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	 Vegetation information is an important index utilized in numerous fields including 
landscaping, ecological restoration, urban planning, and the environment. We investigated the 
temporal changes and ecological restoration techniques for damaged quarries using orthophoto 
images supplied by the National Geographic Information Institute and drone multispectral 
sensor technology. We examined the area changes of deforestation in quarries and the supervised 
categorization of photos to produce qualitative and quantitative results based on a temporal 
background of roughly 24 years from 2000 to 2024. Additionally, different vegetation indices 
(normalized difference vegetation index, soil-adjusted vegetation index, and modified soil-
adjusted vegetation index) and their variation trends were also investigated by analyzing the 
multispectral images from 2011, 2017, and 2024. The kappa coefficient for orthophoto images 
through supervised classification was approximately 0.781 on average, indicating satisfactory 
classification results. The accuracies in 2023 and 2024 were low, which was considered to be due 
to ambiguous boundary distinctions in the beginning stage of the restoration of damaged areas. 
The vegetation indices were analyzed for changes over three years in zones A, B, and C. 
Consequently, the vegetation index for 2017 was lower than those for 2011 and 2024, and it was 
observed that quarry development in 2017 progressed significantly across all areas. Discussions 
on the restoration plan for the damaged quarry are presented by comparing the area and 
vegetation index presented in the time series analysis of this study, therefore rendering 
information on future vegetation management. This study shows how sensor technology can be 
usefully applied to ecological restoration, making it meaningful for both environmental and 
sensor-related research.

1.	 Introduction

	 Industrial development significantly impacts the local economy, although it tends to reduce 
the environmental importance associated with it. Particularly, the development of quarries, such 
as stone mines, significantly damages natural landscapes and ecosystems. In contrast to that in 
the past, it has now become crucial to restore the ecosystems of these damaged areas and seek 
sustainable management strategies. The various quarries scattered across the country were 
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under development for a long time, significantly impacting the surrounding ecosystems. 
Additionally, the destruction of ecosystems and changes in land use due to developmental 
activities are causing various environmental problems, such as the reduction in biodiversity. 
Drone technology was used in various fields such as forestry, agriculture, and disaster prevention 
to assess the health of vegetation. In recent domestic research, Cho et al.(1) assessed the 
classification accuracy of vegetation health using drones equipped with near-infrared sensors to 
calculate vegetation indices. Similarly, Lee et al.(2) compared the accuracies of various vegetation 
indices derived from optical sensors. Furthermore, research on drones and vegetation indices 
was conducted, including the rapid acquisition of terrain spatial information, high-precision 
mapping, and vegetation crop analysis.(3)

	 Among international studies, Yang et al.(4) used Landsat images and the LandTrendr 
algorithm to detect the dynamics of vegetation disturbance and recovery in the Curragh coal 
mine area in Australia, and examined the spatial and temporal changes from 1989 to 2014. From 
1989 to 2014, 2982.60 ha of the 4573.08 ha Curragh mining area were restored, which 
corresponds to 59% of the total disturbed area. In the central part, 95% of the restoration was 
successfully completed. Bonifazi et al.(5) conducted a study using Landsat 5 satellite images to 
distinguish between bare soil and restored vegetation, and evaluated the degree of restoration 
from bare soil to vegetation using a vegetation index. The numerical values comparing field 
surveys and remote sensing results were consistent with those within the margin of error, and 
they quantified the restoration status of the quarry through the integrated restoration quotient. 
	 Ecological restoration research in quarries is being globally conducted through various 
technological approaches. Particularly, technological advancements are considerably aiding 
these studies. Orthophotos and multispectral images obtained using drones can provide 
fundamental information to significantly improve the efficiency of ecosystem monitoring and 
restoration processes. 
	 This study is distinguished by proposing long-term ecological restoration strategies targeting 
the environment of a quarry. We precisely monitored changes over an extended period from 
2000 to 2024, and on the basis of this, restoration plans were proposed. We proposed specific 
customized ecological restoration plans and established practical restoration strategies on the 
basis of the analysis of vegetation conditions. Earlier studies primarily used Landsat satellite 
images for analysis, although in this study, we utilized high-resolution orthophotos and drone 
multispectral sensors to analyze the subtle changes in the quarry based on the data. The current 
work is distinctly ahead of previous studies in that it can specifically monitor not only vegetation 
changes but also restoration effects through high-precision data.

2.	 Research Method

2.1	 Materials and methods

	 The study area is located in Gangseo-gu, Busan, where development projects such as 
industrial complexes are being actively undertaken in the surrounding regions (Fig. 1). The 
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quarry is located in an ecological grade 2 natural green area, with an average slope of 
approximately 23° and a site area of 124,831 m² (Fig. 2). Figure 3 presents the flowchart of this 
study.

2.2	 Orthophotos and multispectral images

	 The experimental data were obtained by two methods. Aerial images from the National 
Geographic Information Institute were collected at five-year intervals from 2000 to 2023. In 
2024, it was planned to produce and analyze orthophotos through high-resolution drone footage. 
As the study area is not very large, it was deemed appropriate to conduct the research using the 
0.25 m-grade aerial photographs and drone footage from the National Geographic Information 
Institute. Drone photography has the advantage of using data reflecting the latest terrain and 
development conditions, and it is considered appropriate to analyze past changes through aerial 
photographs (Table 1).
	 High-precision imaging and multispectral imaging were conducted on May 22, 2024, using 
the DJI M300 RTK, with the Sentera 6× Multispectral Sensor camera to acquire information 
about the study area. The shooting time, shooting altitude, ground sample distance, and flight 
speed were approximately 20 min, 120 m, 1.88 cm/px, and 13.7 m/s, respectively, and the 
longitudinal and lateral overlap was set to 90%.
	 To improve the positional accuracy of the study, a DJI-RTK2 was installed near the study 
area and images were captured, which were processed using DJI Terra. The various outputs 
derived from this were analyzed in ArcGIS Pro.

Fig. 1.	 (Color online) Study area.
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2.3	 Vegetation index

	 Various vegetation indices are used for assessing the impact of quarrying activities on the 
surrounding environment and for monitoring the ecological restoration process. The normalized 
difference vegetation index (NDVI) is used to assess the overall vegetation condition quickly and 
easily, whereas the soil-adjusted vegetation index (SAVI) and the modified soil-adjusted 
vegetation index (MSAVI) are utilized to correct for soil exposure in quarries with significant 
soil exposure, allowing for a more accurate understanding of vegetation conditions. Through the 
complementary characteristics of each index, it is possible to diagnose the various vegetation 
changes occurring more accurately in the quarry. These three representative vegetation indices 

Fig. 2.	 (Color online) Quarry topographic modeling. (a) Analysis of slope. (b) Quarry area in 2024.

Fig. 3.	 (Color online) Flowchart.

(a) (b)
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(NDVI, SAVI, and MSAVI) are analyzed here. These indices are useful for quantitatively 
assessing changes in quarry environments and evaluating ecological recovery.
	 NDVI is one of the most widely used vegetation indices and is excellent at detecting the health 
status and density of plants. This index is calculated using the difference in reflectance between 
the near-infrared band and the red band of satellite images. Plants absorb red light and reflect 
near-infrared light through photosynthesis, and thus, healthier plants show higher NDVI values. 
NDVI was developed by Tucker.(6)

	 SAVI is a modified model of NDVI, particularly useful when soil background affects plant 
reflectance. A correction factor L for SAVI was introduced to minimize the soil reflectance 
effect. This factor is generally set to 0.5, which has the characteristic of reducing the distortion 
of vegetation signals by soil reflectance.(7)

	 By further improving SAVI, MSAVI was developed to provide accurate vegetation information 
even in areas affected by soil reflectance.(8) This index automatically adjusts the impact of soil 
brightness changes on the vegetation index by modifying the calculation formula of SAVI. Tables 
2 and 3 outline the calculation formula for the vegetation index and the distribution of vegetation 
index values and criteria for healthy vegetation conditions, respectively.
	 To apply the vegetation index to the study area, aerial images from 2011 to 2017 including 
multiple bands were first used. In 2024, drone sensor information was obtained to calculate 
NDVI, SAVI, and MSAVI in ArcGIS Pro. To derive more precise sample vegetation indices, the 
entire area was divided into grid units (30 × 30 m2) rather than using the whole area, and the 
average values within each grid were calculated. As nonvegetated areas such as development 
zones and facilities exist, the experimental sites were divided into A, B, and C areas to calculate 
the average values. Rather than presenting the overall vegetation index, it was determined that 
dividing the area into three regions would be more effective in minimizing error factors. 

Table 1
a: Orthophoto data source.
Data information
Division Data type Time Resolution

Orthophotographic 
information

National Geographic 
Information Institute Aerial photography

2000.03.01. 1200 dpi2004.11.01.
2011.04.06.

0.25 m
2015.05.29.
2017.06.04.
2021.03.24.
2023.02.27.

b: Multispectral data source.
Data information
Division Data type Time Spectral bands

Multispectral 
information

National Geographic 
Information Institute Aerial Photography 2011.04.06

Blue, Green, Red, 
RedEdge, NiR

2017.06.04

Drones
DJI M300 RTK, 

(Sentera 6x 
Multispectal Sensor)

2024.05.22
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	 Figure 4 shows the locations and numbering order of the grids used for analysis among the 
divided areas, and the grids are designated from the starting point to the endpoint according to 
the direction of the arrows. To improve the accuracy of the data, areas where vegetation occupies 
more than half of the area and parts where the shape and vegetation have been altered were 
excluded. In 2011, 2017, and 2024, 110 out of a total of 172, 101 out of a total of 164, and 107 out 
of a total of 171 grids were used for analysis, respectively.

2.4	 Supervised classification

	 The image classification task requires distinguishing all the pixels in an image into several 
land types. The supervised classification method is mainly used when the location or spectral 
characteristics of the area to be classified are already known, and this method is effective when 
the user is well acquainted with the area. The user sets up training sites well representing the 
characteristics of land cover, analyzes all the pixels within the data using the covariance between 
the centers of each cluster in that area and the bands, and then assigns them to the cluster with 
the most similar distribution characteristics. For supervised classification techniques, the 
selection of training sites significantly impacts the classification accuracy, and thus, samples 
representing the area to be classified should be selected in a diverse and broad manner.(9,10)

	 For the land cover classification of the study area, the training sites were organized into five 
main categories. For building, soil, natural vegetation, deforested area, and restored vegetation, 

Table 2 
Vegetation index calculation formula.
Vegetation index Calculation formula

NDVI

SAVI

MSAVI

NIR RED
NIR RED

−
+

( )
1

1 LNIR RED
NIR RED +

×
−

+
+

( ) ( )22 1 2 1 8
2

NIR NIR NIR RED× + − × + − × −

Table 3 
Distribution of vegetation index values and criteria for healthy vegetation condition.

Vegetation index
Healthy 

vegetation 
threshold

Typical range Description

NDVI 0.6 0–1 NDVI values above 0.6 typically indicate healthy and 
dense vegetation

SAVI 1.0 0–1.5 SAVI values above 1.0 indicate good vegetation health, 
accounting for soil reflectance.

MSAVI 0.8 0–1
MSAVI values above 0.8 are considered indicative of 
healthy vegetation, particularly in areas with exposed 
soil.
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an average of 150 training sites were selected and classified to categorize the entire study area 
over five years. 
	 Random trees classification (RTC) was applied as the classification algorithm. Research 
results suggest that it can achieve good outcomes in ecological restoration monitoring using 
high-resolution satellite images to address the challenges of classifying high-dimensional spatial 
data. Additionally, the classification algorithm can effectively manage complex datasets and has 
the characteristic of offsetting noise with high accuracy and minimized overfitting. The model 
learns the characteristics of each class and can be applied to new data, with parameters set to 
optimize the balance between model complexity and prediction accuracy. The results are 
designed to demonstrate an improvement in classification performance compared with that of 
the standard classification methods.(11) To track the environmental changes in the quarry over 
time, data from multiple points in time were collected and compared for analysis. RTC is used 
for change detection and trend analysis by leveraging the high-dimensional characteristics of 
such time series data. Although the quarry data itself is not high-dimensional data, it can be 
considered suitable for applying high-dimensional spatial data classification techniques used for 
the environmental monitoring and management of the quarry. To evaluate the land cover 
classification accuracy of the quarry using supervised classification and RTC, the accuracy was 
calculated using the kappa coefficient, which is expressed as

	 0(
1

) e

e
Kappa Π Π−

=
−

Κ
Π

,	 (1)

Fig. 4.	 (Color online) Average values of A, B, and C in 2011–2024.
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where Π0 denotes the probability of the two observed data matching and Πe denotes the rate at 
which the two observed data could match by chance. The degree of agreement according to the 
value range is the same as that shown in the table from a previous study.(12)

2.5	 Criteria for distinguishing restored vegetation areas

	 The criteria for distinguishing restored vegetation areas are primarily identified through land 
use changes. Restored vegetation refers to an area where vegetation was rebuilt or naturally 
recovered through artificial or natural restoration efforts after deforestation. This area was 
originally a land in a degraded state, although over time, it has been restored or is in the process 
of being restored, and it is generally distinguished from other types of vegetation.(13) On the 
map, the restored vegetation is highlighted to emphasize the difference from the deforested area, 
allowing for the identification of changes in the areas where restoration has taken place.
	 Building: This refers to a structure artificially constructed in the area, indicating the impact 
of development. During ecological restoration, areas with buildings may be impossible to restore 
or restoration is limited. 
	 Soil: This refers to an exposed soil area that has not been restored. This area has no vegetation 
and is considered a priority site for restoration.
	 Natural vegetation: This refers to an area of natural vegetation that is being maintained 
healthily. This area protects and manages the existing ecosystem.
	 Deforested area: This refers to an area primarily damaged by development or natural 
disasters. This area needs to have its vegetation restored through rehabilitation and is classified 
as a priority site for restoration.
	 Restored vegetation: This refers to an area where restoration was conducted or completed, 
indicating that the restoration work has been successfully accomplished. However, continuous 
monitoring and management are necessary, as a possibility exists that the health of the ecosystem 
may decline again over time, and thus, consistent management is required.

3.	 Result

3.1	 Analysis of time series images

	 The time series analysis of the quarry was conducted to identify the area changes from 2000 
to 2024 through quantitative analysis and to analyze the qualitative changes in the images. To 
align the positions over a long time lag, clear road lines were selected as reference points, and 
each image was matched at the same scale. Figure 5 presents the results of digitizing and 
vectorizing the images year by year. From 2000 to 2011, the total area of the region increased 
from 87732 to 126894 m² and the developed area also increased from 67563 to 80469 m², 
indicating continuous development. Since 2011, the amount of quarry development has 
decreased, with the total area slightly decreased to 124831 m² and the developed area 
significantly decreased to 29838 m². Figure 6 shows the total and developed areas of the quarry 
site from 2000 to 2024. From 2000 to 2011, both the total and developed areas steadily increased, 
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and it was observed that the proportion of the developed area also continuously increased. Later, 
in 2015, the development pace slowed down and the proportion of developed areas decreased 
from 28 to 16%. By 2024, the developed area increased again and the development area ratio 
rose to 24% (Table 4).

3.2	 Time series accuracy analysis

	 Figure 7 shows the analysis results for the study area after applying a supervised classification 
algorithm with five classification categories. For the final five years (2011, 2015, 2021, 2023, and 
2024), the classification accuracy was presented as building, soil, natural vegetation, deforested 
area, and restored vegetation.
	 In Table 5, the building category has 4 correctly classified pixels, 2 misclassified as other 
categories, and an overall user accuracy of 66.7%. Soil has 40 pixels accurately classified, 3 
misclassified, and a user accuracy of 93.0%. Natural vegetation has 24 correctly classified 
pixels, 5 misclassified, and a user accuracy of 82.8%. The deforested area has 43 accurately 
classified pixels, 7 misclassified pixels, and a user accuracy of 86.0%. Restored vegetation has 
19 correctly classified pixels, 5 misclassified pixels, and a user accuracy of 79.2%. In the overall 
classification accuracy, the total row represents the total number of pixels for each classification 
and the total U-accuracy indicates the user accuracy for each classification. Here, p-accuracy 
represents producer accuracy, which implies the probability of being correctly classified from 

Fig. 5.	 (Color online) Quarry time series area (2000–2024).
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Fig. 6.	 (Color online) Quarry time series developed area (2000–2024).

Table 4
Quarry area change rate. 
Year Total area Developed area Developed area ratio
2000 87732 m2 67563 m2 77%
2004 100408 m2 74102 m2 74%
2011 126894 m2 80469 m2 63%
2015 124074 m2 35249 m2 28%
2017 123930 m2 26722 m2 22%
2021 124390 m2 18654 m2 15%
2023 125841 m2 19651 m2 16%
2024 124831 m2 29838 m2 24%
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Fig. 7.	 (Color online) Quarry supervision classification results (2011, 2015, 2021, 2023, and 2024).
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the perspective of the provider. U- and P-accuracies are the proportions of correctly identified 
instances within each categorized group and correctly classified instances overall, respectively. 
A Kappa coefficient of 0.808 indicates a high consistency in the overall classification, and the 
closer the Kappa coefficient is to 1, the better the classification effect. Here, the calculation 
results of the Kappa coefficient for 2011 are presented, and the final Kappa coefficient results for 
other years (2015, 2021, 2023, and 2024) are summarized in Table 6.

3.3	 Time series vegetation index change analysis

	 Figure 8 shows the NDVI, SAVI, and MSAVI for 2011, 2017, and 2024. The NDVI for 2011 is 
very high, ranging from 0.703 to 1, and the widely distributed green areas generally indicate a 
healthy vegetation condition. SAVI ranges from 1.04 to 1.497, indicating a good vegetation 
condition, and MSAVI also shows values from 0.805 to 1, confirming an overall healthy 
vegetation condition.
	 In 2017, NDVI decreased overall compared with that in 2011, from 0.703 to 0.627, and the red 
areas expanded, indicating a reduction in vegetation vitality. SAVI decreased from 1.04 to 0.938, 
and MSAVI decreased from 0.805 to 0.726, indicating an overall reduction in vegetation vitality. 
	 The NDVI, SAVI, and MSAVI for 2024 are 0.758, 1.134, and 0.809, respectively, indicating an 
increase in vegetation vitality compared with those in 2017. Although the proportion of damaged 
soil was high in 2017, the restoration of vegetation has been successfully progressing by 2024.
	 Tables 7 and 8 show that even just considering the NDVI values, the average value of region 
A, which was under restoration in 2024, is 0.556, higher than that of region C (0.468), which has 
been restored. Accordingly, two observations were made. First, it was observed that the 
vegetation vitality of the restored area C gradually decreased over time. Second, the current 
restoration work in area A was progressing very successfully, indicating a higher vegetation 
vitality than that of the previously restored area C. Figures 9 and 10 show the average vegetation 
indices for each vegetation zone (A, B, and C). Figure 11 is a trend graph illustrating the changes 
in vegetation indices for regions A, B, and C in 2011, 2017, and 2024, as shown in Table 8.
	 These results emphasize the importance of maintaining the restored vegetation, indicating 
that continuous monitoring and additional management are necessary even after the restoration 
work. Furthermore, the successful restoration work in region A during the restoration process 
serves as a model, suggesting that a similar level of management may be needed in region C as 
well.

Table 5 
Kappa coefficient accuracy.

Building Soil Grass Deforested 
area

Restored 
vegetation Total U-accuracy

Building 4 2 0 0 1 6 0.667
Soil 1 40 1 1 1 43 0.930
Natural vegetation 1 1 24 1 2 29 0.828
Deforested area 1 2 4 43 0 50 0.86
Restored vegetation 3 0 2 0 19 24 0.792
Total 10 45 31 45 21 152 0
P-accuracy 0.4 0.889 0.774 0.956 0.905 0 0.855
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3.4	 Ecological restoration measures in response to changes in vegetation environment

	 Customized ecological restoration plans tailored to the conditions of areas A, B, and C based 
on changes in vegetation index are required. Area A is a region where restoration is in progress, 
and additional restored vegetation and soil improvement work are essential. Therefore, it is 
necessary to plant species suitable for the area and set long-term ecosystem restoration goals. For 
example, by first selecting drought-resistant and cold-resistant species, the survival rate in the 
initial stages of restoration can be increased.
	 Area B is a region that has undergone severe damage due to past development, requiring 
more intensive restoration efforts. It is necessary to plant not only trees but also a combination of 
shrubs and herbs to ensure ecological stability in the initial stages of restoration.

Table 6
Kappa coefficient accuracy.
Year Kappa value
2011 0.855 
2015 0.856
2017 0.823
2021 0.769
2023 0.717
2024 0.714

Fig. 8.	 (Color online) Vegetation index analysis.
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	 Area C is relatively well maintained, although it should aim to maintain a healthy ecosystem 
through long-term management and additional restoration efforts. Monitoring the soil condition 
and existing vegetation in the area and continuous maintenance will be necessary if needed.
	 Area A generally underwent development while simultaneously progressing with restoration, 
and thus, no significant changes were observed at this point. The decline in Areas B and C was 
primarily attributed to changes in artificial terrain due to development.
	 On the basis of these customized restoration plans, it will be possible to secure long-term 
ecosystem health by conducting restoration work tailored to the ecological conditions of each 
region (A, B, and C). In Table 7, by planting the proposed specific tree species based on the 
restoration data of each region, sustainable ecosystem restoration can be achieved. Table 9 
recommends the most suitable vegetation type for ecological restoration planning in quarries in 
Busan.

Table 7
Average NDVI, SAVI, and MSAVI.
Year Vegetation index Average vegetation index for each zone
2011 NDVI 8 9 14 15 16 ... 167
2011 NDVI 0.5976 0.6051 0.5640 0.6149 0.5459 ... 0.6245
2011 SAVI 8 9 14 15 16 ... 167
2011 SAVI 0.8950 0.9063 0.8448 0.9208 0.8176 ... 0.9352
2011 MSAVI 8 9 14 15 16 ... 167
2011 MSAVI 0.7378 0.7478 0.72 0.7556 0.6989 ... 0.7642
2017 NDVI 7 8 13 14 15 ... 156
2017 NDVI 0.3372 0.3305 0.3196 0.3670 0.3800 ... 0.4440
2017 SAVI 7 8 13 14 15 ... 156
2017 SAVI 0.5051 0.4950 0.4787 0.5498 0.5692 ... 0.6650
2017 MSAVI 7 8 13 14 15 ... 156
2017 MSAVI 0.4867 0.4714 0.4752 0.5210 0.5187 ... 0.6087
2024 NDVI 8 9 10 14 15 ... 163
2024 NDVI 0.7268 0.5935 0.6221 0.5230 0.5911 ... 0.6382
2024 SAVI 8 9 10 14 15 ... 163
2024 SAVI 1.0883 0.8889 0.9317 0.7833 0.8852 ... 0.9556
2024 MSAVI 8 9 10 14 15 ... 163
2024 MSAVI 0.8288 0.7337 0.7522 0.6697 0.7245 ... 0.7526

Table 8
Average for A, B, and C vegetation index zones.
A, B, C zone average Year SAVI MSAVI NDVI

A
2011 0.831 0.705 0.554
2017 0.429 0.425 0.287
2024 0.833 0.697 0.556

B
2011 0.685 0.614 0.457
2017 0.347 0.343 0.232
2024 0.557 0.499 0.372

C
2011 0.869 0.714 0.581
2017 0.738 0.624 0.493
2024 0.702 0.586 0.468
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Fig. 9.	 (Color online) Average vegetation index for the revegetation zone.

Fig. 10.	 (Color online) Average vegetation index for each revegetation subzone (A, B, and C).
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	 As a research method for the long-term monitoring of vegetation changes in development 
areas where deforestation progressed severely, monitoring through remote sensing technology is 
being used as an effective method. In a previous study,(14) changes in ancient forest areas such as 
the Sierra Madre were analyzed, identifying issues arising in the restoration areas. Such studies 
are useful for analyzing vegetation change trends based on satellite data and identifying areas 
requiring restoration work.
*Basis of recommendation:
(1)	�Soil stabilization: Quercus acutissima and Pinus densiflora are necessary for stabilizing 

areas where the soil is unstable or erosion is a concern, according to vegetation index (NDVI, 

Fig. 11.	 (Color online) Change trends of regional A, B, and C vegetation indices from 2011, 2017, and 2024.

Table 9
Vegetation type suitable for quarry ecological restoration plan.
Family Genus Species
Fagaceae Quercus Quercus acutissima
Pinaceae Pinus Pinus densiflora
Ulmaceae Celtis Celtis sinensis
Sapindaceae Acer Acer palmatum
Ulmaceae Zelkova Zelkova serrata
Ericaceae Rhododendron Rhododendron schlippenbachii
Poaceae Miscanthus Miscanthus sinensis
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SAVI, and MSAVI) analysis. These species have deep and strong root systems, making them 
effective in stabilizing the soil and preventing erosion.

(2)	�Initial vegetation recovery: Pinus densiflora is suitable for initial vegetation recovery owing 
to their high growth rate. In areas with low vegetation indices, it can be planted first for soil 
protection and initial vegetation restoration. 

(3)	�Climate change response: Zelkova serrata and Celtis sinensis exhibit stable growth even in 
areas where vegetation indices are unstable owing to climate change. They are highly 
adaptable to various environments and are advantageous for long-term restoration in areas 
with significant NDVI and SAVI variabilities due to climate change.

(4)	�Enhancing biodiversity: Acer palmatum is a species that can contribute to enhancing 
biodiversity. In areas with moderate SAVI and MSAVI values, it is suitable for improving the 
landscape and providing habitats for diverse biota, thereby enhancing the resilience of the 
ecosystem.

(5)	�Habitat provision and ecological restoration: Rhododendron schlippenbachii plays an 
important role in providing habitats and restoring ecosystems in areas with low NDVI values. 
Evergreen species maintain greenery throughout the four seasons and enhance the 
biodiversity in areas with low vegetation indices.

(6)	�Soil protection and restoration: Miscanthus sinensis is advantageous for soil protection and 
initial restoration. In areas with low NDVI and SAVI values, it quickly establishes itself, 
stabilizes the soil, maintains biodiversity, and can restore the ecosystem.

(7)	�Adaptation to extreme environment: Lichen spp. are highly adaptable to extreme 
environments, making them suitable as the first step for ecological restoration even in areas 
with low vegetation indices during the initial restoration phase. 

4.	 Conclusions

	 Here, qualitative and quantitative analyses of changes as well as the analysis of vegetation 
indices (NDVI, SAVI, and MSAVI) were conducted on the basis of orthophoto images (2000–
2024) and multispectral images (2011, 2017, and 2024) to monitor changes in the ecosystem 
damaged by quarry development activities.
	 The total area of the quarry and the area of the developed zones showed significant 
deforestation due to continuous development from 2000 to 2011. Additionally, the developed 
area also increased. Since 2011, the developed area has not increased further, and some forest 
restoration has been conducted in the previously developed areas, while the ecological restoration 
of the recently damaged areas has been observed through video analysis. 
	 On the basis of supervised classification, the study area was divided into five classification 
categories by land use, and the kappa coefficient of the target image showed a classification 
accuracy of more than 0.7. After each area was distinguished (A, B, and C) on the basis of the 
presented classification accuracy, the vegetation index was analyzed at the grid unit level.
	 Analyses of the vegetation indices (NDVI, SAVI, and MSAVI) in the study area showed that 
the vegetation index improved after restoration efforts in some regions, although areas (B) 
exhibiting low vegetation indices were still present. In 2011, the vegetation index was the 
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highest, indicating generally good vegetation vitality, whereas in 2017, the vegetation indices 
significantly decreased owing to development activities. During this period, the area of soil in 
poor condition, marked in red, increased, and this phenomenon can potentially lead to soil 
erosion in the surrounding areas. In 2024, the vegetation index recovered owing to ecological 
restoration, although it was still not at the level of that in 2011.
	 By utilizing vegetation indices (NDVI, SAVI, and MSAVI) along with information on the 
adaptability and growth conditions of various plant species, it is possible to select appropriate 
vegetation. In particular, selecting plant species that are sensitive to climate change or soil 
conditions can enhance ecological sustainability and using sensors to monitor ecological changes 
can help us design more accurate and site-specific restoration plans, especially in areas that are 
slowly recovering. 
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