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 In the context of energy transition and sustainable development, wind power forecasting 
technology is crucial for enhancing system dispatch flexibility and economic efficiency and 
maximizing wind energy utilization. While sensor popularity and big data and AI advancements 
have enhanced wind power forecasting accuracy, wind power’s stochastic and intermittent 
nature still challenges forecasting precision. Therefore, in this study, we propose a novel wind 
power forecasting model integrating a deep learning network with directed attention 
mechanisms. The model utilizes data obtained from the five-element meteorological sensor, the 
FT-WQX5 sensor, for initial input. Principal component analysis is employed for data 
preprocessing, the directed focused attention mechanism is introduced to enhance focus on key 
information, and the enhanced dynamic strategy-based pied kingfisher optimizer (EDS-PKO) is 
utilized for parameter optimization. The model integrates long short-term memory networks to 
capture temporal features. Results demonstrate that under normal weather conditions, the 
proposed model achieves root mean square error (RMSE) below 0.8, R-square (R2) above 90%, 
and mean absolute percentage error (MAPE) below 7%. Under adverse conditions, the model 
optimized with the improved EDS-PKO algorithm shows approximately 10% improvement in R2 
and around 20% reduction in RMSE compared with other comparative models, with MAPE as 
low as 4.55%. This research provides a new technological approach for wind power forecasting, 
contributing to efficient wind energy utilization and stable grid operation.

1. Introduction

 In the context of global energy structural transformation and sustainable development 
strategies, wind energy, as a clean and renewable energy form, has become a crucial pathway for 
countries to alleviate energy shortages, reduce greenhouse gas emissions, and promote green 
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and low-carbon economic development.(1) According to the Global Wind Energy Council 
(GWEC)’s Global Wind Report 2024 released on April 25, 2024, the global wind energy industry 
achieved a record-breaking annual installed capacity of 117 GW in 2023, marking a 50% 
increase compared with that in 2022, making it the best year for new wind energy development.(2) 
Wind power prediction based on meteorological sensor data is one of the key technologies for 
efficient wind power integration and grid scheduling, and is of inestimable value in improving 
the flexibility, stability, and economic efficiency of power system operation. With the rapid 
advancement of technologies such as big data, artificial intelligence, and cloud computing, the 
accuracy and efficiency of wind power forecasting have significantly improved. However, owing 
to the inherent randomness and intermittency of wind power itself, wind power forecasting still 
faces numerous challenges.(3) In wind power prediction research, sensors, materials, and 
technology are crucial. Meteorological sensors monitor wind speed, direction, temperature, and 
humidity in real time, providing essential data for prediction models. Sensor accuracy and 
stability directly impact data quality and model performance. For instance, sensors with higher 
precision in measuring wind speed and temperature—characterized by smaller error margins, 
lower noise levels, and enhanced signal-to-noise ratios—provide superior data inputs, enabling 
more accurate wind power predictions.(4) Therefore, constructing an efficient and accurate wind 
energy prediction model based on wind-power-related sensor data is a necessary way to promote 
the effective utilization of clean wind energy resources and realize the sustainable development 
of the power industry.
 Currently, wind power forecasting methods can be classified into three major categories: 
physical methods, statistical methods, and machine learning. Physical modeling based on 
numerical weather prediction (NWP) relies on fundamental theories of wind energy conversion 
and meteorological expertise. It integrates multidimensional information such as wind speed, 
wind direction, temperature, and terrain, applying physical laws and empirical models to predict 
future wind power generation potentials.(5) For instance, Liu et al.(6) enhanced NWP techniques 
by combining rank aggregation and probabilistic fluctuation perception to better identify wind 
variations and improve wind power forecasting accuracy. Salgado et al.(7) established a physical 
model and employed Kalman filtering to predict power generation. However, Lin and Zhang(8) 
argued that physical models are inadequate in handling complex nonlinear relationships and 
have limited adaptability in complex terrain and variable meteorological conditions. 
Additionally, physical methods impose high demands on data quality, constraining their 
applicability in wind power prediction.
 In contrast to physical methods, statistical methods primarily rely on historical data to predict 
relationships between meteorological data and wind power data, including autoregressive (AR), 
AR moving average (ARMA), and AR integrated moving average (ARIMA).(9) However, Aasim 
et al.(10) found ARIMA to be less accurate in predicting high-frequency subsequences. To 
enhance ARIMA’s fitting capability, Kavasseri and Seetharaman(11) proposed a fractional 
ARIMA model by introducing differential parameters to improve upon traditional ARIMA 
models. Nevertheless, Yu et al.(12) contend that statistical models are based on the assumption of 
linear relationships between meteorological and wind power data, limiting their ability to handle 
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complex nonlinear relationships and thereby failing to accurately predict highly nonlinear and 
dynamically complex wind power generation data.
 Machine learning methods enhance prediction performance by uncovering implicit patterns 
and trends in historical data, making it suitable for handling complex nonlinear time series, 
widely applied in short-term wind power forecasting.(13) Common machine learning methods 
include random forest (RF), support vector machine (SVM), and extreme learning machine 
(ELM).(14) By leveraging powerful nonlinear modeling capabilities, machine learning achieves 
more accurate predictions than physical and statistical methods when dealing with nonlinear 
data.(15) For instance, Ji et al.(16) proposed an SVM-based wind power prediction model 
integrating chaos analysis theory and phase space reconstruction principles to capture complex 
mappings between multiple input variables and wind power generation. Similarly, Rayi et al.(17) 
introduced a hybrid kernel ELM autoencoder model combining variational mode decomposition 
and deep learning for high-precision short-term and multistep wind power prediction, optimizing 
model parameters using a novel sine-cosine wavelet cycle algorithm. Despite surpassing 
traditional statistical methods in handling nonlinear problems, machine learning models 
encounter challenges such as sensitivity to noise in data, which can lead to inaccurate feature 
predictions.(18) Additionally, Fu et al.(19) argued that the stochastic nature of parameter 
configurations in machine learning models not only affects their data fitness but also diminishes 
their generalization ability, ultimately impacting overall prediction performance.
 In contrast to machine learning methods, deep learning excels at extracting crucial feature 
information from complex nonlinear time series and has garnered significant attention in wind 
power forecasting.(20) Common deep learning models include recurrent neural networks (RNNs) 
and convolutional neural networks (CNNs). While RNNs have been extensively applied in short-
term wind power prediction research and practice, they suffer from gradient explosion issues. 
Consequently, long short-term memory (LSTM) networks and gated recurrent units (GRUs) 
have been proposed.(21) For example, Liu et al.(22) constructed a bidirectional feature fusion 
network within LSTM to effectively extract global and local features from time series data. 
CNNs, adept at capturing and processing locally correlated features, were employed by Wang et 
al.(23) with an enhanced model to predict short-term wind power generation, achieving notable 
results. To enhance performance in handling complex sequences, Guo et al.(24) introduced 
bidirectional LSTM (BiLSTM) capable of capturing forward dependences and understanding 
contextual information in both directions. However, BiLSTM neglects the challenge of capturing 
long-term dependences in time series, thus failing to accurately predict long-time-scale 
sequences. To exploit more representative feature information from data, Xiong et al.(25) 
combined CNN and LSTM with attention mechanisms. Nevertheless, while attention 
mechanisms focus the model on crucial information, they may inadvertently emphasize incorrect 
details if input data features are insufficient or ambiguous, thereby neglecting key information 
and leading to decreased prediction performance. In summary, wind power data in practical 
applications often exhibit high uncertainty, seasonal variations, and random fluctuations. 
Enhancing model generalization capabilities to ensure stable prediction performance under 
diverse environmental conditions remains a pressing challenge in wind power forecasting 
research.
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 Previous research has made significant advances in the field of wind power forecasting. 
However, it still faces several challenges. First, although most wind power forecasting models 
have made progress in handling nonlinear data, their accuracy in predicting highly nonlinear 
and dynamically changing wind power data is still affected. Second, traditional methods with 
stochastic model parameters not only affect their adaptability to different datasets but also 
weaken the model’s generalization ability, posing a serious obstacle to the stability of the model 
in practical applications. Lastly, while attention mechanisms can explore more representative 
features in the data, they may overlook key information when faced with highly uncertain, 
strongly seasonal, and randomly fluctuating wind power data, potentially degrading the model’s 
performance when incorporating attention mechanisms.
 To address these challenges, we proposed a directed focus attention-enhanced deep learning 
network aimed at improving prediction accuracy, reducing forecasting errors, and providing 
more reliable data support for grid dispatch. The main contributions and innovations are as 
follows.
(1)  Constructed a composite model integrating evolutionary algorithms, a directed focus 

attention mechanism (DFAT), and deep learning to extract key features from highly nonlinear 
time-series data of wind power captured by the FT-WQX5 sensor.

(2)  Proposed the enhanced dynamic strategy-based pied kingfisher optimizer (EDS-PKO), 
integrating dynamic parameter regulation mechanisms and two-stage search modes.

(3)  Innovatively built a dynamic focus mechanism within the attention mechanism (DFAT), 
introducing the DFAT. By altering attention scores of different elements through directed 
focus gate units, it ensures focusing on the key information in various environments.

 The rest of this paper is organized as follows. In Sect. 2, we elaborate on the principles of 
principal component analysis (PCA). In Sect. 3, we discuss the basic principles of the EDS-PKO-
DFAT-LSTM model. In Sect. 4, we elucidate the short-term wind power forecasting process 
based on the EDS-PKO-DFAT-LSTM model. In Sect. 5, we demonstrate the superiority and 
effectiveness of the proposed model and algorithms through case studies. In Sect. 6, we 
summarize the main findings and contributions and discuss its limitations.

2. Data Preprocessing

 The raw meteorological data for wind power generation typically includes multiple variables 
collected by meteorological sensors, such as wind speed, wind direction, temperature, and 
humidity. The accuracy and stability of these sensors directly affect the data quality, which in 
turn impacts the performance of prediction models. The FT-WQX5 sensor is employed to 
measure the data required for wind power prediction. Moreover, data preprocessing is equally 
crucial to ensure that the model learns from high-quality data. Data dimensionality reduction is 
commonly employed to address this issue. This approach not only effectively resolves 
redundancy among multiple variables but also significantly reduces the time and resources 
required for data processing and model training. It also avoids interference from irrelevant or 
weakly correlated features on the model’s predictive performance, ensuring that the model 
focuses on the most critical variables, thereby enhancing prediction accuracy and stability.
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 Currently, in the field of data dimensionality reduction, various techniques are widely 
applied, including PCA, linear discriminant analysis, factor analysis, local linear embedding, 
and nonnegative matrix factorization. Unlike typical data dimensionality reduction methods, 
PCA can generate highly interpretable new features—principal components—as linear 
combinations of the original variables, preserving the primary trends in the data. Furthermore, 
by selecting principal components that maximize variance, PCA effectively highlights the main 
structure of the data while suppressing noise interference and improving model robustness. 
Additionally, PCA’s computational process is efficient and mature and is suitable for large-scale 
data processing. We employed PCA to reduce meteorological data dimensionality. The principle 
of PCA is as follows.
 Assuming there is a dataset X with n samples and m features.
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where X ∈ Rn×m, the original variable indices are x1, x2, …, xm, the transformed new variable 
indices are d1, d2, …, dt (t ≤ m), and pnm represents the dataset of samples. 
 The new variables are typically expressed as linear combinations of the original variables:
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where the new variable index di is called the principal component of the original variable indices 
x1,x2,…, and xm and dij are the coefficients of the original indexed variable xj ( j = 1, 2, …, m) on 
principal component di (i = 1, 2, ..., n). The specific steps of PCA are described as follows.
Step 1: Calculate the correlation matrix R = (rjk)p×p.
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 Assume there is a dataset that forms a matrix of j rows and k columns, where jx  represents 
the average of the j row samples, kx  represents the average of the k column samples and rjk is the 
correlation coefficient between the original variables xj and xk. 
Step 2: Solve the characteristic equation |R − λE| = 0 (where E is the identity matrix) to obtain 
the initial values and arrange them in descending order as λ1 ≥ λ2 ≥ … ≥ λp ≥ 0.
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Step 3: Calculate the eigenvector ie


 corresponding to the eigenvalue λi:
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 In PCA, the selection of principal components is based on the contribution rate ACR:
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where the value of m (m ≤ p) corresponding to ACR ≥ 80% is recognized as the number of 
principal components.
 PCA reduces data dimensionality while retaining maximum information, enhancing the 
efficiency and accuracy of predictive models, and improving the sensitivity and generalization 
ability of the model to key variables. The static information of the wind farm and the 
preprocessing process of the wind power data set based on PCA are shown in Fig. 1.

3. Formulation of Short-term Wind Power Forecasting Model Based on EDS-
PKO-LSTM-DFAT

3.1 LSTM neural network

 The LSTM neural network is an improved type of RNN that efficiently handles time series 
data. Compared with traditional RNNs, LSTM introduces the concepts of forget gate, input gate, 
output gate, and cell state based on “LSTM”. It continuously updates the “long-term memory”, 
that is, the cell state Ct, through the forget gate and input gate. The output gate integrates 
information from the current time step and the “short-term memory” from the previous time 
step, that is, the hidden state ht−1, to compute the current time step’s LSTM network output ht. 
The framework structure of LSTM is shown in Fig. 2.
 As shown in Fig. 2, the special structure of LSTM addresses the long-term dependence issue 
of RNN networks, overcomes the gradient explosion problem in RNNs, and enhances its 
performance in handling longer time series data. It has been widely applied by many scholars in 
various fields such as language modeling and text generation, financial investment analysis, and 
time series forecasting. The principles of LSTM are as follows:

 1( )t f t f t fF sigmoid A x B h b−= + + , (7)
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Fig. 1. (Color online) Static information of wind farm and preprocessing process of wind power data set based on 
PCA.

Fig. 2. (Color online) Framework structure of LSTM.
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 1( )t i t i t iI sigmoid A x B h b−= + + , (8)

 1 1tanh( )t t t t c t c t cC F C I A x B h b− −= × + × + + , (9)

 1( )t o t o t oO sigmoid A x B h b−= + + , (10)

 tanh( )t t th O C= , (11)

where Ft, It, and Ot represent the forget gate, input gate, and output gate, respectively; xt denotes 
the input data of LSTM at time t; ht−1 represents the hidden state at time t − 1; Af, Bf, Ai, Bi, Ac, 
Bc, Ao, and Bo are the weight parameters for the corresponding memory state gates; bi, bc, and b0 
are the biases for the corresponding memory state gates; and sigmoid and tanh are activation 
functions.

3.2 DFAT

 As an innovative technique in the field of deep learning, the attention mechanism draws 
inspiration from the dynamic focusing ability of the human brain when processing information. 
It selectively allocates more attention resources to the most crucial parts amidst complex and 
diverse data inputs. This mechanism has a wide range of applications in deep learning models, 
spanning across various domains such as natural language processing, computer vision, and 
time series analysis, showcasing its remarkable effectiveness in information filtering and feature 
emphasis. Particularly in tasks involving the analysis of time series data such as wind power 
prediction, the combination of LSTM and attention mechanism plays a crucial role. LSTM 
excels at capturing long-term dependences in sequential data. However, when faced with 
varying levels of information importance across consecutive time steps, relying solely on LSTM 
may not efficiently utilize all the data points. In such cases, introducing the attention mechanism 
becomes an important means of optimizing prediction performance.
 Specifically, applying the attention mechanism to the output sequence of the LSTM model 
means that the model can actively “weight” the hidden states at each time step on the basis of 
specific attention scores, distinguishing which data points are more critical for predicting future 
wind power. This dynamic weighting strategy allows the model to flexibly adjust the emphasis 
on different historical moments. Time points that are considered more influential for the 
prediction target are assigned higher weights, amplifying their significance during the 
information integration process. By adding the attention mechanism, the LSTM model can 
predict the future wind power value more accurately, which lays a foundation for the subsequent 
scheduling. This not only enhances the model’s sensitivity to dynamically changing 
meteorological information but also enables the model to accurately grasp the core factors 
driving wind power variations, ultimately leading to a significant improvement in prediction 
accuracy.
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 The attention mechanism calculates the similarity between the query vector and each element 
of the input vector, and obtains the attention weights for different elements through 
normalization. The specific calculation formula is

 T
i iS h Q= , (12)
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where hi represents the ith element of the LSTM network output vector; Q represents the query 
vector; Wi is the attention weight of the ith element; W is the attention weight vector; H is the 
LSTM output vector; and Y is the output vector of the attention layer.
 Although traditional attention mechanisms have shown excellent performance in many 
scenarios, especially when dealing with highly similar information, effectively filtering out 
irrelevant distractions and focusing on key features to enhance model prediction performance, 
their fixed-weight allocation strategy reveals limitations when facing drastic environmental 
changes. This limitation is particularly evident in applications, such as wind power prediction, 
that highly depend on environmental factors, where slight fluctuations and extreme variations 
have distinct impacts on the prediction results. For example, in a relatively stable wind field 
environment, traditional attention mechanisms tend to emphasize the processing of highly 
similar data features, which helps filter out occasional noise interference and ensure prediction 
stability. However, when encountering extreme conditions such as severe weather, the significant 
fluctuations in environmental factors carry a wealth of potential information about wind power 
variations. In such cases, continuing to rely on the existing mechanism and overemphasizing 
similarity matching may lead to missing these exceptional data points that contain crucial 
information, resulting in inaccurate predictions.
 To address this challenge, we innovatively incorporate the concept of dynamic focusing into 
the attention mechanism framework and design a novel DFAT. The core of this mechanism lies 
in its ability to determine the volatility of the current environment on the basis of the variance of 
similarity scores of input data. Variance, as a statistical measure of data dispersion, can 
sensitively reflect the diversity and intensity of information fluctuations. When the variance 
exceeds a predefined threshold, it indicates that the environment has entered a highly dynamic 
phase, such as encountering severe weather. Based on this, the directed focusing gate control 
unit plays a crucial role by dynamically adjusting the attention weights of each data element 
according to the judgment result. During periods of environmental calmness, the original 
weighting strategy is maintained to ensure prediction robustness. However, during periods of 
environmental turbulence, the weight distribution is actively adjusted to give higher attention to 
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abrupt changes and high-variance-indicated abnormal data, thereby capturing the crucial 
information changes for wind power prediction under extreme conditions.
 Through this dynamic adjustment strategy, the directed focusing attention mechanism not 
only overcomes the limitations of traditional attention mechanisms in adapting to complex 
environments but also considerably enhances the model’s sensitivity to key information. 
Whether under calm or severe weather conditions, it ensures that the model focuses on the most 
relevant input features, effectively improving the accuracy and reliability of wind power 
prediction. This provides advanced technical support for addressing the ever-changing 
challenges in practical wind energy management.
 The mathematical model of the directed focus gate control unit is

 ( (1 ) ) var ( )ifi i i i i cirD sigmoid A W b W T= − + > , (15)

where Di represents the updated directed focusing attention weight; Ai and bi are the weight 
parameters and biases of the directed focusing gate, respectively; and Tcir is the threshold for 
determining severe weather conditions, which is determined on the basis of historical wind 
power generation data (when the variance of attention scores exceeds this threshold, it is 
considered as severe weather). The structure of LSTM-DFAT is presented in Fig. 3.

Fig. 3. (Color online) Structure of LSTM-DFAT.
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 The DFAT enhances the model’s prediction performance in complex and changing 
environments through its dynamic adjustment characteristics. It not only improves the accuracy 
and reliability of predictions but also enhances the flexibility and practicality of the model. This 
provides a more advanced and reliable tool for wind power energy management and scheduling.

3.3	 Kingfisher	class	optimization	algorithm

 The pied kingfisher optimizer (PKO) is an emerging bio-inspired optimization algorithm 
inspired by the hunting behavior of the pied kingfisher. The algorithm consists of three main 
stages: perching/hovering, diving hunting, and symbiosis. By simulating the foraging strategies 
of the pied kingfisher in nature, the PKO algorithm demonstrates excellent performance in 
solving complex optimization problems. The following are the basic strategies and steps of the 
PKO algorithm.

3.3.1 Perching/hovering stage

 In this stage, the pied kingfisher observes its prey by perching and hovering above the water 
surface. In the algorithm, the initial population is randomly generated and distributed in the 
search space. The main objective of this stage is to explore the search space and increase the 
diversity of the population to ensure the possibility of finding the global optimum solution.

 ( ) ( ) ( ) ( )( ) ( )1 * , 2* 1,dimi i j iX t X t T X t X t randnα α+ = + × − ∈  (16)

Here, N is the total population size; i and j are natural numbers between 1 and N that are not 
equal to each other; randn is a random number that follows a normal distribution; and Dim 
represents the dimension of the problem under consideration.
 The calculation of the T parameter in the perching strategy is as follows:

 ( ) ( )
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 2* *Crest pi rand= , (18)

where Max_iter is the maximum number of iterations; and rand is a random value between 0 
and 1.
 The calculation of the parameter T in the hovering strategy is as follows:
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where PKO_Fitness represents the fitness value of the pied kingfisher, and BF (BF=8) is the 
bouncing factor.

3.3.2 Diving hunting stage

 When the prey is detected, the pied kingfisher quickly dives to hunt. In the PKO algorithm, 
this stage corresponds to the deep exploitation of potential good solutions. By adjusting the 
individuals’ positions, they are brought closer to the optimal solution. The specific steps are as 
follows.
(1)  Select excellent individuals: On the basis of their fitness values, select a subset of excellent 

individuals as diving targets.
(2)  Update positions: using the chosen diving strategy, update the individuals’ positions to make 

them closer to the local optimum. Common methods include linear weighting strategies or 
nonlinear adjustment strategies to ensure the convergence of the algorithm. For each 
individual, the position update formula is

 ( ) ( )1 0,1t t t t
i i best iX X r X X s randn+ = + ⋅ − + ⋅ , (21)

where t
bestX  is the best position in the current population; r and s are control parameters; and 

randn(0, 1) is a random number that follows a normal distribution with a mean of 0 and a 
standard deviation of 1.

3.4 EDS-PKO

 Owing to the inherent structure of the algorithm, the original PKO algorithm is prone to 
falling into local optima and faces challenges in balancing global exploration with local 
exploitation. To address this, we introduced an enhanced dynamic strategy, including dynamic 
parameter adjustments, the flight factor, and the two-stage update strategy.
(1) Dynamic Adjustment of Beating Factor (BF) and Flight factor
 In nature, pied kingfishers adjust their hunting strategies on the basis of different 
environments and prey. In PKO, by dynamically adjusting the BF to gradually decrease with the 
number of iterations, it enhances exploratory capabilities in the early stages and exploitation 
capabilities in the later stages.

 8 1
_
tBF

Max iter
 

= ⋅ − 
 

 (22)
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 BF is kept at a high value in the early stages to promote extensive exploration of the search 
space, gradually decreasing as the iterations progress to focus the algorithm on local search.
 When pied kingfishers hunt while flying, they adjust their flight trajectory by changing their 
speed and direction. To simulate this process, a flight factor (w) is introduced, and a dynamic 
adjustment strategy is adopted to ensure that the algorithm has strong global exploration 
capabilities in the early stages and stronger local exploitation capabilities in the later stages.

 0.9 0.5
_
tw

Max iter
  

= − ⋅  
  

 (23)

(2) Two-stage Update Strategy
 When pied kingfishers hunt, they first engage in extensive exploration to locate prey and then 
focus their efforts on hunting. To enhance the stability and diversity of the algorithm, we 
introduced a two-stage update strategy, employing different update methods for the exploration 
and exploitation stages.
 During the exploration stage, individuals primarily conduct extensive searches to discover 
more potential optimal solutions:
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 In the exploitation phase, individuals mainly conduct local searches to refine the accuracy of 
the current solution:
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4. EDS-PKO-LSTM-DFAT-based Short Wind Power Forecasting Process

 The process of short-term wind power forecasting based on the EDS-PKO-LSTM-DFAT 
model is as follows.
(1)  The required measurement information for prediction was obtained using the FT-WQX5 

sensor. Subsequently, to extract key feature information from the wind power time series, the 
dimensionality of the original meteorological data was reduced through the application of 
PCA in the data dimensionality reduction process.

(2)  In the model parameter initialization stage, the EDS-PKO-LSTM-DFAT model’s parameters, 
including those of the EDS-PKO algorithm and LSTM-DFAT model, are initialized and 
shown in Table 1.

(3)  Define the fitness function. The degree of fit R2 between the actual and predicted wind 
power values is used as the fitness function for the EDS-PKO algorithm.

(4)  Optimize model hyperparameters by splitting data into training (first 8 days) and test (ninth 
day) sets. Use the EDS-PKO algorithm to find the best hyperparameter configuration for the 
LSTM-DFAT model through training and analysis.

(5)  The LSTM-DFAT model, configured with optimal hyperparameters, predicts short-term 
wind power on the test set to obtain the results.

 The process of short-term wind power forecasting based on the EDS-PKO-LSTM-DFAT 
model is illustrated in Fig. 4.

5. Case Analysis

 To comprehensively validate the performance of this model under different weather 
conditions, especially in adverse weather, we utilized detailed meteorological and wind power 
generation data from a province in China. Three cases were presented to demonstrate the 
effectiveness of the model constructed. Since the original dataset did not include explicit weather 
labels, a classic algorithm in the unsupervised learning domain, K-means clustering, was 
employed to cluster the meteorological data, and feature analysis was conducted to distinguish 
between sunny, cloudy, rainy, and adverse weather conditions. The processing results are shown 
in Fig. 5.
 In Case 1, the effectiveness of the EDS-PKO algorithm was validated on the basis of 
benchmark test functions, and the convergence performance of the algorithm was evaluated 

Table 1
Parameter settings.
Parameters Values

LSTM-DFAT

Input dimension 2
Output dimension 1
Predicted quantity of samples 96
Mini batch size 12

EDS-PKO Optimizer Adam
Loss function R2
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Fig. 4. (Color online) Process of short-term wind power forecasting using the EDS-PKO-LSTM-DFAT model.

Fig. 5. (Color online) Weather resolution results.
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using evaluation metrics. In Case 2, traditional prediction models such as CNN, RNN, LSTM, 
and LSTM-Attention were used for comparison. The time correlation method was employed for 
prediction, where data from the past nine days were used as the training set to predict the wind 
power on the following day under sunny, cloudy, and rainy weather scenarios. In Case 3, the 
meteorological correlation method was used to predict data under adverse weather conditions for 
comparison. Owing to the weak temporal correlation of wind power data under adverse weather, 
using the wind power data from the adverse weather conditions closest to the current time as the 
training set yielded better results.

5.1 Case 1: Numerical validation and statistical analysis

 In existing studies, benchmark test functions are commonly used for the numerical validation 
of algorithms. Common single-modal and multimodal test functions are typically employed to 
assess the algorithm’s global search performance and its ability to escape local optima. 
Therefore, we selected multimodal and single-modal test functions to validate the EDS-PKO 
algorithm’s performance in solving different modal problems. Specific information on the 
selected benchmark test functions is provided in Table 2.
 Three widely recognized intelligent optimization methods, namely, the cuckoo search 
algorithm (CS), grey wolf optimizer (GWO), and particle swarm optimization (PSO), were 

Table 2
Benchmark function.
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selected as comparative algorithms. The parameter settings for each algorithm are detailed in 
Table 3.
 In Table 3, Max_iter refers to the maximum number of iterations for the population, Pop 
represents the population size, Pa denotes the probability of target discovery in the CS algorithm, 
BF represents the jump factor in the PSO algorithm, and P represents the initial value of the 
inertia weight in the EDS-PKO algorithm.
 To ensure the accuracy of algorithm performance evaluation, we conducted 30 independent 
runs of the selected test functions, recording the average value (Avg) and standard deviation 
(Std) of the experimental results. The numerical verification results of each algorithm are listed 
in Table 4.
 Table 4 shows that, compared with other algorithms, the convergence results of the EDS-PKO 
algorithm were the most competitive, whether for single-modal or multimodal test functions. 
With the exception of the standard deviation of test function F1 and the average value of F5, the 
EDS-PKO algorithm converged to the theoretical optimum of 0, demonstrating excellent 
convergence performance. 

5.2	 Case	2:	Comparison	of	different	prediction	models	in	normal	weather

 In Case 2, the wind power prediction under normal weather conditions (sunny, cloudy, rainy) 
was conducted. CNN, RNN, LSTM, and LSTM-Attention were selected as comparative models 
to evaluate the superiority of the EDS-PKO-LSTM-DFAT model in handling conventional 
meteorological situations. All models used the same historical data length, utilizing wind power 
generation data from the past nine days as input features to predict the wind power output for the 
next day. The specific implementation steps are as follows.

Table 4
Numerical test results.

F CS GWO PSO EDS-PKO
Avg Std Avg Std Avg Std Avg Std

F1 2.41 × 10−3 1.26 × 10−3 6.39 × 10−59 1.34 × 10−58 4.46 × 10−5 5.41 × 10−5 0 3.03 × 10−72

F2 0.33 0.21 9.91 × 10−35 1.39 × 10−34 8.25 × 10−4 1.16 × 10−3 0 0
F3 294.36 1.7 1.26 × 10−15 2.76 × 10−15 1.24 × 103 2.01 × 103 0 0
F4 75.59 10.37 1.44 4.72 49.81 16.80 0 0
F5 2.54 1.47 1.61 × 10−14 4.13 × 10−15 5.84 × 10−2 0.27 5.66 × 10−16 0
F6 6.54 × 10−2 4.41 × 10−2 3.83 × 10−4 2.10 × 10−3 1.85 × 10−2 1.93 × 10−2 0 0

Table 3
Parameter settings.
Algorithm Parameters
CS Max_iter = 500; Pop = 30; Pa = 0.25
GWO Max_iter = 500; Pop = 30
PSO Max_iter = 500; Pop = 30; ω = 0.9
EDS-PKO Max_iter = 500; Pop = 30; P = 0.9
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 First, each model was trained and tested to ensure that the training and testing sets were 
divided on the basis of time series to avoid issues related to future information leakage.
 Second, root mean square error (RMSE), R-square (R2), and mean absolute percentage error 
(MAPE) were selected as key metrics, to comprehensively assess the model’s prediction 
accuracy.

 21 ( )
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i i
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= −∑  (29)
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Here, qi is the actual value of wind power, wi is the predicted value of wind power, and iq  is the 
average value of actual wind power. The parameter settings for each prediction model are shown 
in Table 5.

Table 5
Parameters of each prediction model.
Prediction model Parameters Value

CNN
Max Epochs 500

Initial Learn Rate 0.005
Mini Batch Size 12

RNN

Max Epochs 500
Initial Learn Rate 0.005
Mini Batch Size 12

Number of RNN layers 2

LSTM

Max Epochs 500
Initial Learn Rate 0.005
Mini Batch Size 12

Number of LSTM layers 2

LSTM-Attention

Max Epochs 500
Initial Learn Rate 0.005
Mini Batch Size 12

Number of LSTM layers 1
Number of Attention layers 1

LSTM-DFAT

Max Epochs 500
Initial Learn Rate 0.005
Mini Batch Size 12

Number of LSTM layers 1
Number of PEAN layers 1
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 For Case 2, the wind power prediction results of each model under three normal weather 
conditions are shown in Fig. 6.
 Figures 6(a)–6(c) depict the prediction results of each model under different weather 
conditions. Compared with other models, the DFAT-LSTM model’s prediction curve aligned 
most closely with the actual wind power curve under various weather conditions. Figures 6(b), 
6(d), and 6(f) show the mean squared error box plot of the prediction results for each model. In 

Fig. 6. (Color online) Wind power prediction results for Case 2.
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Fig. 6(b), it can be observed that the DFAT-LSTM model did not have significant outlier values 
in terms of errors. Although the overall mean and variance of prediction errors were relatively 
large, the prediction performance was still superior to those of other models. Regarding Fig. 6(f), 
it is evident that while the LSTM-DFAT model had some outliers, these outliers did not differ 
significantly from the prediction errors of other models under normal circumstances. 
Additionally, when benchmarked against other traditional models presented in Fig. (6), the 
LSTM-DFAT model demonstrated notably smaller mean and variance of prediction errors, 
reflecting its superior prediction performance in this comparative analysis. The LSTM-DFAT 
model demonstrated broad applicability for wind power under different weather conditions. The 
summary of prediction error results for each model in Case 2 is presented in Table 6.
 Analyzing the data in Table 6 revealed that the LSTM-DFAT model demonstrated higher 
prediction accuracy across various weather conditions than did traditional models. LSTM-DFAT 
exhibited outstanding adaptability under the three normal weather conditions, with performance 
metrics for all predictions surpassing those of traditional models, except for a slightly lower R2 
value under sunny conditions than that of the LSTM-Attention model. Particularly noteworthy 
was that the RMSE was consistently below 0.8, R2 was above 90%, and MAPE was below 7, far 
superior to those of the RNN, LSTM, and CNN models. These results indicated the LSTM-
DFAT model’s highly precise capability in predicting wind power.
 The results for Case 2 strongly demonstrated the effectiveness and advantages of the LSTM-
DFAT model in predicting wind power under normal weather conditions, especially in enhancing 
prediction accuracy and generalization ability. This provides more reliable decision support for 
grid dispatch and energy management.

Table 6
Prediction indicators of different models.
Weather 
Condition Prediction Models Assessment criteria

R2 (%) MAE MAPE (%)

Clear

RNN 0.39 1.02 11.34
LSTM 0.68 0.72 6.63
CNN 0.40 1.00 11.78

LSTM-Attention 95.32 0.26 3.02
LSTM-DFAT 96.48 0.23 2.45

Cloudy

RNN 7.92 1.73 12.92
LSTM 9.33 1.64 12.60
CNN 78.93 1.63 13.09

LSTM-Attention 89.43 0.87 7.21
LSTM-DFAT 91.37 0.73 6.55

Rain

RNN 5.57 1.03 14.73
LSTM 1.61 1.01 14.16
CNN 3.02 0.89 11.93

LSTM-Attention 91.92 0.37 5.25
LSTM-DFAT 92.24 0.27 3.60
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5.3	 Case	3:	Comparison	of	different	prediction	models	in	severe	weather

 In adverse weather conditions, the randomness and volatility of wind power generation are 
more pronounced, making it beneficial to introduce evolutionary algorithm search to optimize 
the prediction model’s generalization. To further validate the predictive performance of the 
proposed model under adverse weather conditions and demonstrate the enhanced search 
capability of the improved EDS-PKO algorithm. We benchmarked the LSTM-DFAT model’s 
predictive performance by subjecting it to hyperparameter optimization via multiple traditional 
evolutionary algorithms, then rigorously comparing the resultant configurations’ forecasting 
capabilities in Case 3. Table 7 presents the parameter settings of each algorithm.
 The wind power prediction results for Case 3 are presented in Fig. 7. In Fig. 7(a), it is evident 
that under the optimal hyperparameters found by EDS search, the LSTM-DFAT model’s 
prediction closely aligned with the actual wind power curve, demonstrating the precision and 
effectiveness of the EDS-PKO-LSTM-DFAT model in predicting wind power under adverse 
weather conditions. The correlations in Fig. 7(b) showed that the scatter plot of the EDS-PKO-
LSTM-DFAT model was closest to the 1:1 line, indicating the model’s superior correlation 
between predicted and actual values. Figure 7(c) shows a normalized radar chart of prediction 
evaluation metrics for each evolutionary algorithm. From this radar chart, it is visually apparent 
that under the EDS-PKO algorithm search, the LSTM-DFAT model had the highest R2 value, 
indicating the optimal correlation between predicted and actual values, while the RMSE and 
MAPE metrics were relatively minimal, signifying the smallest prediction errors for the EDS-
PKO-LSTM-DFAT model. Table 8 provides the evaluation metrics for Case 3.
 Table 8 shows that compared with other models, the proposed EDS-PKO-LSTM-DFAT 
prediction model excels in all metrics. Specifically, compared with the three baseline models, 
the R2 metric showed respective improvements of 16.04, 18.59, and 6.96%, while the RMSE 
metric exhibited respective increases of 42.59, 46.55, and 16.21% for each comparison. The 
MAPE metric for the EDS-PKO-LSTM-DFAT model under adverse weather conditions reached 
4.55%, indicating minimal prediction errors when forecasting under adverse weather conditions 

Table 7
Search parameter settings of different algorithms for Case 3.
Algorithm Parameters Value

PSO
Max_iter 20

Pop 20
ω 0.9

WOA
Max_iter 20

Pop 20
e 1

GWO Max_iter 20
Pop 20

EDS-PKO
Max_iter 20

Pop 20
Period Threshold 0.8
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and the model’s ability to extract key information for wind power prediction under adverse 
weather conditions.
 To verify the effectiveness of the proposed model in midterm forecasting, data from the wind 
farm between February and April 2018 were utilized to compare its performance with that of the 
model proposed in the literature, LSTM-Attention, and Informer. With a minimum interval of 
one day, the datasets from February and March were employed as the training set to predict the 
wind power in April. The prediction results are presented in Table 9.

Fig. 7. (Color online) Wind power prediction for Case 3.

Table 8
Prediction indicators of different models for Case 3.

Models Assessment criteria
RMSE R2 (%) MAPE (%)

PSO-based model 0.54 78.70 8.34
WOA-based model 0.58 77.01 8.96
GWO-based model 0.37 84.37 5.91
EDS-based model 0.31 91.33 4.55
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 Table 9 demonstrates that the proposed model also exhibits high accuracy in midterm 
forecasting. Compared with the Informer model, its RMSE and MAPE metrics decreased by 0.07 
and 2.05, respectively. In contrast to the model’s performance in short-term forecasting, the 
LSTM-DFAT model does not show a significant decrease in midterm forecasting metrics, 
indicating that LSTM-DFAT has excellent performance in both short-term and midterm 
forecasting.

6. Conclusions

 Accurate wind power prediction contributes to improving grid stability and increasing wind 
power penetration. However, the inherent randomness and intermittency of wind power pose 
challenges to prediction accuracy. Therefore, in this study, we proposed a wind power prediction 
model that combines deep learning networks with directed attention mechanisms. The model 
initially preprocesses data by employing PCA to handle high-dimensional meteorological data, 
specifically temperature, humidity, wind speed, and wind direction, collected by FT-WQX5 
sensors. Subsequently, a DFAT is utilized to enhance the identification of key information, and 
the integrated LSTM networks capture temporal characteristics. The main findings of this study 
are as follows.
(1)  DFAT effectively enhances LSTM’s ability to extract the most important information from 

highly nonlinear and multivariate data, addressing the challenges posed by wind power’s 
uncertainty and intermittency in prediction tasks. This improves both the accuracy and 
generalization capabilities of the forecasting model. In Case Study 1, under various normal 
weather conditions, the LSTM-DFAT model achieved RMSE values below 0.8, R2 values 
exceeding 90%, and MAPE values under 7% for wind power probability forecasting. These 
findings validate the LSTM-DFAT model’s stable predictive performance and robustness in 
multivariate operational environments.

(2)  The proposed EDS-PKO algorithm exhibits superior performance compared with 
conventional intelligent optimization algorithms when solving both unimodal and multimodal 
benchmark functions. Notably, for all test functions except F1 and F6, the EDS-PKO 
algorithm successfully converges to the theoretical optimal value of 0, with dynamic 
hyperparameter adjustment capabilities for LSTM-DFAT models based on environmental 
changes, enhancing wind power forecasting adaptability in complex scenarios.

(3)  In Case 2, compared with the PSO, WOA, and GWO algorithms, the LSTM-DFAT model 
optimized using the EDS-PKO algorithm showed a significant improvement in RMSE values 
by 42.59, 46.55, and 16.21%, R2 values by 16.04, 18.59, and 6.96%, and MAPE values by 3.97, 
4.41, and 1.36%, respectively, demonstrating its superiority.

Table 9
Prediction indicators of different models for midterm forecast.

Models Assessment criteria
RMSE R2 (%) MAPE (%)

LSTM-Attention 0.36 91.59 9.50
Informer 0.37 90.79 9.68
LSTM-DFAT 0.30 94.13 7.63
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 The main contributions and innovative achievements of this study are summarized as 
follows: (1) a wind power composite prediction model based on directed attention mechanisms 
and deep learning was proposed, (2) a DFAT was constructed, and (3) the EDS-PKO algorithm 
that integrates dynamic parameter control and dual-stage search mode was proposed.
 Although the proposed model demonstrates excellent performance in short-term wind power 
prediction, there are limitations in two aspects: first, while the model shows good predictive 
performance under adverse weather conditions, the frequency and intensity of extreme weather 
events may vary with climate; second, the generalization ability of the proposed model and 
algorithm needs further improvement. Future research will address these challenges.
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