the Microsoft LifeCam 
Studio,(12) and it is loaded on the 2D gimbal of the UAV to maintain the stability of the video 
image. The image transmission method is imageZMQ,(13) and the rest of the data is streamed 
through kafka. The embedded process system uses NVIDIA Jetson Xavier NX, which has the 
advantages of small size, light weight, and high performance. It can be used on UAVs for garbage 
identification, data and image reception, and transmission.(14,15) Pixhawk 6X is used for the 
flight control of the hexacopter (Fig. 3). Peripheral equipment includes a receiver, telemetry 
radio, GNSS, motor, electronic speed controller (ESC), and battery; the specifications and 
quantities of the motors and ESCs are selected in accordance with the requirements. 
 Pixhawk 6X’s FMU processor runs at 480 MHz with 2 MB of flash memory and 1 MB of 
RAM; the IO processor runs at 72 MHz with 64 KB SRAM. Compared with previous 
generations of Pixhawk, its performance has been improved, and it has triple IMU sensors with 
a low-noise double barometer. When the Pixhawk autopilot detects a sensor failure, it seamlessly 
switches to other sensors to maintain flight stability. It adopts an entirely isolated sensor domain, 
each with an independent bus and power control. Its vibration isolation system can filter and 
eliminate high-frequency vibration and reduce noise to ensure accurate signal readings, enabling 
UAVs to perform better flights.(16) 
 The UAV is equipped with two GNSS receivers. It has a dual-frequency GNSS antenna, an 
electronic compass, and a low-cost, high-precision dual-frequency GNSS receiver chip, U-blox 
F9P, which uses real-time kinematic technology to obtain accurate GNSS coordinates. The 
direction angle of the UAV can be obtained from two sets of high-precision GNSS coordinate 
positions. The GPS for the yaw setting reference of the UAV is shown in Refs. 17 and 18. The 
UAV uses Sik telemetry radio v3(19) as the ground station to communicate with the flight 
controller in real time and obtain various data about the UAV, such as altitude (m), ground speed 
(m/s), current position, and UAV warning signals. The two hexacopters used are equipped with a 
433 MHz telemetry radio. The telemetry radio is not a one-to-one device, so there may be 

Fig. 1. (Color online) Architecture of a real-time UAV waste monitoring system.
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interference when there are devices with the same frequency. According to Ref. 20, instructions 
are set to change the Net ID to make it one-to-one. The Hexacopter_1 Telemetry Radio Net ID is 
25, and the Hexacopter_2 Telemetry Radio Net ID is 196.

3. Image Stitching

 Here, the feature-based image stitching algorithm is briefly introduced. First, feature 
detection and description are performed on the image, and then feature point matching is 
performed on two images with overlapping areas. Finally, the homography matrix is calculated 
and reprojected to obtain the image stitching result.

Fig. 2. (Color online) Architecture of the UAV sender.

Fig. 3. (Color online) Hexacopter.
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3.1 Feature detection and description

 In this subsection, we introduce the feature detection and description methods that are used 
in this study: SIFT, ORB, and AKAZE.

3.1.1 SIFT

 The advantage of SIFT is that it is invariant to image transformation, scaling, and rotation, 
and it is partially invariant to illumination changes, 3D rotation, and nonlinear geometric 
distortion. Scale space is used in an attempt to simulate the concept and method of human eyes 
observing objects in computer vision, that is, the degree of blur of the image. When the sigma is 
larger, the image is blurrier. Laplacian of Gaussian (LoG) can construct the scale space, but the 
calculation load is relatively high. In SIFT, the Difference of Gaussian (DoG) is used. Equation 
(1) is the Gaussian function, L in Eq. (2) is the Gaussian blur function, and the original image 
results from a convolution. Equation (3) is the DoG. Figure 4(a) shows its architecture and Fig. 
4(b) shows the local extremum on the scale found from the DoG results; a pixel in the image is 
shown as X. Its eight neighboring pixels and nine pixels in the following scale are compared with 
nine pixels in the previous scale. If it is a local extremum, then it is a potential key point.
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Fig. 4. (Color online) (a) Architecture of DoG and (b) results of DoG, modified from Ref. 4.
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 After finding the potential key points, we use the Taylor series expansion filter on D(x, y, σ) 
to obtain the exact extremum position, where D is calculated at the sample point, and x = (x, y, σ) T 
is the offset, derived in Eq. (4). The extreme value result is Eq. (5), and Eq. (6) can be obtained 
by bringing Eq. (5) back to Eq. (4) and then comparing |D(x̂ )| with the threshold value for 
screening.
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 For stability, it is not enough to remove low-contrast key points. DoG responds strongly to the 
edge, so we use a 2 × 2 Hessian matrix (H) to calculate the principal curvature, as in Eq. (7). We 
can directly calculate the ratio as in Eqs. (8) and (9), let α = γβ, bring it into Eq. (10), and finally 
filter low-contrast key points through Eq. (11).
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 We assign an orientation to each key point to achieve image rotation invariance. A Gaussian-
smoothed image L with the closest scale, gradient magnitude m(x, y) as in Eq. (12), and direction 
θ(x, y) as in Eq. (13), is chosen, computed in terms of pixel difference, and the overlay orientation 
histogram of 36 bins for 360 degrees is obtained as follows.

 ( ) ( ) ( )( ) ( ) ( )( )2 2 ,  1, 1, , 1 , 1m x y L x y L x y L x y L x y= + − − + + − −  (12)
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 After creating the key point descriptor, the surrounding 16 × 16 neighborhood centered on the 
key point is selected and divided into sub-blocks of size 4 × 4. For each sub-block, we create 
eight bin-oriented histograms. Thus, there will be 128 bin values, as shown in Fig. 5.

3.1.2 Oriented FAST and rotated BRIEF (ORB)

 ORB uses the FAST feature descriptor and BRIEF feature description. There are four main 
contributions.(5)

1) Added fast and accurate orientation components based on FAST
2) Efficient computation of oriented BRIEF
3) Brief features of oriented variance and correlation analysis
4)  A learning method for disassociating BRIEF under rotation invariance, which can achieve 

better performance in nearest-neighbor (NN) applications
The following is divided into three subsections for the introduction.
 To judge a feature point, we compare the grayscale values around the candidate pixel point p. 
With p as the center, we define its intensity as Ip, select an appropriate threshold t, and compare 
16 pixels on a circle with a radius of 3 pixels, as shown in Fig. 6. If the absolute difference 

Fig. 5. (Color online) Key point descriptor, modified from Ref. 4. (a) Image gradients. (b) Key point descriptor.

(a) (b)
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between the grayscale values of N continuous pixel points and p is greater than or equal to t, it is 
judged that the detection point is a feature point. First, to speed up the decision-making process, 
we calculate the four pixel points with serial numbers 1, 9, 5, and 13, and then judge other pixel 
points if at least three of them meet the conditions; otherwise, we discard point p.
 Using the intensity centroid and assuming that the intensity of the corner is off-center, we 
estimate the direction using this vector, define the moments of a patch as Eq. (14), find the 
centroid Eq. (15) by calculating Eq. (14), and construct a patch from the center of the angle 
vector; the direction vector connecting the center o to the centroid c is determined using Eq. (16).
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 The BRIEF is used to create a binary feature descriptor with key points. Considering a 
Gaussian-smoothed image, a smoothed image patch is P, the binary test equation is Eq. (17), and 
p(x) is the intensity of p at point x. Equation (18) is the n-bit binary string.
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Fig. 6. (Color online) Image sampling example.
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 A more efficient method is to define a 2 × n matrix, such as Eq. (19), for any function set 
(xi, yi) of n binary tests of key points in accordance with the key points and use the θ and rotation 
matrix Rθ obtained by FAST to calculate the rotational coordinates as in Eq. (20).
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3.1.2 AKAZE

 AKAZE is an accelerated version of KAZE, which uses fast explicit diversion (FED) to 
speed up the co-construction of pyramid spaces with nonlinear scales. KAZE uses nonlinear 
diffusion filtering to construct the scale space, described by a nonlinear partial differential 
equation [Eq. (21)]. Equation (22) is the conductance function, ∇Lσ is the gradient of the original 
image after Gaussian smoothing, and the function g is defined in Eq. (23).
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 Iterative box filters approximate Gaussian kernels with good quality and are easy to 
implement. The primary step is to execute n explicit diffusion steps for M cycles, whose step size 
τj is derived from the decomposition of the box filter as in Eq. (24). The stop time θn 
corresponding to one FED cycle is given by Eq. (25). The FED cycle has n variable steps τj 
resulting in Eq. (26).
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 We construct the scale space on the basis of the evolution time, use a diffusion function such 
as Eq. (27), and convert the zoom level of the discrete set in pixel units into a time unit, such as 
Eq. (28).
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The feature points are extracted using the local maximum of the normalized Hessian matrix of 
different scales:
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3.2 Feature point matching

 In this subsection, we introduce three different feature point matching methods that are used 
in this study: brute-force matching, FLANN-based matching, and K-NN matching.(21,22)

(a) Brute-force matching
  We select a feature descriptor in the first image and each feature descriptor in the second 

image to calculate the distance. The shortest distance is the matching point, and we repeat the 
selection until all the feature descriptors in the first image are calculated.

(b) FLANN-based matching
  FLANN-based matching uses a set of algorithms optimized for fast NN searches (NSSs) and 

high-dimensional features in large datasets. It works faster than brute-force matching for 
large datasets. The NSS problem is defined as follows: given a set of points P = (p1, p2, ..., pn) 
in the metric space X and a new query point q ∈ X, we find the closest point in P to q.

(c) K-NN matching 
  The algorithm finds the two points closest to each feature point in the registration image from 

each feature point in the two images. We calculate the ratio of the NN distance to the second 
NN distance, compare the threshold with the ratio, and when the ratio is less than the 
threshold, select the feature point corresponding to the closest neighbor distance as the best 
matching point.(23,24)
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3.3 Homography matrix and eliminate mismatch points

 The homography matrix H is shown in Eq. (30). x, y are the coordinates, which means that 
the xi, yi of the right image will be converted to the xi', yi' of the left image through the H matrix 
during stitching.(25,26)
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 We find the homography in OpenCV by which one of various methods of eliminating 
mismatch points can be chosen in accordance with the need. In this study, random sample 
consensus and progressive sample consensus are used for comparison.(27–29)

(a) RANSAC
  The advantages of RANSAC are its simple structure, easy implementation, and strong 

robustness, and if it widely used to eliminate mismatching. However, owing to its random 
sampling, it can only sometimes find the best feature correspondences and does not perform 
well with many false matches. The procedural steps of RANSAC are as follows.

 (1)  Randomly select four sample data points from the well-matching feature points and 
calculate the homography matrix H.

 (2)  Calculate the projection error between all the data in the dataset and the matrix H. If the 
error exceeds the threshold, add the inner point set X.

 (3)  If the elements of the current interior point set X are better than the optimal interior 
point set I_best, update I_best = X and update the number of iterations k.

 (4) Repeat steps (1) to (3) k times and obtain the best H.
(b) PROSAC
  The PROSAC algorithm is used to improve the randomness of the RANSAC algorithm. It is 

superior to RANSAC in terms of robustness and computational efficiency. The algorithm 
first sorts the data from high to low and only draws samples from high-quality data. Repeated 
verification was performed, and the best solution was obtained.

3.4 Real-time image stitching test

 We first present the experimental results of real-time image stitching using an octocopter and 
a hexacopter, as shown in Fig. 7. SIFT is used for feature detection and description. Brute-force 
matching with K-NN matching is used for feature point matching, and the homography matrix is 
found using RANSAC to eliminate mismatches. Figures 8 and 9 are the image stitching results 
with different degrees of overlap. Table 1 presents the number of feature points and the number 
of matched feature points determined from Figs. 8 and 9.
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Fig. 7. (Color online) UAVs used in the experiment.

Fig. 8. (Color online) First group of image stitching. (a) Octocopter viewing image. (b) Hexacopter viewing image. 
(c) Feature point matching result. (d) Image stitching results.

(a) (b)

(c)

(d)
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4. Debris Pattern Recognition

 YOLOv5 is mainly divided into five models, from small to large, namely, YOLOv5n, 
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, and can be trained with different 
hyperparameters. When YOLOv5 and YOLOv7 input training datasets, they will use adaptive 
image scaling to make the image sizes consistent and use data augmentation techniques and 
adaptive anchor box calculation processing to obtain more diverse training datasets. In YOLOv5 
and YOLOv7, different data augmentation techniques are used to augment the training dataset. 

Table 1
Image stitching feature point data.
Group Feature points of (a) Feature points of (b) Matched feature points
Group 1 6027 5389 56
Group 2 5605 5072 64

Fig. 9. (Color online) Second group of image stitching. (a) Octocopter viewing image. (b) Hexacopter viewing 
image. (c) Feature point matching result. (d) Image stitching results

(a) (b)

(c)

(d)
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Methods include mosaic augmentation, copy-paste augmentation, random affine transformation, 
hybrid augmentation, album, HSV augmentation, and random horizontal flip. A commonly used 
method is mosaic enhancement, which combines four training images into one. Random affine 
transformation involves randomly rotating, scaling, translating, and cropping four training 
images into one image. MixUp augmentation involves combining two images and their labels. 
HSV augmentation involves changing the image hue and color saturation. Random horizontal 
flip denotes randomly flipping the image horizontally. Copy-paste augmentation in YOLOv5 is 
described as an innovative data enhancement method; the patch is copied from the image and 
pasted onto a random image to generate new training samples.(30) Figure 10(a) shows the 
YOLOv5 training dataset after data augmentation. Figure 10(b) shows the YOLOv7 training 
dataset after data augmentation. The boxes and numbers 0 in Fig. 10 are the categories labeled 
for the training set.
 In the training dataset, there is a problem with the different sizes of pictures. Through 
adaptive picture scaling, the sizes are scaled to be uniform. In the input training network, the 
scaling ratio is first calculated using the original length and width and the scaled length and 
width. For a small ratio, we calculate the scaled size and the value for filling the gray edge. In 
YOLOv5, the minimum gray edge is filled after calculation, reducing unnecessary information 
that affects the training reasoning. In the network training, the network outputs the prediction 
frame on the basis of the initial anchor frame, compares it with the actual frame, calculates the 
difference between the two, and then updates and iterates the network parameters. YOLOv5 and 
YOLOv7 embed this function into the program code and determine the best anchor frame values 
in different training sets through K-means at each training time. In Ref. 10, real-time object 
detectors are compared among YOLOv7, YOLOR, PPYOLOE, YOLOX, Scaled-YOLOv4, and 
YOLOv5. YOLOv7 is fast and also has average precision. YOLOv7 mainly has six models and 
three hyperparameters, which can be trained in different combinations.
 By scaling the designed model to generate models of different sizes, we can further apply it to 
other computing devices. Model scaling methods usually use various scaling factors, such as 

Fig. 10. (Color online) (a) YOLOv5 and (b) YOLOv7 training datasets after data augmentation.

(a) (b)
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resolution (the size of the input image), depth (the number of layers of the network), and width 
(the number of channels of the feature map), to achieve a good trade-off in the amount of 
computation, inference speed, and accuracy during training. In the scaling of the series model 
(such as VoVNet), if the depth is enlarged or reduced, the input width of the subsequent transition 
layer will increase or decrease accordingly, leading to a poor training effect and complicated 
calculation. The compound model scaling method only needs to scale the depth in the 
computational block and the width of the rest of the transition accordingly to maintain the 
properties of the model at the design time and maintain the best structure. Model 
reparameterization technology can be regarded as an ensemble technology that is mainly divided 
into two categories, namely, model level and module level. For model-level reparameterization, 
there are mainly two methods. One is to train the same model with different training data and 
then average the weights of multiple training models. The other is to determine the weights of 
models with various iterations. The concept of module-level reparameterization is to split a 
module into multiple identical or different module branches during training and then integrate 
numerous branch modules into completely equivalent modules during inference. However, not 
all proposed reparameterization modules can be applied to different architectures, and their 
inappropriateness will affect the accuracy.
 In this study, we show the training results of YOLOv7 using the PyTorch framework. It 
mainly uses five model architectures with three hyperparameters, but the parameters cannot be 
adjusted to be sufficiently consistent to enable detailed comparison owing to computer 
limitations. From the eight training results, Objectness and mAP@.5 are mainly analyzed. 
Objectness does not converge very smoothly. After training for 1000 epochs, mAP@.5 has a 
downward or oscillating trend, so we can reduce the number of epochs required for training. 
However, Objectness is oscillating; in this case, we can increase the number of epochs to 
confirm whether there is a better training result, and then confirm whether there is overfitting. 
In Table 2, the overall performance can be indicated by mAP@.5. In the training results, the 
highest value of mAP@.5 is obtained with the model YOLOv7 with the hyperparameter P5, and 
the lowest with the model YOLOv7 with the hyperparameter Tiny.

Table 2
Training results for various models.
Model Hyperparameter Image size Batch size Precision Recall mAP@.5

YOLOv7-tiny P5

640*640

32 0.8127 0.7414 0.8057
Tiny 0.8023 0.7588 0.7763

YOLOv7 P5 0.82 0.7846 0.819
Tiny 0.7997 0.7741 0.7531

YOLOv7-x P5 24 0.8155 0.7703 0.8182
Tiny 0.8106 0.7778 0.7751

YOLOv7-w6 P6 1280*1280 12 0.8341 0.7572 0.8065
YOLOv7-d6 P6 8 0.828 0.736 0.797
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5. Experiments and Results

 In this research, we used NVIDIA’s embedded system and the UAV Riverine Waste 
Monitoring System for real-time debris recognition and real-time scene image stitching. 

5.1 Real-time image stitching

 Figure 11 shows the process of real-time image stitching in this study; our program is a 
modified version of that in Ref. 31. 

Fig. 11. (Color online) Real-time image-stitching process.
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5.2 Image stitching

 Next, the real-time image stitching of different scenes is introduced. Figure 12 shows the two 
UAVs used in this experiment.
(a) Feature detection and description: SIFT
  Figure 13 shows apparent color differences between images (a) and (b); the dislocation of 

stones is more prominent in (d). When the distance between two UAVs is too large, the image 
overlap rate will decrease, leading to image stitching failure. 

Fig. 13. (Color online) First group of image stitching. (a) Hexacopter_1 viewing image. (b) Hexacopter_2 viewing 
image. (c) Matching results_1 (brute-force matching + K-NN matching). (d) Image stitching results_1 (find 
homography matrix using RANSAC). (e) Matching results_2 (brute-force matching + K-NN matching). (f) Image 
stitching results_2 (find homography matrix using PROSAC). (g) Matching results_3 (FLANN-based matching + 
K-NN matching). (h) Image stitching results_3 (find homography matrix using RANSAC). (i) Matching results_4 
(FLANN-based matching + K-NN matching). (j) Image stitching results_4 (find homography matrix use PROSAC). 

Fig. 12. (Color online) Hexacopters used in the experiment.

(a) (b)

(c)
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Fig. 13. (Color online) (Continued) First group of image stitching. (a) Hexacopter_1 viewing image. (b) 
Hexacopter_2 viewing image. (c) Matching results_1 (brute-force matching + K-NN matching). (d) Image stitching 
results_1 (find homography matrix using RANSAC). (e) Matching results_2 (brute-force matching + K-NN 
matching). (f) Image stitching results_2 (find homography matrix using PROSAC). (g) Matching results_3 (FLANN-
based matching + K-NN matching). (h) Image stitching results_3 (find homography matrix using RANSAC). (i) 
Matching results_4 (FLANN-based matching + K-NN matching). (j) Image stitching results_4 (find homography 
matrix use PROSAC). 

(g)

(d)

(e)

(f)
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(b) Feature detection and description: AKAZE
 Figure 14 shows four stitching results based on AKAZE.
(c) Feature detection and description: ORB
 Figure 15 shows four stitching results based on ORB.
 Table 3 shows that feature detection and description take a short time, but the number of 
feature points obtained is relatively large. In Table 4, Matching result_1 and Matching result_2 
have the same number of feature point matches obtained when using brute-force matching. 

(h)

(i)

Fig. 13. (Color online) (Continued) First group of image stitching. (a) Hexacopter_1 viewing image. (b) 
Hexacopter_2 viewing image. (c) Matching results_1 (brute-force matching + K-NN matching). (d) Image stitching 
results_1 (find homography matrix using RANSAC). (e) Matching results_2 (brute-force matching + K-NN 
matching). (f) Image stitching results_2 (find homography matrix using PROSAC). (g) Matching results_3 (FLANN-
based matching + K-NN matching). (h) Image stitching results_3 (find homography matrix using RANSAC). (i) 
Matching results_4 (FLANN-based matching + K-NN matching). (j) Image stitching results_4 (find homography 
matrix use PROSAC). 

(j)
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Fig. 14. (Color online) Second group of image stitching. (a) Image stitching results_1. (b) Image stitching results_2. 
(c) Image stitching results_3. (d) Image stitching results_4.

Fig. 15. (Color online) Third group of image stitching. (a) Image stitching results_1. (b) Image stitching results_2. 
(c) Image stitching results_3. (d) Image stitching results_4.

(a) (b)

(c) (d)

(a) (b)

(c) (d)
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Because the distance is compared without complex calculation optimization in brute-force 
matching, the same effect is obtained in the same scene with the same number of feature points; 
the number of matched feature points is small because of multiple feature point matching 
screenings.
 Feature detection and description are combined with different feature point matching 
methods in image stitching. Twelve combinations of methods are tested, as shown in Table 4. 
The performance from good to poor is SIFT, AKAZE, and ORB. The best stitched image is the 
one obtained using SIFT and FLANN-based matching + K-NN matching with RANSAC 
stitching. The computing time for feature detection and description increased in the order of 
ORB, AKAZE, and SIFT. Although SIFT takes more time, the total computing time in image 
stitching is still acceptable for real-time debris inspection. 

5.3 Debris pattern recognition

 Since the real-time UAV waste monitoring system uses YOLO of the Darknet framework and 
cannot use YOLO of the Pytorch framework, Darknet was used for training YOLOv5 and 
YOLOv7. The training results of YOLOv5-tiny, YOLOv7-tiny, YOLOv7, and YOLOv7x show 
that the average loss converges, and mAP is also stable at 76, 74, 74, and 75%, respectively. 
Therefore, the results show no need to increase the number of training epochs. Figure 16 shows 
the UAV waste monitoring system during a debris identification test: its coordinates and area 
size are sent back to the monitoring terminal, and then a heat map, shown in Fig. 17, is prepared. 
The identification results are shown in Fig. 18, including the polluted area, the longitude and 
latitude of the location, UAV information, and blue points indicating garbage. Figures 19–21 
show the real-time debris recognition results at the Keelung River area, where the identification 
was carried out at a viewing angle of 45 degrees. Figures 19 and 21 show the river surface’s 
reflection and the misidentification of stones. The proposed system can also identify small and 
inconspicuous debris and presents the highest confidence index of 66.77. Table 5 shows the 
correct rate and false rate of garbage identification, and Fig. 20 shows missing marks because of 
the relatively small size of garbage, resulting in a low correct rate.

Table 3
Feature detection and description time and number of feature points.

Method Feature detection and 
description time (s) Feature points in Fig. 13(a) Feature points in Fig. 13(b)

SIFT 0.5625 3213 1879
AKAZE 0.375 1353 962
ORB 0.1875 2000 2000

Table 4
Number of feature point matches for different methods.
Method Matching result_1 Matching result_2 Matching result_3 Matching result_4
SIFT 35 35 42 41
AKAZE 87 87 97 99
ORB 31 31 38 37
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Fig. 16. (Color online) NTOU garbage identification test.

Fig. 17. (Color online) Monitoring terminal: garbage heat map.

Fig. 18. (Color online) Monitoring terminal: map of garbage identification results.
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Fig. 19. (Color online) Qixian Bridge-Keelung River real-time garbage identification results_1.

Fig. 20. (Color online) Qixian Bridge-Keelung River real-time garbage identification results_2.

Fig. 21. (Color online) Qixian Bridge-Keelung River real-time garbage identification results_3.
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 When using the UAV waste monitoring system for real-time debris recognition, the data (area 
size, current coordinate location, debris type) are streamed through kafka, the real-time images 
are transmitted through imageZMQ, and the results are sent to the monitoring terminal; the 
flight height is about 2 m. The take-off location and the river bank have a height difference, so 
the accurate measurement is about 6 m. Owing to environmental factors, performing real-time 
debris recognition and scene image stitching simultaneously requires much work. 

6. Conclusions

 We used the real-time UAV waste monitoring system for real-time debris recognition and 
proposed a multiple-drone system with deep learning neural networks, YOLO, to quickly and 
effectively detect river banks and barriers and send their current coordinates, debris area size, 
and images to the ground control center. Feature detection and description were combined with 
different feature point matching methods in image stitching. The results of experiments showed 
that real-time image stitching can be accomplished in a short time, which enables real-time 
debris recognition for practical implementation. The proposed UAV waste monitoring system 
can generate a heat map of debris and send its coordinates and area size back to the ground 
station for further environmental monitoring usage. However, owing to environmental factors, 
real-time image stitching can only be achieved in certain ways. The experiments and result 
analyse revealed that the main factors affecting the stitching results are as follows. (1) The 
photography equipment used is autofocus. When the UAV cannot be stabilized at a high altitude, 
it will lead to an inability to accurate focusing. (2) Vibration is caused by the flying UAV. (3) 
When the wind speed is high, the UAV cannot maintain its fixed direction angles (yaw) or fixed 
direction. To solve the above problems, dual GNSS with RTK technology and a better flight 
controller were used, but there was still much noise in the real-time returned image, which led to 
poor stitching results.
 The real-time debris recognition experiment was carried out at the Keelung River. From the 
results, it can be confirmed that even small debris in the scene was recognized. Still, there also 
were misidentifications, such as recognizing stones and reflection of the river surface as 
garbage. Some of the confidence indexes presented were low, only 15–20%. In the future, the 
real-time UAV waste monitoring system can be modified to use YOLO of the Pytorch framework 
for debris recognition or other methods to achieve UAV real-time debris recognition. Further 
increasing the number of training sets of different types of debris around the riverbank can 
improve the identification accuracy and diversity. In real-time image stitching, the noise on 
UAV-captured images should be reduced, and topnotch photographic equipment should be used 
to perform high-quality image stitching.

Table 5
Garbage identification result data.

Fig. 19 Fig. 20 Fig. 21
Correct rate (%) 60 25 80
False rate (%) 40 75 20
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