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	 In this study, we quantitatively analyzed healthcare accessibility in Asan, Chungcheongnam-
do, South Korea, by the enhanced two-step floating catchment area (E2SFCA) method. 
Healthcare accessibility significantly affects public health and quality of life. However, 
disparities between urban and rural areas persist. We aimed to evaluate the spatial imbalance in 
healthcare resources within Asan and to identify medically underserved areas in this study. A 
node-based road network analysis was conducted to reflect actual resident mobility patterns. We 
employed the E2SFCA method to compute a healthcare accessibility index and used the Lorenz 
curve and Gini coefficient to assess the degree of inequality in healthcare accessibility. 
Subsequently, a cluster analysis using the Louvain algorithm identified 55 communities with 
similar healthcare accessibility levels. It revealed that urban areas exhibited high healthcare 
accessibility, whereas peripheral areas had low accessibility. Finally, *

iG  Getis-Ord statistics 
were used in a hotspot analysis to identify regions with significantly high and low healthcare 
accessibility levels. The findings suggest that healthcare accessibility is concentrated in urban 
areas, whereas peripheral regions lack adequate healthcare services. Compared with 
conventional grid-based approaches, in this study, we more precisely captured actual movement 
patterns using a road-network-based accessibility analysis. This enabled a more detailed 
assessment of the spatial disparities in healthcare accessibility. These findings can be 
foundational for efficiently allocating healthcare resources and developing public health policies.

1.	 Introduction

	 Globally, healthcare services are acknowledged as a crucial component of basic public 
services.(1,2) Healthcare services treat diseases and enhance the overall quality of life through 
prevention and health promotion. In recent years, the integration of sensor-based data has further 
enhanced the precision of healthcare accessibility analyses by capturing real-time patient 
mobility and service utilization patterns.(3,4)
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	 Thus, it directly impacts individual health, economic productivity, and social stability. In 
particular, during public health crises such as infectious disease outbreaks, issues become more 
severe in areas with limited healthcare accessibility.(5,6) Healthcare services must be equitably 
provided to all members of society as a fundamental component of public safety and social 
welfare.
	 However, in many countries, disparities in healthcare services between urban and rural areas 
remain a critical issue. These disparities are particularly significant among low-income 
populations and are closely linked to economic and social structures.(7) According to the 
Organization for Economic Cooperation and Development, health-related inequalities persist in 
most countries.(8) 
	 During industrialization and urbanization, healthcare resources became concentrated in 
certain areas. This intensified the differences in healthcare accessibility between urban and rural 
regions.(9,10) Additionally, economic inequality affects the access to healthcare services. This 
generates situations where low-income individuals do not receive necessary medical care. 
Notwithstanding the technological advancements that have improved the quality of healthcare 
services, significant disparities in accessibility exist across regions and socioeconomic 
classes.(11) Consequently, the imbalance in healthcare resources has worsened, preventing certain 
regions and groups from fully benefiting from medical services.
	 South Korea has also experienced the concentration and imbalance of healthcare resources 
during its rapid industrialization and urbanization. The income-related disparities in healthcare 
vary significantly by region. For example, in provinces such as Chungcheongnam-do, the 
number of physicians  per 1000 individuals is over three times lower than that in Seoul. 
Additionally, although Seoul has the highest accessibility to general hospitals, the accessibility 
decreases in provincial areas. This further intensifies the regional healthcare inequalities.(12) 
These disparities increase the economic and social costs and adversely impact the overall healthy 
life expectancy as regional disparities increase.(13)

	 In this study, we focused on Asan, Chungcheongnam-do, South Korea. We analyzed the 
healthcare accessibility at each node to identify medically underserved areas within the region. 
Through this analysis, the spatial distribution of healthcare resources and accessibility 
imbalances in Asan were examined. This provides a reference for future public health policy 
planning.
	 The paper is structured as follows. In the literature review section, we examine the 
development of the enhanced two-step floating catchment area (E2SFCA) method and review 
previous studies to highlight the distinctions of this research. In the data section, we describe the 
characteristics of the study area (Asan, Chungcheongnam-do) and explain the sources and 
attributes of the data used in the analysis. In the methods section, we describe in detail the 
healthcare accessibility assessment approach based on the E2SFCA method, clustering of 
healthcare accessibility patterns using the Louvain algorithm, and hotspot analysis method using 
Getis-Ord *

iG  statistics. In the results section, we present the findings on healthcare accessibility 
disparities using the Lorenz curve and Gini coefficient. Additionally, we present the community 
detection results from the Louvain algorithm and the spatial patterns identified through a hotspot 
analysis. In the discussion and conclusions section, we present an interpretation of the results 
and discuss directions for future research.
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2.	 Literature Review

	 The E2SFCA method was developed to improve existing healthcare accessibility assessment 
models. It has been refined by many researchers over the past decades. In early studies, evaluated 
accessibility was evaluated on the basis of simple distance or travel time measurements. For 
example, Hansen defined accessibility as opportunities available at a given location relative to 
other locations and analyzed its impact on land use.(14) However, such methods had limitations in 
fully reflecting the actual healthcare utilization patterns and socioeconomic factors. To address 
these limitations, the gravity model was introduced.
	 The gravity model is used to evaluates accessibility by considering the interactions between 
healthcare resources and populations. It allows for factors beyond simple distance.(15) However, 
the model oversimplifies the effects of distance and time, thereby failing to account for nonlinear 
relationships and various influencing factors. This reduces the precision of healthcare 
accessibility assessments.(16)

	 To overcome these issues and improve the accuracy of healthcare accessibility analysis, 
various alternative models have been proposed. For example, Joseph and Phillips introduced a 
model that incorporates socioeconomic factors such as the economic status of the population, in 
addition to simple distance measurements.(17) This approach better reflects actual disparities in 
healthcare accessibility and was developed to overcome the limitations of conventional distance-
based calculations.(17) These models have provided a critical foundation for analyzing the 
socioeconomic impact of healthcare accessibility. 
	 In the early 2000s, Radke and Mu proposed the two-step floating catchment area (2SFCA) 
method to address the limitations of conventional gravity models and accessibility measurement 
techniques, which was subsequently refined by Luo and Wang for healthcare accessibility 
assessment.(18,19) The 2SFCA method is used to evaluate healthcare accessibility in two steps. In 
the first step, the physician-to-population ratio is calculated within a defined distance around 
each healthcare facility. In the second step, healthcare accessibility is assessed for each 
population location within a specified distance. This method was adopted rapidly in healthcare 
accessibility research owing to its simplicity and convenience of interpretation. However, it has 
limitations in that it applies a uniform weight to distance and travel time. 
	 To address these shortcomings, Luo and Qi proposed the E2SFCA method as an improvement 
over 2SFCA.(20) E2SFCA modifies the original 2SFCA structure by incorporating a distance 
decay function. This enables the accessibility weights to vary based on distance even within a 
catchment area.(21) The method enables a more precise evaluation of healthcare accessibility by 
considering distance- and time-based weighting. This makes it particularly reliable for studies 
on urban healthcare accessibility.(22,23) E2SFCA has also been extended to assess accessibility in 
a multidimensional manner by incorporating additional variables such as socioeconomic factors, 
population density, and service quality.(24–28)

	 In this study, we applied the E2SFCA method to analyze the healthcare accessibility in Asan, 
South Korea, using a road-network-based approach.(20) The E2SFCA method is used to evaluates 
healthcare accessibility by simultaneously considering the distribution of medical resources and 
accessibility for residents. This allows for a more precise analysis using a road network rather 
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than simple distance-based measurements. The approach enables a more accurate understanding 
of the spatial distribution of healthcare resources and the actual disparities in accessibility across 
regions. To interpret the accessibility results, Louvain-algorithm-based clustering and hotspot 
analysis were employed.(29,30) The Louvain algorithm identified the regional patterns in 
healthcare accessibility by clustering areas with similar characteristics. Meanwhile, the hotspot 
analysis visualized the concentration of healthcare services, thereby clearly revealing the spatial 
disparities in accessibility.
	 Through this comprehensive approach, we have provided a more refined and holistic 
evaluation of healthcare accessibility compared with previous research. Thereby, our approach 
has provided effective insights for future studies and policy analysis.

3.	 Study Area and Data

	 We selected Asan, Chungcheongnam-do, South Korea, as the study area (Fig. 1). The total 
area of Asan is 542.8 km2. As of 2021, its population was 351618. Asan is located near the Seoul 
metropolitan area. It has experienced continuous population growth and urbanization as a key 
industrial hub. Additionally, in 2021, its per capita Gross Regional Domestic Product was KRW 
91.1 million, which significantly exceeded the national average of KRW 40.27 million.(31)

	 Notwithstanding this high economic growth, the number of healthcare facilities, pharmacies, 
and general hospitals per 100000 individuals in Asan is below the average for Chungcheongnam-
do. This reveals a relatively low and vulnerable healthcare accessibility. This indicates the need 
for expanding the local healthcare infrastructure to accommodate the ongoing population 
growth and aging. In particular, the nonuniform distribution of medical resources between urban 
centers and peripheral areas can intensify healthcare accessibility issues for the elderly and 
vulnerable populations.
	 Considering these characteristics, Asan serves as a suitable study area for analyzing the 
healthcare accessibility challenges related to aging and vulnerable populations. On the basis of 
this background, Asan was selected as the study area for analyzing medically underserved 
regions.

Fig. 1.	 (Color online) Study area.
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	 The experimental data for this study were obtained using built-in Python programs such as 
OpenStreetMap (OSM) and HealthMap, and the National Spatial Information Platform. We used 
OSM’s detailed road network of Asan and the population grid data and mapping grid data 
provided by the National Spatial Information Platform.
	 We also used Asan  hospital information and hospital specialties information provided by 
HealthMap. A description of the data is provided in Table 1. Additionally, the total number of 
nodes in the road network used for the analysis is 6451, with a total of 16205 links.

4.	 Methods

	 We assessed the healthcare accessibility in Asan, Chungcheongnam-do, South Korea, by the 
E2SFCA method. The Louvain algorithm was then applied to cluster regions with comparable 
levels of healthcare accessibility. This was followed by a hotspot analysis to examine the spatial 
distribution patterns.

4.1	 E2SFCA

	 The E2SFCA method was employed to analyze the healthcare accessibility in Asan, 
Chungcheongnam-do. The E2SFCA method operates in two stages.(20)

Stage 1: The catchment area for a physician location j includes all the regions within a 30 min 
driving distance. Within each catchment, three travel time zones (0–10, 10–20, and 20–30 min) 
are defined. The model identifies all the population locations (k) within a given threshold travel 
time zone (Dr) and calculates the weighted physician-to-population ratio (Rj) within the 
catchment area.
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Here, Sj represents the number of physicians at location j, Pk denotes the population of grid cell k 
located within the catchment area, j (dkj ≤ Dr), dkj represents the travel time between k and j, and 
Dr denotes the rth travel time zone within the catchment area (r = 1–3). Wr represents the 
distance weight for the rth travel time zone. It is calculated using a Gaussian function, which 
accounts for the distance decay effect in physician accessibility.

Table 1
Description of data.
Name Description Data type
Asan Population Grid Reference year, population count csv
Asan Grid (for mapping) Asan 100 × 100 m2 grid geojson

Asan Hospital Information Hospital name, total number of 
physicians, longitude, latitude csv

Asan Hospital Specialties Information Hospital name, specialty name, number 
of specialists per specialty csv
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Stage 2: All the physician locations j within a 30 min travel time from each population location i 
are identified, and the physician-to-population ratio Rj calculated in Stage 1 is aggregated.
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Here, F
iA  represents the healthcare accessibility at location i and Rj denotes the physician-to-

population ratio at physician locations j within the catchment area of population location i. dij 
represents the travel time between i and j. The distance weights derived from the Gaussian 
function used to calculate Rj are applied to different travel time zones. These reflect the distance 
decay.
	 Typically, the E2SFCA method is used to evaluate accessibility on the basis of grid-based 
analysis. However, we assessed the accessibility at the node level within the road network. This 
approach was selected for the following reasons. First, node-based analysis provides a more 
intuitive representation of urban characteristics. Areas with high node density in the road 
network are likely to be urban centers. This allows for a clearer identification of spatial 
accessibility patterns. Second, in grid-based analysis, accessibility values tend to be 
overestimated in areas with negligible or no captured population. This hinders the assessment of 
the relative importance of different regions. In contrast, node-based analysis mitigates this issue 
and provides a more precise spatial representation of accessibility by considering the actual 
network locations of each node.

4.2	 Community detection

	 The Louvain algorithm was used to analyze the spatial patterns of healthcare accessibility by 
clustering regions based on similarity. It operates by maximizing the network modularity. This 
makes it highly effective in detecting naturally occurring communities within a network.(29) In 
this study, healthcare accessibility was evaluated on the basis of road network nodes. Regions 
with similar accessibility levels were clustered into communities.
	 In the first step of the Louvain algorithm, each node is initially considered an independent 
community. Moreover, nodes are reassigned to increase the modularity on the basis of the 
strength of connections with adjacent nodes. This process is repeated until no further increase in 
modularity is observed. In the second step, the previously formed communities are considered as 
single nodes, a new network is constructed, and the first step is reapplied. Through these 
iterative steps, the final community structure is derived. This maximizes the modularity.

4.3	 Hotspot analysis

	 To gain a more detailed understanding of the spatial distribution of healthcare accessibility, a 
hotspot analysis was conducted using Getis-Ord *

iG  statistics.(30) This statistical method 
identifies spatial clustering patterns by evaluating whether a given region’s values are 
significantly higher or lower than those of the surrounding areas. The analysis was based on the 
healthcare accessibility index (Ai) derived from the E2SFCA method.
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	 The analysis procedure was as follows: First, a spatial weight matrix was established to 
account for the spatial proximity between nodes. To assess the similarity of healthcare 
accessibility values among adjacent nodes, the k-nearest neighbors (k = 5) method was applied. 
Next, the Getis-Ord *

iG  statistic was calculated for each node to determine whether its healthcare 
accessibility value was statistically different from those of the neighboring nodes. Only the 
results with p-value < 0.05 were considered statistically significant.

5.	 Results

	 In this study, we focused on analyzing the spatial distribution and clustering characteristics 
of healthcare accessibility in Asan. Specifically, the spatial inequality of healthcare accessibility 
was assessed quantitatively, regions with similar accessibility patterns were clustered, and areas 
with concentrated or insufficient healthcare services were identified.
	 First, the E2SFCA method was applied to calculate the healthcare accessibility values, and 
the Lorenz curve and Gini coefficient were used to evaluate the degree of accessibility 
inequality. Next, the Louvain algorithm was applied to cluster regions with similar healthcare 
accessibility values, and a hotspot analysis was conducted to examine spatial correlations.
	 Unlike conventional grid- or administrative-district-based analyses, we assessed accessibility 
on the basis of road network nodes. This approach is differentiated from previous research by 
reflecting the actual movement patterns of residents. This allows for a more realistic assessment 
of healthcare accessibility.
	 Additionally, in the E2SFCA analysis, weights (1.00, 0.68, and 0.22) were applied to three 
travel time intervals (0–10, 10–20, and 20–30 min). This weighting system accounts for the 
gradual reduction in healthcare accessibility over distance and time. Thus, it effectively models 
real-world healthcare utilization behaviors.
	 Through this methodological distinction, we performed a more precise and reliable 
assessment of healthcare accessibility. Thereby, we provided insights into the spatial 
characteristics of Asan, Chungcheongnam-do, South Korea.

5.1	 Exploratory global inequality

	 We quantitatively evaluated the spatial inequality of healthcare accessibility in Asan using Ai 
values determined by the E2SFCA method. Specifically, the Lorenz curve and Gini coefficient 
were applied to analyze whether healthcare accessibility was concentrated in specific areas. The 
Gini coefficient is a widely used measure of inequality in asset distribution. It is based on the 
concept of cumulative wealth distribution.(32) This coefficient is closely related to the Lorenz 
curve, which graphically represents the cumulative proportion of wealth held by a given 
percentage of the population. For example, in a society with extreme wealth inequality, the 
Lorenz curve initially increases gradually and then increases abruptly when the highest-income 
group is included.
	 Figure 2 shows the Lorenz curve for healthcare accessibility in Asan. Compared with the 
perfect equality line (red), the Lorenz curve (blue) bends downward. This phenomenon is 
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observed when a significant portion of the population resides in areas with low healthcare 
accessibility. Additionally, the Gini coefficient for healthcare accessibility in Asan was 
calculated as 0.1756. The value indicates regional disparities in accessibility.
	 To further analyze this spatial inequality, the Louvain algorithm was used to cluster regions 
with similar healthcare accessibility levels, and a hotspot analysis was performed to examine the 
spatial correlations. 

5.2	 Community detection

	 Community detection techniques were applied to analyze the spatial patterns of healthcare 
accessibility data. This allowed for the clustering of regions. Specifically, the Louvain algorithm 
was used. It maximizes network modularity to effectively cluster regions with similar 
characteristics. This algorithm identified a total of 55 communities, as shown in Fig. 3.
	 The number of nodes per community ranged from 28 to 326, which revealed a considerable 
variation in size. The differences in community size reflect regional characteristics, particularly 
variations in connectivity and accessibility between urban and peripheral areas. The largest 
community (Community 15) contained 326 nodes. This indicated a high connectivity within the 
network. 
	 The average healthcare accessibility across communities ranged from 0.000 to 0.002. This 
highlighted the significant disparities between communities. The communities with the highest 
average accessibility were Community 7 (2.061 × 10−3), Community 24 (2.047 × 10−3), and 
Community 25 (2.007 × 10−3). These are located in urban areas. In contrast, the communities 

Fig. 2.	 (Color online) Lorenz curve of healthcare accessibility in Asan.
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with the lowest average accessibility—Community 30 (4.4 × 10−4), Community 27 (5.38 × 10−4), 
and Community 8 (5.43 × 10−4)—are located in the southwestern peripheral areas. This indicated 
low access to healthcare services in these regions.

5.3	 Hotspot analysis

	 The spatial concentration of healthcare accessibility in Asan was analyzed using the Getis-
Ord *

iG  statistic. This statistic was applied to determine whether a region’s accessibility value 
was statistically significantly higher or lower than that of surrounding areas. Figure 4(a) 
visualizes the results of this analysis using z-scores. Here, statistically significant (i.e., p-value < 
0.05) high-accessibility regions are shown in red, whereas low-accessibility regions are shown in 
blue. The analysis revealed that central areas exhibited high z-scores, thus indicating a relative 
concentration of healthcare accessibility. Additionally, Fig. 4(b) shows the statistical significance 
levels of hotspot and coldspot regions based on p-values. These results indicate that the 
healthcare resources in Asan are concentrated in certain areas, whereas peripheral regions 
confront accessibility challenges.

6.	 Discussion and Conclusions

	 The results of this study clearly indicate spatial disparities in healthcare accessibility in Asan. 
In particular, using road network nodes for accessibility assessment enabled a more precise 
analysis. 
	 In previous E2SFCA-based studies, accessibility was generally assessed using grids or 
administrative units. However, such approaches may include areas where humans do not actually 

Fig. 3.	 (Color online) Asan City community.
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reside (e.g., mountains and rivers). This results in unrealistic assessments. To overcome this 
issue, we modeled the road network as a graph and minimized the errors caused by uninhabited 
areas through noise reduction. As a result, the findings are closely aligned with actual healthcare 
service access routes.
	 The results of the community analysis using the Louvain algorithm reflect significant 
differences in healthcare accessibility between urban and peripheral areas. Urban clusters 
contain more densely connected nodes, whereas clusters in peripheral areas are more dispersed. 
This effectively visualizes the high accessibility in urban areas and low accessibility in 
peripheral areas, thereby providing fundamental data for addressing regional disparities in 
future healthcare policies.
	 The hotspot analysis indicated that the high healthcare accessibility in urban areas is 
attributable to the concentration of medical resources and well-developed transportation 
infrastructure. This indicates that urban areas have more convenient access to hospitals, 
pharmacies, and other essential healthcare services. In contrast, peripheral areas exhibit lower 
accessibility owing to the underdeveloped road networks or limited distribution of medical 
resources. This indicates that the imbalance in healthcare resource distribution between urban 
and peripheral areas directly affects accessibility.
	 Finally, a limitation of this study is that it does not fully account for the edge effect, which is 
a common drawback of the E2SFCA method. The edge effect refers to a distortion or bias in 
accessibility scores, which occurs near the boundaries of the study area. In reality, residents near 
the borders of Asan may utilize medical resources from neighboring regions. However, our 
study data is only within Asan’s administrative boundary because the use and incorporation of 
cross-boundary data is restricted. As a result, future research should consider an expanded 
approach incorporating road networks and medical resource data from adjacent areas when 

Fig. 4.	 (Color online) (a) Hotspot and coldspot analyses (p-value < 0.05) and (b) significance levels using p-values.

(a) (b)
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available. Then, sensitivity analyses should be conducted to estimate the impact of these omitted 
areas.
	 In addition, this study was based on data from a single time point and did not account for 
temporal variations in medical resources and networks. Thus, the analysis may fail to capture 
temporal dynamics in healthcare access, such as seasonal variations in service usage or long-
term trends in spatial equity. To address this, future studies incorporating multitemporal data 
can enable dynamic assessments of healthcare accessibility, thereby providing deeper insights 
through temporal variations.
	 To conclude, we analyzed the healthcare accessibility in Asan, Chungcheongnam-do, by the 
E2SFCA method at the node level of the road network. Utilizing the Gini coefficient (a global 
inequality index), we identified the overall disparities in healthcare accessibility within Asan. 
Community detection and a hotspot analysis further revealed significant differences in 
accessibility between urban and peripheral areas. This verified that medical resources are 
concentrated in urban centers whereas accessibility remains insufficient in peripheral regions.
	 These findings provide a detailed understanding of the healthcare accessibility disparities in 
specific areas of Asan. Additionally, the need for policy interventions to improve the distribution 
of medical resources and accessibility is emphasized. In particular, improving the healthcare 
accessibility in peripheral areas requires additional medical resource allocation and 
infrastructure enhancements. This study has provided an important foundational resource for 
regional healthcare policy planning in Asan. Moreover, the road-network-based accessibility 
assessment method can serve as an effective reference for similar studies and policy decisions.
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