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 Cardiovascular diseases pose a significant global health challenge, and electrocardiography 
(ECG) plays a crucial role in their detection and classification. Consequently, developing a 
homecare-oriented ECG diagnosis system is highly beneficial for patients to their daily lives. We 
present a lightweight ECG diagnosis system, utilizing state-of-the-art sensors and advanced 
sensing technologies to enhance the quality of healthcare. By incorporating an attention-based 
residual neural network (ResNet) and the Conformer model, our system improves the accuracy 
and efficiency of ECG signal processing, making it suitable for real-time monitoring applications 
in healthcare environments. To enhance the spatial and channel information of the embedded 
features, we investigate the use of attention-based ResNet. Additionally, we employ the 
Conformer neural network, which incorporates a residual mechanism, to extract both local 
features and global contextual information. Experimental results demonstrate that our proposed 
approach outperforms existing models such as wide and deep transformer neural network 
(denoted as PRNA), weighted ResNet, and squeeze-and-excitation ResNet. Compared with 
ResNet Transformer, our method is more compact in size while achieving similar performance 
levels. These findings indicate that our system offers a resource-efficient and high-performance 
solution for ECG diagnosis, making it a promising candidate for real-world healthcare 
applications.

1. Introduction

 Cardiovascular diseases (CVDs), including arrhythmia and cardiomyopathy, constitute a 
significant global health challenge as they remain the leading causes of death and disability. 
Electrocardiography (ECG) plays a vital role in the detection and classification of these cardiac 
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conditions by recording the electrical activities of the heart.(1) Despite its advantages, the 
interpretation of ECG data typically requires the expertise of medical professionals, necessitating 
patients to visit hospitals for evaluation. Therefore, developing a homecare-oriented ECG 
diagnosis system would be very useful for patients in daily life. Moreover, the AI algorithms 
used need to be sufficiently lightweight to enable the development of an ECG diagnosis system.
 CVDs, including coronary artery disease, arrhythmia, valvular heart disease, coronary 
artery heart disease, cerebrovascular disease, rheumatic heart disease, and other related diseases, 
significantly impact health, often leading to complications that threaten vital organs.(2) They 
claim about 17.9 million lives annually worldwide, with heart disease being the second leading 
cause of death in Taiwan, where there were around 23000 fatalities in 2022.(3,4) These statistics 
underscore the urgent need for effective CVD detection systems to improve patient outcomes 
and alleviate healthcare burdens. Current detection methods include cardiac catheterization, 
echocardiography, and ECGs. While catheterization is invasive and echocardiography requires 
at least 15 min, ECG is non-invasive and quick, taking only about 5 min.(5) However, ECG 
interpretation typically requires the expertise of medical professionals. Therefore, an intelligent 
decision system should be used to implement a homecare-oriented ECG diagnosis system for 
preventing CVDs.
 Recently, deep learning techniques, such as convolutional neural networks (CNNs), recurrent 
neural networks, and long short-term memory (LSTM) models, have significantly influenced 
cardiac arrhythmia detection. For instance, Yildirim et al. introduced an end-to-end model using 
1-D CNN to identify 17 different cardiac arrhythmia disorders without relying on handcrafted 
feature extraction.(6) Wang et al. developed a deep multiscale fusion CNN architecture capable 
of detecting nine classes of arrhythmias, validated on two public datasets.(7) Similarly, 
Hannun et al. achieved high diagnostic accuracy in classifying 12 rhythm classes from a 
substantial dataset of 91232 single-lead ECGs, rivaling cardiologists’ performance.(8) Moreover, 
Hou et al. employed an LSTM-based autoencoder combined with support vector machines for 
classifying five arrhythmias.(9) While these studies yielded promising results, they often faced 
limitations due to the quantity and diversity of ECG samples in public datasets, leading to the 
insufficient exploration of multilabel and multiclass arrhythmia symptoms critical for clinical 
applications.(10) Consequently, the previous studies focused on multilabel arrhythmia detection 
for a restricted set of arrhythmia classes. However, a simplified model that classifies arrhythmias 
into significantly fewer categories offers limited utility in clinical applications.
 In this study, a homecare-oriented ECG diagnosis system is proposed to assist patients in 
monitoring CVDs. To effectively represent ECG signals, a neural encoder utilizing a CNN and 
an inter-lead attention mechanism is developed. To accurately enhance the spatial and channel 
information of the embedded features, an attention-based residual neural network (AttResNet) is 
investigated. Additionally, to extract local features and global contextual information, the 
Conformer neural network with a residual mechanism is adopted.
 The development of ECG diagnosis systems has greatly benefited from advancements in 
sensor technologies, which enable the continuous, noninvasive monitoring of cardiovascular 
health. In this study, we leverage high-performance ECG sensors and related materials, 
combining them with cutting-edge neural network models to create a system capable of accurate 
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arrhythmia detection. This approach aligns with ongoing efforts to incorporate wearable sensing 
devices into personalized healthcare solutions.
 The rest of this paper is organized as follows. The proposed homecare-oriented ECG 
diagnostic system, including the inter-channel attention mechanism, AttResNet, and Conformer, 
is described in Sect. 2. In Sect. 3, a series of experiments to evaluate the performance of our 
approach are described. Conclusions and recommendations for future research are given in 
Sect. 4.

2. Methods

 In this study, a homecare-oriented ECG diagnostic system (shown in Fig. 1) is proposed to 
help patients in daily living. First, each lead of the input ECG signals is encoded using CNNs, 
and the lead information is fused using inter-lead attention. Second, the output embedding 
features are processed for information extraction using AttResNet. Third, the Conformer neural 
network is applied to extract local features and global contextual information. Finally, the output 
block is applied to obtain the final decision using fully connected neural networks. The process 
is described below.

2.1 Inter-lead attention block

 The inter-lead attention block (shown in Fig. 2) includes the convolutional layer (CL), batch 
normalization (BN), mish activation function (MF), and inter-lead attention mechanism. The CL 
convolves the input and encodes it into an embedding feature. The BN is used to recenter and 
rescale the embedding feature to obtain a stable feature. The input x of the BN can be defined as

 ( )
2

BN ,xx µγ β
σ ε

−
= +

+
 (1)

where m, s, and e are the per-dimension mean, the standard deviation, and an arbitrarily small 
constant, respectively. b and g are the transformation parameters subsequently learned in the 
optimization process.
 MF is an activation function, Mish(), which is a smooth approximation of the rectifier and is 
defined as

Fig. 1. (Color online) Flowchart of the proposed homecare-oriented diagnostic system. The proposed neural 
network comprises four distinct blocks: an inter-lead attention block, an attention-based ResNet block, a Conformer 
block, and an output block.
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where tanh() is the hyperbolic tangent. The inter-lead attention is implemented using scaled dot-
product attention, which is used to weigh the significance of different parts of the embedding 
feature.(10)

2.2 Attention-based ResNet block

 The architecture of AttResNet (shown in Fig. 3) is a variant of ResNet and is used with the 
attention mechanism. Therefore, it can achieve a richer gradient combination and concentrates 
on the most relevant features. The CL is applied to encode the features and then the parametric 
rectified linear unit (PreLU) is selected as the activation function following the CL. Moreover, 
the channel attention model (CA) and spatial attention model (SA) are used to improve the 
channel information and spatial information, respectively.(11) Finally, the improved embedding 
features are fused and added to the input embedding features. The operations × and + are the 
element-wise product and element-wise addition, respectively.

Fig. 2. (Color online) Architecture of the inter-lead attention block, which primarily enhances the model’s ability 
to capture relationships between different leads.
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2.3 Conformer block

 Figure 4 shows the architecture of the Conformer block, which includes a fully connected 
layer (FCL), multihead self-attention mechanism (MHSAM), and CL.(12) In the Conformer 
block, a sandwich structure, inspired by Macaron-Net, is adopted.(13) The original feed-forward 
layer in the traditional Transformer is replaced by two half-step feed-forward layers. One is 
positioned before the MHSAM and the other after. As in Macaron-Net, half-step residual 
weights are used in the FCL. The second FCL is followed by a post-layernorm layer (LN).

3. Experimental Results

 To verify the proposed approach, an independent external public dataset provided by the 
China Physiological Signal Challenge (CPSC 2018) was selected.(14) This dataset contains 6877 
12-channel ECG records from 11 hospitals. The sampling rate was normalized as 500 Hz, and 
the number of classes for cardiology diseases was 27. In addition, the K-fold cross-validation 
technique was adopted to evaluate the proposed approaches, and k was 10 in this study. Nc, Na, 
and Nr were 2, 3, and 3, respectively. The Adam algorithm with b = 0.9, b2 = 0.98, and e = 10−9 
was selected as the optimizer for training neural networks. The number of iterations and the 
batch size were 30 and 128, respectively.
 In this study, we adopted a challenge scoring metric (CM) specifically designed for 
PhysioNet/Computing in Cardiology Challenge 2020 to assess our proposed approach.(15) The 
rationale for selecting CM lies in its ability to mirror clinical realities, where certain 
misdiagnoses can have more severe consequences than others, necessitating a nuanced scoring 
system. Moreover, it is considered that misclassifying certain classes carries less risk than 
confusing others, thereby providing a more comprehensive evaluation of model performance.

Fig. 3. (Color online) Architecture of the proposed AttResNet block, which can achieve a richer gradient 
combination and concentrates on the most relevant features.
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3.1 Experimental results of AttResNet

 To evaluate the effectiveness of the attention mechanism, the conventional ResNet with two 
CLs and PReLU is selected for comparison with the proposed AttResNet. Moreover, the 
conventional Conformer and Transformer are selected for comparison with the proposed 
Transformer block. AttResNet and conventional ResNet, which are adopted to implement the 
attention-based ResNet block, are denoted as A and R, respectively. Moreover, the proposed 
Conformer, conventional Conformer, and conventional Transformer, which are used to 
implement the Conformer block, are denoted as RC, C, and T, respectively. The experimental 
results are shown in Table 1; the proposed approach outperforms the others.
 Compared with the baseline (R, RC), the proposed AttResNet is very useful for identifying 
the CVDs. Moreover, the proposed Conformer network with residual mechanisms is useful and 
simplified compared with the conventional Conformer or transformer architecture. Thus, the 
proposed architecture is suitable for the homecare-oriented ECG diagnosis system.

3.2 Results of comparison with other approaches

 In this study, we selected ResNet Transformer,(16) PRNA,(5) Weighted ResNet,(17) and SE-
ResNet(18) as baseline models for comparison with our proposed approach. The experimental 
results for these approaches are 0.608, 0.533, 0.520, and 0.514 for the ResNet Transformer, 

Fig. 4. (Color online) Architecture of the Conformer block, which can effectively capture both local features and 
global contextual information.

Table 1
Experimental results of the proposed approach and baseline systems.
Fold Proposed approach Baseline (R, RC) Baseline (A, C) Baseline (A, T)
0 0.587 0.569 0.610 0.636
1 0.652 0.608 0.567 0.582
2 0.650 0.638 0.542 0.598
3 0.612 0.570 0.643 0.622
4 0.600 0.559 0.612 0.604
5 0.597 0.510 0.591 0.587
6 0.572 0.550 0.599 0.614
7 0.632 0.553 0.641 0.563
8 0.642 0.554 0.555 0.578
9 0.517 0.594 0.504 0.541
Avg C.M 0.606 0.571 0.586 0.593
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PRNA, Weighted ResNet, and SE-ResNet, respectively. Our proposed approach demonstrates 
superior performance compared with PRNA, Weighted ResNet, and SE-ResNet. Notably, while 
its performance is very similar to that of the ResNet Transformer, our model is smaller in size, 
offering a more efficient alternative.

4. Conclusions

 CVDs remain a pressing global health issue, making effective detection and classification 
imperative. In this study, we successfully developed a lightweight ECG diagnosis system 
specifically designed to enhance the quality of healthcare. By utilizing the AttResNet model, we 
were able to enrich the spatial and channel information of embedded features, thereby improving 
diagnostic accuracy. Furthermore, the incorporation of the residual-based Conformer neural 
network facilitated the extraction of both local features and global contextual information, 
contributing to the robustness of our approach. The experimental evaluations have demonstrated 
that our proposed system outperforms established models, including PRNA, Weighted ResNet, 
and SE-ResNet, while maintaining a compact architecture comparable to that of the ResNet 
Transformer. This makes our system not only efficient in resources but also effective in 
performance, positioning it as a suitable candidate for healthcare-oriented ECG diagnosis 
systems. Furthermore, we demonstrated the potential of integrating advanced ECG sensors with 
AI-driven diagnostic models, providing an effective and resource-efficient solution for 
cardiovascular disease detection. In future research, we aim to expand the system’s diagnostic 
capabilities by incorporating additional arrhythmia classes and patient feedback mechanisms. 
Additionally, exploring federated learning for privacy-preserving ECG analysis could enhance 
its clinical applicability.
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