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	 Identity recognition using the specific biometrical characteristics of a person has recently 
become a popular technique. Compared with image-sensor-data-based face and fingerprint 
recognition, speaker recognition using the acoustic characteristics of the uttered voices obtained 
from a speaking person is an additional alternative. In certain cases of dark environments or 
dirty fingers, acoustics-based speaker recognition will be an alternative method for 
accomplishing identity recognition with satisfactory recognition accuracy. Speaker recognition 
in practical application scenarios will inevitably encounter the problem of acoustic speech mixed 
with background noises. Utterances with undesired background noises of specific environments 
cannot be finely matched with the preestablished speaker models, thus causing inaccurate 
identity recognition results. To tackle this issue, we present a deep-learning-based method for 
speaker recognition in a noisy environment, which is a hybridization of two different types of 
deep learning calculation model, speech enhancement generative adversarial network (SEGAN) 
and convolutional neural network (CNN), called hybridized SEGAN-CNN. By removing 
specific background noise from the substandard utterance with noise using SEGAN and 
classifying the identities of numerous speaking subjects without noise effects using CNN, the 
task becomes speaker recognition in a clear environment, in which the robustness of speaker 
recognition can be effectively maintained. The results of experiments using a voice command 
phrase mixed with motor operation noise for robot navigation control in a simulated factory 
environment demonstrate the effectiveness of the proposed speaker recognition method.

1.	 Introduction

	 It is well known that deep learning has recently become an extremely popular issue in 
research development and product trends.(1) Early machine learning techniques such as the 
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artificial neural network (ANN),(2) composed of an input layer, multiple internal layers (also 
known as hidden layers), and the final output layer, have been significantly extended to have 
much greater feature learning and extraction abilities of the input data. The model architecture 
of the famous convolutional neural network (CNN) is a typical representative of a deep neural 
network (DNN). The CNN-based deep learning framework has been widely used in image 
processing applications, particularly domain applications that fall under image recognition and 
computer vision. Studies on designs of CNN model architectures have also been widely 
conducted. The model structure of visual geometry group (VGG)-type CNNs, also known as 
VGG-CNNs,(3) has been proved to be successful in various image recognition applications, such 
as optical character recognition (OCR),(4) face recognition,(5) handwritten character 
recognition,(6) fingerprint recognition,(7) and visual speech recognition.(8,9)

	 Nowadays, with the great demand for text sematic (or visual scene) understanding and 
reasoning applications, the above-mentioned CNN-based models are being further extended to 
such models of generative neural networks. The generative adversarial network (GAN) 
developed to generate proper data as the output of such deep learning models is the classical 
representative model.(10) Unlike the structure of the CNN model, the GAN model is mainly 
composed of two modules: the generator and the discriminator. The GAN model is constructed 
by an iterative learning procedure to simultaneously optimize the two modules; the generator 
module performs an imitation process to generate synthetic data close to the real data and the 
discriminator module carries out a classification process to verify the validity of the data 
(recognition between the authenticated real data and the generated fake data). GAN variants with 
various GAN architectures have been proposed, such as conditional GAN,(11) speech 
enhancement GAN (SEGAN), and visual SEGAN (VSEGAN).(12,13) The SEGAN model is an 
acoustic-data-only speech enhancement procedure, by which noisy speech data can be recreated 
as clean speech data by removing the noise. Compared with SEGAN, VSEGAN additionally 
incorporates visual clues into the GAN to enhance noisy speech data.
	 Although numerous studies related to CNN-based image recognition and GAN-based data 
generation have been conducted, these studies were mainly focused on the utilization of the 
CNN or GAN model alone for developing advanced deep learning model architectures or 
constructing only recognition-AI or only generation-AI applications. Few works have been 
aimed at hybridizing these two different types of deep learning network to construct a practical 
system that can simultaneously incorporate the recognition competitiveness of CNN and the 
generation advantage of GAN. Furthermore, in the applications developed in most of those 
existing studies, the emphasis has been placed on either image-based identity recognition (e.g., 
visual face recognition by CNN) or acoustic-based speech enhancement (e.g., robust speech 
recognition by SEGAN). It has become of vital importance to explore the use of both recognition-
and generation-type DNNs to construct an acoustic-speech-based identity recognition system 
with environmental noise tolerance. To tackle this issue, we present a robust speaker recognition 
system with properly hybridized SEGAN and VGG-CNN (called hybridized SEGAN-CNN) to 
improve the identity classification performance of speaking operators in factories or 
manufacturing fields with the common noise of machine operating sounds. In smart 
manufacturing in which human (operator)–robot interactions are accomplished through voice 
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commands, the identity authentication of the command-giving operator will undoubtedly be 
essential.(14,15)

2.	 Hybridized SEGAN-CNN for Robust Speaker Recognition in an Environment 
with Specific Background Noise

	 As mentioned, both generative deep learning techniques for data generation and convolutional 
deep learning networks for data recognition have been seen to be in great demand in creative AI 
applications. In this study, we hybridize generative and convolutional deep learning approaches 
to construct a robust speaker recognition scheme that can perform recognition in an environment 
with specific noise. Figure 1 depicts the proposed SEGAN-CNN speaker recognition method 
that hybridizes two different types of deep learning network, SEGAN and VGG-16 CNN, which 
are respectively categorized as generative and convolutional deep learning models.
	 The SEGAN model with the SEGAN-CNN structure is essentially a generative deep learning 
model of GAN, specifically conditional GAN. GANs are typically composed of two networks, 
namely, the generator model (G) and the discriminator model (D). The two models are alternately 
trained so that the data generated by the generator model is so similar to the real data that the 
discriminator model cannot clearly distinguish between them. In this work, this type of GAN-
based deep learning model, the SEGAN model (mainly only the generator module of the trained 
SEGAN; see Fig. 1), is employed to remove the noise from the uttered speech with specific 
background noises so that the extracted features of the clean utterance will be accurately 
matched with pre-established speaker recognition models in a clean and noise-free environment. 
By SEGAN noise removal, speaker recognition for utterances under an adverse condition with 
specific background noise will therefore have a higher accuracy of the recognition result and 
maintain an acceptable recognition performance of the system. The structure of the SEGAN 
deep learning model adopted in this work is shown in Fig. 2. As in a typical GAN model, the 
SEGAN model also contains two main computation modules, the generator and the 
discriminator. The generator of SEGAN mainly learns effective mappings that can imitate the 
distribution of real data to generate fake samples related to the training data. The discriminator 

Fig. 1.	 (Color online) Proposed hybridized SEGAN-CNN deep learning system for robust speaker recognition in a 
noisy environment with specific types of noise.
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is a binary classifier that can be used to verify the generated noise-removed utterance by 
comparison with the real utterance recorded in a clean environment without noise. As can be 
seen in Fig. 2, there are two types of data to be verified by the discriminator, the real utterance 
(Pdata) recorded in a clean environment and the fake sample (Pz) generated by the generator. The 
training steps of the typical GAN model are first training the discriminant module, then training 
the generative module, followed by repeatedly training the two modules in an iterative parameter 
tuning procedure so that the generative model can finally make fake samples that are almost 
indistinguishable from the real ones. The above iterative training to establish the GAN model 
can be represented as follows: (11)

	 ( ) ( ) ( ) ( ) ( )( )( )~ ~min max , log log 1
data zx p x z p zG D

V D G E D x E D G z  = + −   .	 (1)

	 SEGAN belongs to the GAN-based architecture for removing background noise from speech 
signals based on the time domain. Because of the additional input item of noise (xc, also see 
Fig. 2), SEGAN will behave as the conditional GAN model. Compared with GAN, conditional 
GAN adds certain additional conditions to both the D and G modules of the GAN model to 
generate data.(12) If a certain condition (the noisy voice data xc) is met, the generated utterance 

Fig. 2.	 (Color online) Well-trained SEGAN deep learning model composed of two main calculation modules. The 
generator module is employed in hybridized SEGAN-CNN for specific noise removal.
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from the generator will be clean. Equation (1) of the loss function of GAN training will then 
further be adjusted to that of conditional GAN training:

	 ( ) ( ) ( ) ( ) ( ) ( )( )( ), ~ , ~ , ~min max , log , log 1 , ,
c data c z c data cc c cx x p x x z p z x p xG D

V D G E D x x E D G z x x  = + −   .	 (2)

	 As we all know, the traditional objective function of GAN is difficult to train and many 
problems, such as mode collapse, gradient disappearance and gradient explosion, must be 
overcome. To reduce the calculation difficulty of deriving optimal modules of D and G in 
Eq. (2), the loss function of LSGAN is introduced. Equation (2) can then be rewritten as the 
following equation set to solve the optimal problem:(12)

	 ( ) ( ) ( )( ) ( ) ( ) ( )( )2 2
, ~ , ~ , ~

1 1min , 1  , ,
2 2c data c z c data cLSGAN c c cx x p x x z p z x p xD

V D E D x x E D G z x x   = − +      
,	 (3)

	 ( ) ( ) ( ) ( )( )( )2~ , ~
1min , , 1
2 z c data cLSGAN c cz p z x p xG

V G E D G z x x = −  
.	 (4)

	 Finally, derivations of the generator module in Eq. (4) are slightly modified with the addition 
of content loss. Content loss is the distance between the generated utterance with noise removed 
and the clean utterance of the real data. The normalization of L1 is chosen, and Eq. (4) is then 
rewritten as

	 ( ) ( ) ( ) ( )( )( ) ( )
2

~ , ~ 1  

1min , , 1 ,
2 z dataLSGAN c c cz p z x p xG

V G E D G z x x G z x xλ = − + −   

.	 (5)

	 The generator module of SEGAN derived using Eq. (5) will be incorporated with the 
framework of hybridized SEGAN-CNN deep learning to make the clean utterance match the 
CNN classification model of the following speaker recognition phase. Note that in Eq. (5), λ is a 
constant to enlarge the distance between the generated and real clean utterances. As observed in 
Fig. 2, the generator architecture is essentially similar to that of an autoencoder (AE). The 
encoder is composed of multiple layers, each of which is a one-dimensional convolution layer. 
The decoder is also composed of multiple layers, each of which corresponds to a one-dimensional 
deconvolution layer. In this work, the input acoustic utterance with the sampling rate of 16 kHz 
will ultimately be transformed to a feature with 16384 dimensions. After the noisy voice data xc 
passes through the encoder via a one-dimensional convolution layer, the data will become a 
feature of 1024 channels (an 8-dimensional feature in each channel), and then the transformed 
feature will further be spliced with the input item z that also has 1024 channels each with an 
8-dimensional feature. The decoding procedure for layer-by-layer one-dimensional 
deconvolution will then be carried out on the data. Finally, after the completion of decoding, the 
feature with 16384 dimensions in a unique channel is the generated utterance with noise 
removed.
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	 As depicted in Fig. 2, a calculation procedure for fast Fourier transform (FFT) is employed in 
hybridized SEGAN-CNN, incorporated between the noise removal phase and the speaker 
classification phase. For speaker classification by CNN deep learning, the input data will be 
restricted to the specific modality of images, and therefore, the reconstructed data output from 
the generator module of SEGAN, i.e., the time-domain feature with 16384 dimensions mentioned 
above, will further be transformed into the frequency-domain feature represented as an image of 
the speech spectrum by FFT. Note that in hybridized SEGAN-CNN speaker recognition, the 
popular type of VGG-16 CNN is adopted, and each RGB image of the speech spectrum will 
therefore be restricted to the standard size of 224 by 224.
	 The final phase in hybridized SEGAN-CNN is to perform CNN speaker recognition for the 
identity classification of the speech spectrum of the input acoustic utterance (see Fig. 1). 
Compared with the traditional ANN, the CNN model has additional convolution and pooling 
layers for advanced feature extraction. The multilayer structure of CNN can perform convolution 
calculations through filters to automatically learn and extract features from the input speech 
spectrum of the speaker. The more filters there are, the more different and detailed are the 
features that can be captured. Then, through pooling, the input speech spectrum image is 
reduced in dimension, and the maximum value of the acoustic feature is considered as its output. 
The VGG-16 CNN adopted in this work as the speaker recognizer in hybridized SEGAN-CNN 
also belongs to the typical CNN framework that involves convolution, activation function, 
pooling, and local parameter sharing.(3) As can be seen in Fig. 3, the VGG-16 CNN model 
hybridized in SEGAN-CNN can be divided into two main parts, with a total of 16 processing 
layers. The first part has 13 layers, mainly composed of convolution and pooling layers; the 
second part has three fully connected layers. After the extraction of deep learning features of the 
speech spectrum by the first 13 layers, the final three fully connected layers gather these 
extracted features together and then classify them to derive the recognized speaker label. The 
classifier to decide the speaker label in this work mainly uses the softmax excitation function, 
which is a normalization function used to obtain a set of probability values, each of which is 
between 0 and 1, as shown in Eqs. (6) and (7). The label with the maximum probability value is 
the final speaker recognition result. Note that in Eqs. (6) and (7), the index p denotes the total 

Fig. 3.	 (Color online) VGG-16 CNN deep learning model in hybridized SEGAN-CNN, composed of 13 
convolutional and max pooling layers and three fully connected layers, for feature extraction of speech spectrum 
and speaker classification.
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number of speakers to be classified and is set to 10 (i.e., a total of 10 speakers for identity 
classification) in this work.

	 ( )  ,   1, 2, , .iSpeaker label argmax softmax y i p= = … 	 (6)

	 ( )
1

,  1, 2, , .
i

i

y

i p y
i
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3.	 Experiments

	 Robust speaker recognition experiments are conducted in a laboratory office environment. A 
total of 10 different speaking subjects (speakers) are collected to establish the speech database 
for model training and test evaluations of the proposed hybridized SEGAN-CNN deep learning 
approach. The database mainly includes the clean speech dataset without noise and the noisy 
speech dataset with a specific type of noise. To create the clean speech dataset, each of the 10 
subjects is requested to utter the specific Mandarin phrase “導航,” which means “to navigate” in 
English, to instruct the autonomous mobile robot (AMR) to start the navigation mode (see the 
recorded speech waveform in Fig. 4). Each of the 10 subjects utters the specific Mandarin phrase 
25 times for iterative training and test evaluations of deep learning models. In the training phase, 
the clean speech dataset contains 6250 utterances in total, 25 utterances of each of the 10 
subjects copied 25 times. Note that in smart manufacturing (e.g., the smart factory), taking into 
consideration the convenience of human–machine interaction, acoustic-speech-based voice 
command recognition is usually performed for the voiceprint-authenticated operator to operate 
various industrial devices such as the robotic arm, the conveyor belt, and the popular AMR with 
autonomous navigation. The noise of “machine operation sounds” of various industrial devices 
that always exists in the practical operating field is employed in this work to establish noisy 
speech data, i.e., the clean voice command utterance finely mixed with this type of noise. The 
noisy speech dataset comprises each of the 25 times of utterances of each of the 10 subjects 
mixed with 25 different types of motor operation sound (i.e., noise of 25 different operating 
devices frequently appeared in the automated factory). The noisy speech dataset will therefore 
contain the same number of utterances as the clean speech dataset, that is, 6250. In the test 
phase, the speech dataset, which is completely different from the database used in the training 
phase, is additionally established. The specific Mandarin phrase of the voice command to 

Fig. 4.	 Sample recorded waveform of the specific Mandarin phrase “導航”, which means “to navigate” in English, 
uttered by each speaker for speaker recognition (clean speech).
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activate AMR navigation is recorded again for each of the 10 subjects 25 times to obtain 250 
clean speech utterances. Each of these 25 clean speech utterances of each subject is then mixed 
with one specific type of noise to acquire 250 noisy speech utterances. The test speech dataset 
composed of 250 clean and noisy speech utterances will be employed for performance 
evaluations and comparisons of speaker recognition in the test phase. The Kinect device made 
by Microsoft is employed in this study for recording each speaker’s utterances. The sampling 
rate is set to 44100 Hz, and a single channel (i.e., mono) is adopted when recording. Each 
utterance collected from a speaking subject is 2 s long. The PC with Intel® Xeon® W-2235 
CPU, 32 Gb of RAM, GeForce GTX3080Ti GPU, and Windows 10 (64-bit) is utilized to perform 
all required calculation tasks in this work.
	 In the training phase of deep learning speaker recognition models, two different types of 
deep learning model, SEGAN and VGG16-CNN, are established. These are used to make the 
deep learning structure of hybridized SEGAN-CNN. In SEGAN, the pair (clean utterances, 
noisy utterances) = (6250, 6250) composed of the same numbers of clean and noisy utterances is 
used as the training dataset in the training procedure of the SEGAN model. In SEGAN training, 
the number of epochs is set to 400. Figure 5 shows the performance of the trained SEGAN 
model, which is indicated by four parameters: d_real, d_fake, g_adv, and g_l1. Note that in the 
final 400 epochs, all these model performance parameters show satisfactory outcomes, namely, 

Fig. 5.	 Performance parameters of (a) d_real, (b) d_fake, (c) g_adv, and (d) g_l1 of the SEGAN model of hybrid 
SEGAN-CNN speaker recognition in the training phase (400-epoch set, using both clean and noisy speech datasets 
for SEGAN training).
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0.0003, 0.0001, 0.9926, and 0.1443, respectively. In VGG16-CNN, the clean utterance data 
without the disturbance of environment noise, that is, the set of 6250 utterances, is used for 
training the VGG-16 CNN model. Note that, as mentioned in Sect. 2, before VGG-16 CNN 
model training, each of these clean 6250 utterances is first transformed into spectrograms by 
FFT (also see Fig. 1), and the speech spectrogram set is then used as the model training data. The 
model performances of the trained VGG-16 CNN can be represented by performance curves of 
both the accuracy and loss rates, which are clearly depicted in Fig. 6 (a total of 60 epochs for 
model training).

4.	 Results and Discussion

	 The test phase is finally established for evaluating the performance results of speaker 
recognition using the presented hybridized SEGAN-CNN approach. The test dataset for 
performance evaluations is composed of three different types of data: clean, noisy, and 
regenerated (noise removed by SEGAN) speech utterances. Speaker recognition performances 
of the classifications of 10 subjects using three different recognition strategies—VGG16-CNN 
recognition using clean speech, VGG16-CNN recognition using noisy speech with specific 
machine noise, and proposed hybridized SEGAN-CNN recognition using SEGAN-regenerated 
speech with machine noise removed—are shown in Table 1. As seen in Table 1, VGG16-CNN 
speaker recognition with clean speech has the highest average recognition accuracy of 95.2%. 
The proposed hybridized SEGAN-CNN speaker recognition method with noisy data follows 
with an accuracy of 63.2%. VGG16-CNN speaker recognition with noisy speech performs the 
worst, and a dissatisfactory and ineffective recognition accuracy of only 29.2% is obtained. 
Experimental results show that the proposed hybridized SEGAN-CNN is robust to environment 
noise when performing speaker recognition, and its recognition performance increases 34% 
compared with speaker recognition by VGG16-CNN alone. It can also be seen in Table 1 that 
with adequate noise removal by SEGAN, the ineffective speaker recognition of Subjects 1, 3, 5, 

Fig. 6.	 (Color online) Accuracy and loss rates of the VGG-16 CNN model of hybridized SEGAN-CNN speaker 
recognition in the training phase (60-epoch set, using the FFT-transformed spectrograms of the clean speech dataset 
for VGG-16 CNN training).
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6, 9, and 10 under the noisy condition shows great improvements in recognition accuracy, 
achieving 48, 68, 100, 88, 44, and 76%, respectively. Tables 2–4 show the confusion matrices of 
recognition of 10 subjects by VGG16-CNN with clean speech data, VGG16-CNN with noisy 
speech data, and hybridized SEGAN-CNN with noise-removed regenerated speech data. Table 5 

Table 2 
Confusion matrix of recognition of 10 subjects using VGG16-CNN with the test dataset of clean speech data 
without background environment noise.
Subject 1 2 3 4 5 6 7 8 9 10
1 20 0 5 0 0 0 0 0 0 0
2 0 25 0 0 0 0 0 0 0 0
3 0 0 25 0 0 0 0 0 0 0
4 0 0 0 25 0 0 0 0 0 0
5 0 0 1 0 24 0 0 0 0 0
6 0 0 0 0 0 24 0 0 0 1
7 0 0 0 0 0 0 25 0 0 0
8 0 0 0 1 0 1 3 20 0 0
9 0 0 0 0 0 0 0 0 25 0
10 0 0 0 0 0 0 0 0 0 25

Table 3 
Confusion matrix of recognition of 10 subjects using VGG16-CNN with the test dataset of noisy speech data mixed 
with specific machine operation noise.
Subject 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 25 0 0 0
2 0 25 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 25 0 0 0
4 0 2 0 23 0 0 0 0 0 0
5 0 0 0 0 0 0 25 0 0 0
6 0 10 0 0 0 0 15 0 0 0
7 0 0 0 0 0 0 25 0 0 0
8 0 15 0 0 0 0 10 0 0 0
9 0 0 0 0 0 0 25 0 0 0
10 0 0 0 0 0 0 25 0 0 0

Table 1 
Speaker recognition performances of VGG16-CNN recognition using clean speech, VGG16-CNN recognition using 
noisy speech (with specific machine operation noise), and proposed hybridized SEGAN-CNN recognition using 
regenerated speech.
Speaker Clean speech (%) Noisy speech (%) Regenerated speech (noise removed) (%)
Subject 1 80 0 48
Subject 2 100 100 100
Subject 3 100 0 68
Subject 4 100 92 100
Subject 5 96 0 100
Subject 6 96 0 88
Subject 7 100 100 8
Subject 8 80 0 0
Subject 9 100 0 44
Subject 10 100 0 76
Average 95.2 29.2 63.2
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shows the performance of SEGAN in removing the noise in the speech utterance. The speech 
spectrograms of clean, noisy, and SEGAN-regenerated utterances of Subject 1 are listed. It is 
clear that the spectrogram of the SEGAN-regenerated utterance is close to that of the clean 
utterance, which demonstrates the apparent recognition rate improvement of Subject 1 (also see 
Table 1). Experimental results demonstrate the effectiveness of the proposed hybridized 
SEGAN-CNN speaker recognition approach in a noisy factory environment with specific 
machine operation noise.

Table 4 
Confusion matrix of recognition of 10 subjects using hybridized SEGAN-CNN with the test dataset of regenerated 
speech data with specific noise removed.
Subject 1 2 3 4 5 6 7 8 9 10
1 12 0 4 0 9 0 0 0 0 0
2 0 25 0 0 0 0 0 0 0 0
3 0 0 17 0 8 0 0 0 0 0
4 0 0 0 25 0 0 0 0 0 0
5 0 0 0 0 25 0 0 0 0 0
6 0 1 1 0 1 22 0 0 0 0
7 0 11 0 0 3 0 2 0 0 9
8 0 20 0 1 2 2 0 0 0 0
9 1 0 13 0 0 0 0 0 11 0
10 0 0 5 0 1 0 0 0 0 19

Table 5 
(Color online) Speech spectrograms of three different types of speech data: clean, noisy, and SEGAN-regenerated 
speech utterances (uttered by Subject 1)
Data type Speech spectrogram (FFT calculations on PCM raw data)

Clean utterance

Noisy utterance

SEGAN-regenerated 
utterance
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5.	 Conclusions

	 In this study, a robust speaker recognition approach, hybridized SEGAN-CNN, was proposed 
for smart manufacture. The proposed SEGAN-CNN method is a hybridization of two popular 
deep learning networks, SEGAN and VGG-16 CNN, and can achieve competitive identity 
classifications of acoustic voice command-uttering operators even under an adverse condition of 
a noisy environment with specific machine operation noise. With adequate incorporations of 
SEGAN noise removal estimations in VGG-16 CNN speaker categorization calculations, the 
recognition accuracy of speaking operators that previously could not be identified can be 
significantly improved. Compared with the recognition accuracy of 10 speaking subjects by a 
typical VGG16-CNN alone, the proposed hybridized SEGAN-CNN has superior tolerance to 
environment noise and exhibits a great increase of 34% in average recognition performance.
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