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 In this study, we conducted a comparative evaluation of an enhanced Mahalanobis–Taguchi 
system (MTS) and convolutional neural networks (CNNs) for the recognition of acoustic signals, 
concentrating on the diagnostic monitoring of automotive window motors. The enhanced MTS 
integrates sophisticated feature selection and optimized Mahalanobis distance computations to 
improve anomaly detection using a specified sound quality index. High-resolution acoustic data 
were acquired utilizing dual high-sensitivity microphones to ensure reliable input for both 
methodologies. The CNN framework, enhanced by Long Short-Term Memory units and 
multiscale feature extraction, attained an accuracy greater than 96.6%. This performance 
notably exceeded that of the MTS, particularly in modeling intricate acoustic signal variations. 
Although the MTS provides statistical precision, it demonstrates reduced efficacy in managing 
subtle variability as opposed to adaptive CNN-based models. In this research, we elucidated the 
essential trade-offs between conventional and machine learning approaches, providing insights 
for choosing optimal acoustic monitoring methodologies within automotive applications.

1. Introduction

 Acoustic elements play a pivotal role in affecting consumer perceptions regarding the quality 
and craftsmanship of passenger vehicles.(1,2) The auditory characteristics of a vehicle, 
encompassing operational sounds, are frequently regarded as indicators of overall structural 
quality.(3,4) Consumers generally correlate low noise levels and a serene acoustic environment 
with superior craftsmanship, a perception particularly relevant to electric vehicles (EVs), which 
are distinguished by their minimal engine vibrations and low sound frequencies.(5–7) 
Nonetheless, the nearly silent operation of EVs presents new challenges, as other mechanical 
noises—such as those emanating from car window motors—become more prominent and can 
lead to customer dissatisfaction. As noted by Bhosale et al., Buzz, Squeak and Rattle (BSR) are 
commonly classified as vehicle quality issues and marked under Noise, Vibration, and Harshness 
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(NVH).(8,9) Mitigating these issues can be particularly complex owing to the intricate 
mechanisms and assemblies involved. Abnormal motor noises, including squeaks and rattles 
(S&R), typically caused by the relative movement of components or impacts from loose joints, 
detrimentally impact customer satisfaction and the perceived quality of the vehicle.(10,11) The 
configuration of the electric motor and transmission mechanism is illustrated in Fig. 1. The 
electric sunroof employs a permanent magnet DC motor for automated opening/closing and 
positional adjustment. The sunroof’s drive mechanism facilitates the opening and closing, as 
well as angle adjustment, following the motor’s deceleration through the worm gear system.
 Recent research has substantially advanced acoustic monitoring technologies pertinent 
to automotive diagnostics, employing machine learning, statistical methodologies, and 
spectral analysis to enhance fault detection and predictive maintenance.(12–14) Deep 
learning models, specifically convolutional neural networks (CNNs), have been utilized 
to classify vehicles on the basis of audio signals with considerable precision.(15) This 
approach is further enhanced through the use of time-frequency visualizations such as 
spectrograms and scalograms, which capture distinct acoustic patterns of different 
vehicle types, as illustrated in Fig. 2.(16)

 Recent research has emphasized the importance of acoustic signals in evaluating 
vehicle quality and diagnosing faults in mechanical systems. Studies on EV components 
have focused on reducing noise through vibration analysis and material optimization.(17–20) 
In smart robotics, vision-based inspection techniques have been applied to enhance 
grasping performance, while deep learning models, particularly convolutional and 
recurrent neural network (CNN-RNN) architectures, have been employed for predictive 
maintenance in motor drive control systems.(21,22) Recent progress in acoustic monitoring 
technologies has markedly improved fault detection and predictive maintenance in DC 
motor drives used in industrial robotics. Diverse methodologies, encompassing deep 
learning models such as CNNs-RNNs, statistical techniques, and spectral analysis, have 
been utilized to enhance diagnostic precision and system reliability.(23) These advances 
highlight the convergence of acoustics, AI, and sensor fusion in enabling intelligent 
mobility and automated diagnostic solutions. The AI mechanic system has further 
exemplified the ability to diagnose faults directly from raw audio data, underscoring the 
potential of machine-learning-driven acoustic analysis within industrial contexts.(24) 

Fig. 1. (Color online) Structural diagram of transmission mechanism of automobile electric window (sunroof).
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Audio-based anomaly detection has been widely applied beyond industrial robotics, 
including railway and automotive systems. Techniques such as Mel-frequency cepstral 
coefficients (MFCCs) combined with Support Vector Machines (SVMs) have shown high 
accuracy in fault detection, highlighting the value of low-cost, nonintrusive acoustic 
monitoring for predictive maintenance.(25) In complex industrial environments, recent 
studies using Variational Mode Decomposition (VMD)-SVM achieved an accuracy of 
95.8% in diagnosing faults in car folding rearview mirrors, as shown in Fig. 3.
 Acoustic disturbances within vehicles, exemplified by suspension damper noise, substantially 
affect perceptions of consumer quality. In response, a noise identification method employing the 
Genetic Algorithm-SVM was introduced, improving diagnostic precision through the analysis of 
attribute correlations derived from vehicle testing.(26–28) Furthermore, the application of wavelet 
packet transform for signal decomposition was utilized to enhance noise recognition. Figure 4 
shows the road test configuration, where recordings were made at specified locations for each 
shock absorber sample, capturing both internal noise and vibration signals.
 Precise fault diagnosis is imperative for the reliable performance of electromechanical 
systems, but data acquisition remains a formidable challenge owing to the complexity of these 
systems. Conventional sensor-based methods are often intrusive and financially burdensome. 
Conversely, acoustic monitoring presents a noninvasive, efficient alternative through the 
analysis of machine-generated sounds. Techniques such as modulation signal analysis have been 
demonstrated to be effective for monitoring gearboxes, alongside machine learning models such 
as random forests and neural networks that facilitate predictive maintenance. However, obstacles 
such as noise interference, restricted data availability, and complex acquisition procedures 
persist, impeding wider implementation.(29,30) In this investigation, we aim to improve vehicle 
reliability and safety through the application of advanced diagnostic techniques grounded in 
acoustic analysis, and to conduct a comparative evaluation of the Mahalanobis–Taguchi system 
(MTS) and CNNs for the detection of anomalies in the acoustics of car window motors. The 
MTS is particularly well suited to scenarios characterized by limited labeled fault data, offering 
high diagnostic precision with minimal data input; this is advantageous in contexts where fault 
data are scarce. In contrast, CNNs exhibit remarkable capability to discern complex patterns 
within high-dimensional data, making them effective for the analysis of subtle variations in 
motor noise. Recognizing that these acoustics encompass both structured and unstructured 
signals, we investigated how each methodology manages this complexity. Taking advantage of 
the strengths of both methodologies, we provide information on the selection of the most 
appropriate model for automotive acoustic diagnostics. The choice of the MTS and CNNs is 
supported by their proven efficacy in quality control, anomaly detection, and sound recognition 

Fig. 2. (Color online) Spectrogram features for (a) car, (b) motorcycle, (c) no traffic, and (d) truck, corresponding 
to the labeled acoustic data segments.

(a) (b) (c) (d)



2880 Sensors and Materials, Vol. 37, No. 7 (2025)

in various engineering disciplines. The MTS, as conceived by Genichi Taguchi, demonstrates 
outstanding effectiveness in diagnosing and forecasting outcomes using multivariate data, 
thereby facilitating significant improvements in product and process quality.(33) As indicated by 
Peng et al., the MTS has displayed superior performance compared with logistic regression and 

Fig. 3. (Color online) Two setups: a semi-muffled laboratory (setup 1) and a standard laboratory (setup 2). Panels 
(a)–(c) display the distribution of selected Intrinsic Mode Functions (IMFs) for samples 1–3, whereas panel (d) shows 
their collective distribution. The x- and y-axes represent two discriminant functions.(31)

Fig. 4. (Color online) Vehicular road test for the identification of suspension shock absorber S&R noise.(32)
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neural networks within the tablet PC manufacturing sector, achieving a predictive capacity of 
98% while simultaneously reducing the number of test items, thus lowering testing durations, 
personnel requirements, and equipment costs.(24) Within the electrical and electronics industry, 
the MTS has been instrumental in optimizing production processes, identifying critical 
parameters, and minimizing product rejection rates.(25) In contrast, CNNs, owing to their 
advanced deep learning structures, excel in analyzing complex data patterns. For example, Jung 
et al. conducted a study in which CNNs proficiently diagnosed rotor faults, demonstrating the 
model’s capability to accurately identify failures across various normal and faulty sound 
scenarios within the system. The accuracy of training and validation exceeded 99%, even when 
limited datasets were restricted.(29) 

 The MTS is a well-established method widely used for pattern recognition and diagnostic 
applications, particularly effective for small datasets with sequential patterns. However, as an 
older method, the MTS has limitations in handling complex and high-dimensional data, such as 
intricate acoustic patterns. To address this, we enhanced the MTS by incorporating an optimized 
feature selection process and improved Mahalanobis distance (MD) calculations, aiming to 
increase its diagnostic accuracy and robustness. These enhancements make the MTS suitable for 
capturing temporal relationships in car window motor sound data, aiding in the identification of 
fault-related patterns.
 CNNs represent a contemporary methodology for fault diagnosis, proficiently managing 
complex, high-dimensional data. By incorporating multiscale feature extraction techniques 
(Conv1D, Conv2D, and LSTM) alongside preprocessing methods such as MFCCs and short-time 
Fourier transform (STFT), CNNs transform acoustic signals into spectrograms tailored for the 
detection of motor faults. The acquisition of high-quality data is achieved by the utilization of 
dual high-sensitivity microphones within a soundproof environment. Conversely, the enhanced 
MTS employs an advanced MD-based health index for the identification of anomalies within 
smaller datasets. In this study, we present a comparison between the MTS and CNN approaches, 
highlighting the data efficiency of the MTS and the capability of CNNs in analyzing complex 
signals. This integrated perspective offers a comprehensive solution for automotive fault 
detection and supports the development of more practical diagnostic tools.

2. Methodology

2.1 Data collection and acoustic signal acquisition

 After the data acquisition phase, the dataset was systematically structured with metadata 
pertaining to the operating conditions and observed anomalies to facilitate robust model training 
and validation. Although initial fast Fourier transform (FFT) analyses revealed frequency 
patterns associated with faults, they exhibited deficits in sensitivity to amplitude fluctuations. To 
address this limitation, MFCCs were extracted, which offered enhanced spectral and temporal 
characteristics, thus markedly increasing the precision of the CNN training and diagnostic. 
Figure 5 shows an automated inspection system that employs sound spectrogram analysis to 
identify atypical acoustic emissions in automobile window motors during the manufacturing 
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Fig. 5. (Color online) (a) Automated inspection system for detecting abnormal sounds in car window motors based 
on spectrogram analysis. (b) Standard sound model. (c) NG item—Squeaking sound. (d) NG item—Zizi sound.

(a)

(b)

(c)

(d)
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process. A microphone is strategically placed within the sliding roof rail to effectively capture 
mechanical and frictional noises during operation, thus improving the precision of anomaly 
detection. The system conducts a comparative analysis of spectrograms from both standard and 
defective (NG) products. Standard spectrograms exhibit a consistent frequency distribution, 
whereas NG spectrograms demonstrate variations in intensity (e.g., yellow-green regions), which 
serve as indicators of anomalies such as friction (squeaking) or internal vibrations (zizi sounds). 
Anomalies within the system are identified through variations in the colorations of the 
spectrogram, wherein more intense colorations signify greater irregularities. With a missed 
detection rate of 0% and an approximately false detection rate of 5%, the system exhibits high 
levels of accuracy and sensitivity. Consequently, it offers a reliable and noninvasive instrument 
for the acoustic diagnosis of faults and the assurance of quality within the manufacturing 
process.
 Figure 6 shows the smart window motor sound recognition system implemented via a multi-
time series. The procedure commences with the application of voltage to the motor, resulting in 
sound generation that is captured by dual high-sensitivity microphones. These signals undergo 
processing to facilitate feature extraction, followed by the computation of the MD health index. 
The MD was preferred over deep learning methodologies owing to its efficacy with limited 
datasets, its ability to operate in real time, and the simplicity of interpretation. The MD health 
index integrates various sound metrics into a single value, enabling rapid anomaly detection. By 
contrasting current data with a reference set, the system discerns deviations that may indicate 
potential motor malfunctions. This streamlined, automated methodology improves diagnostic 
precision and enhances quality control within the context of automotive manufacturing.
 Audio signals are captured using two directional microphones, one for motor noise and the 
other for ambient sound. A 10 s hiatus in acquisition facilitates data storage, adaptive filtering, 

Fig. 6. (Color online) Smart window motor sound recognition system flow chart using MTS.
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frame segmentation, and frequency phase classification, culminating in refined frequency charts 
and maps. Multiscale volume analysis is performed using Conv1D, Conv2D, and LSTM models. 
Feature selection is optimized by recursive feature elimination (RFE), chi-square (χ²) test, and 
variance analysis. As shown in Fig. 7, the procedure is initiated by applying voltage to the motor, 
which in turn triggers the capture of the sound. The audio data undergo preprocessing through 
MFCCs, are transformed into spectrograms, and are subsequently inputted into CNN models 
incorporating LSTM layers for precise anomaly detection.

2.2	 Design	of	soundproof	enclosure	and	sensor	configuration

 The precise diagnosis of motor faults in automotive window systems requires the use of high-
quality acoustic data, which, in turn, demands precise instrumentation and controlled conditions. 
Acoustic emission is proven to be particularly effective for the detection of faults, leaks, and 
material fatigue. Figures 8 and 9 illustrate the development of a custom soundproof enclosure 
(180 × 300 × 180 mm3) equipped with premium insulation and a high-sensitivity directional 
microphone designed to ensure clear and undistorted recordings. The HTT-006 DC motor 
(DC+12V) was subjected to tests under various loads and speeds, facilitating the comparison of 
normal and abnormal acoustic patterns. Environmental factors such as temperature, humidity, 
and resonance were meticulously controlled. Data acquisition was performed using LabVIEW, 
with recordings stored in WAV format. The preprocessing stage involved noise reduction and 
spectral analysis, which served to enhance signal clarity and improve diagnostic accuracy and 
repeatability within automotive applications.

Fig. 7. (Color online) Smart window motor sound recognition system flow chart using CNNs.
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 The HTT-006 DC motor operates at a rated DC +12 V and supports both forward and reverse 
rotation capabilities. This motor is utilized primarily in electric sunroof systems, in which a 
permanent magnet DC motor enables the automated opening, closing, and angular adjustment of 
the sunroof through a worm gear and transmission mechanism. Under normal operating 
conditions, the motor produces electromagnetic and mechanical noises, predominantly within 
the frequency range of 200 Hz to 2 kHz. The main sources of these noises include interactions 
between brushes and commutators, gear engagement, and structural vibrations. Abnormal sound 
patterns are illustrated in Table 1. The setup of the window motor acoustic monitoring platform, 
as shown in Fig. 10.

2.3	 Microphone	configuration	and	signal	conditioning

 In this study, the sound acquisition process utilized the PCB Model 130F21 microphone, 
which is recognized for its exceptional sensitivity and stability. This microphone plays a pivotal 
role in the precise recording of sound signals originating from car window motors. Table 2 
outlines the main specifications and operational characteristics of the microphone. The Model 

Fig. 9. (Color online) Soundproof box entity diagram.

Fig. 8. (Color online) Smart window motor identification and testing equipment platform design architectural 
diagram.
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130F21 microphone is integrated with an integrated electronics piezo-electric (IEPE) circuit, 
designed to transform the high-impedance charge signal from the piezoelectric element into a 
low-impedance voltage signal (approximately 100 Ω). This circuit further facilitates constant 
current excitation ranging from 2 to 20 mA, thereby maintaining signal integrity throughout 
extended cable lengths and ensuring sound measurement reliability with minimal degradation. 
For the accurate capture of motor acoustics, the microphone was strategically placed directly 
beneath the motor body, an optimal position that reduces external noise interference and 
accurately apprehends the authentic acoustic signature of the motor during operation.

Table 1 
(Color online) Physical diagram of permanent magnet DC motor power window (sunroof).

Fault type Acoustic signature Frequency range
Bearing wear or 
misalignment

Increased low-frequency 
vibrations ~200–800 Hz

Gear meshing issues 
(backlash, wear, or  

improper lubrication)
High-frequency tonal noise ~1 kHz–3 kHz

Excessive friction or foreign 
object interference Broadband noise Beyond 3 kHz

Table 2
(Color online) PCB Model 130F21 specification sheet.(30)

Performance Description
Nominal microphone diameter 1/4"

Frequency response 10 to 20000 Hz
Sensitivity 45 mV/Pa

Inherent noise (A-weighted) < 26 dB(A) re 20 µPa
Dynamic range (3% distortion limit) > 122 dB re 20 µPa

Excitation voltage 18 to 30 VDC
Constant current excitation 2 to 20 mA

Fig. 10. (Color online) Real-world setup of the window motor acoustic monitoring platform.
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2.4 Signal acquisition system: microphone and ADC module configuration 
 
 We used the PCB 130F21 microphone in conjunction with the ADLINK USB-2405 data 
acquisition module, as shown in Table 3. USB-2405, equipped with a 24-bit Sigma-Delta ADC 
and an anti-aliasing filter, enabled the high-resolution processing of acoustic signals. Operated at 
a sampling rate of 48 kHz with a cutoff frequency of 24 kHz, it preserved high-frequency 
components crucial for detecting motor faults. The filter effectively mitigated noise while 
maintaining essential spectral characteristics. Its four-channel input, AC/DC coupling, and 
automatic calibration enhanced data accuracy. Figures 11(a) and 11(b) illustrate the motor signals 
of GO and NO GO, where the NG spectrograms demonstrate spectral disturbances—particularly 
above 1024 Hz—supporting the efficacy of MTS and CNN fault detection. The observed 
interference is primarily attributed to the looseness of internal components, resulting in impact 
noise. Even minor assembly defects can lead to atypical acoustic behavior during motor 
operation. To validate this, a quantitative analysis of frequency variations and power spectral 

Table 3 
(Color online) ADLINK USB-2405 sound and vibration input module.

Hi-Speed USB 2.0, powered by USB bus
24-bit Sigma-Delta ADC with built-in anti-aliasing filter
Four-channel simultaneous sampled analogue inputs up to 128 kS/s
Analogue and digital triggering and full autocalibration
AC or DC input coupling, software selectable

Fig. 11. (Color online) (a) GO and (b) NG sample audio signals of motor sound captured in the time and time-
frequency domains.

(a)
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density (PSD) was performed to characterize anomalies in NG motors. As shown in Fig. 12, (a) 
corresponds to GO and (b) to NG. The pronounced PSD peaks in the NG signal indicate the 
presence of abnormal frequencies arising from mechanical noise or irregular vibrations, thereby 
effectively distinguishing faulty from normal functioning. The GO motor exhibits a maximum 
PSD of −57.67 dB/Hz, in contrast to −66.62 dB/Hz for the NG motor. The increased PSD in the 
GO motor signifies higher energy at the expected frequencies, whereas the decreased PSD in the 
NG motor suggests mechanical defects. This comparison affirms the efficacy of the proposed 
method in accurately detecting motor abnormalities.
 To improve data quality and optimize model performance, the raw sound recordings were 
divided into 1 s segments. Each motor underwent a recording session lasting 10 s over 40 
separate sessions, culminating in a total of 16000 samples, covering both forward and reverse 
rotational directions. The dataset was methodically partitioned into 70% for training (11200 
samples) and 30% for testing (4800 samples) to ensure balanced learning. To increase the signal 
integrity of MEMS microphones, salt-and-pepper noise was mitigated using a sliding median 
filter, while overload distortion was addressed via an adaptive threshold algorithm. These 
preprocessing measures effectively preserved essential acoustic characteristics and improved 
diagnostic reliability.

Fig. 11. (Continued) (Color online) (a) GO and (b) NG sample audio signals of motor sound captured in the time and 
time-frequency domains.

(b)
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3. Sound Recognition Technology for Motor Fault Diagnosis

3.1 MTS

 The MTS was utilized for the classification and anomaly detection of acoustic data obtained 
from car window motors. In this study, enhancements were made to the MTS algorithm to 
improve its diagnostic precision and adaptability to intricate acoustic patterns. These 
enhancements comprise optimized feature extraction techniques, advanced statistical modelling, 
and an improved calculation of the MD. The refined algorithm facilitates superior differentiation 
between normal and abnormal acoustic profiles.

Fig. 12. (Color online) (a) GO and (b) NG PSD values of the operation sound of the sunroof motor.

(a)

(b)
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a. Feature Extraction 
 The initial phase of the enhanced MTS entails the extraction of a wide range of acoustic 
features from the recorded sound signals. Statistical features including mean, variance, 
skewness, and kurtosis are integrated with temporal features such as duration and frequency 
patterns to encapsulate the complex characteristics of motor sounds. These features are selected 
and weighted according to their importance for the diagnostic task, ensuring that the extracted 
data accurately represent the operating state of the motor. The refined algorithm automates 
feature ranking to prioritize those most significantly correlated with anomalies.

b. MD
 Upon the completion of feature extraction, the MD is calculated for each sound sample. This 
metric quantifies deviations from a reference baseline formulated from a training dataset 
comprising normal motor sounds. In contrast to the conventional multivariate time series 
method, the enhanced algorithm integrates a scaled squared MD, which adjusts for discrepancies 
in feature contributions. This refinement enhances the sensitivity to identify subtle anomalies.
 The formula for the squared MD is given as

 2 11 T
k k kMD z R z

p
−= ⋅ ⋅ , (1)

where 2
kMD  is the squared MD of the 𝑘-th sample, p is the number of features (dimensionality), 

zk is the standardized feature vector for the k-th sample, R is the correlation matrix of the 
standardized samples, and R−1 is the inverse of the correlation matrix.
 In sound recognition, the MD is affected by two categories of factors:
 Controllable Factors (X) are the features derived from sound signals, such as spectral 
coefficients, frequency band energy, and short-term power.
 Uncontrollable Factors (Z) are environmental noise, operator variability, and device-
dependent factors (e.g., temperature and humidity).
 To enhance the robustness of the MD, it is crucial to eliminate features that are sensitive to 
noise (Z), thereby improving the stability of the measurement. The functional relationship 
between the MD and these factors can be expressed as

 ( ),MD f X Z= . (2)

 For anomaly detection, the stability of the MD is evaluated using the signal-to-noise ratio 
(SNR). SNR quantifies the strength of the signal relative to noise, defined as

 
2

2
MD

MD
SNR µ

σ
= , (3)

where 2
MDµ  is the mean of the squared MDs (signal strength) and 2

MDσ  is the variance of the 
squared MDs (noise strength).
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In practice, SNR is often expressed in decibels (dB) as

 
2

10 210log MD
dB

MD
SNR µ

σ

 
=   

 
. (4)

In sound recognition, dynamic thresholds are critical for distinguishing between normal and 
anomalous sounds. These thresholds can be derived from the distribution of MD values for 
normal samples.

• Mean of MD values:

 2

1

1 n

MD k
k

x MD
n =

= ∑  (5)

• Standard deviation of MD values:

 ( )22

1

1
1

n

MD k MD
k

S MD
n

x
=

= −
− ∑  (6)

The threshold is then computed as

 1
1MD MDx Sε

δ θ
= + ⋅

+ −
, (7)

where MDx  is the mean MD of normal samples, SMD is the standard deviation of the MD for 
normal samples, δ is the small parameter controlling sensitivity, and θ is the proportion of 
normal MD values smaller than the smallest MD value in anomalous samples.

3.2 MTS for anomaly detection and threshold optimization

 In this study, we employed the MT method for anomaly detection by evaluating the MD of 
the acquired signals. The MD serves as a metric for measuring deviation from the standard 
reference space (unit space), and its threshold is employed to categorize signals as normal or 
abnormal. To improve the precision and adaptability of anomaly detection, we juxtaposed the 
traditional fixed threshold method (MD = 4) with a dynamic threshold approach based on the χ² 
distribution.

3.2.1 MD threshold determination

(1) Traditional Fixed Threshold Method (MD = 4)
 A commonly used threshold in the MT method is MD = 4, meaning:
• If MD ≤ 4, the data is considered normal.
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•  If MD > 4, the data is classified as abnormal, as the probability of belonging to the normal 
reference space becomes extremely low.

 This empirical threshold is derived from statistical principles, where an MD value exceeding 
4 suggests a high likelihood of an outlier.

(2) Improved Method: Dynamic Threshold Based on χ2 Distribution
 To enhance detection accuracy and adaptability across different datasets and operating 
conditions, we adopted a χ2-distribution-based threshold setting.
•  5% significance level (p < 0.05): The critical threshold is set at ( )2 0.95kχ , representing minor 

deviations.
•  1% significance level (p < 0.01): The threshold is set at ( )2 0.99kχ , indicating significant 

anomalies.
 By employing statistically driven confidence intervals, this method provides a more flexible 
and precise anomaly detection approach than the conventional fixed MD = 4 threshold.

3.2.2	 Visualization	and	classification	of	anomalies

 To evaluate the efficacy of the proposed anomaly detection framework, we performed a 
comparative analysis of two threshold methodologies: a fixed MD threshold set at 4 and a 
dynamic threshold derived from the χ2 distribution. Assessment is performed using essential 
performance metrics:
• Green (Normal): MD is within the normal threshold, indicating no anomaly.
•  Yellow (Minor Anomaly): MD exceeds the 5% significance threshold (p < 0.05), requiring 

monitoring.
•  Red (Severe Anomaly): MD exceeds the 1% significance threshold (p < 0.01), signaling 

critical failure needing immediate action.
 This visualization enhances interpretability, enabling rapid assessment and response to 
anomalies.

3.2.3 Validation and performance evaluation

 We investigated the efficacy of anomaly detection by juxtaposing a static MD threshold of 4 
against a dynamic χ2-based threshold. The evaluation of performance is conducted using the 
essential metrics below.
• Detection Accuracy: Correctly classified normal/abnormal signals
• False Alarm Rate (FAR): Normal signals misclassified as anomalies
• Miss Rate (MR): Anomalies misclassified as normal signals
 These evaluation metrics improve the adaptability of the anomaly detection framework for 
industrial monitoring and predictive maintenance. Figure 13 illustrates how the MTS employs 
the MD to differentiate normal and abnormal motor sounds. A comparison of fixed dynamic 
thresholds based on MD = 4 and χ2-based dynamic thresholds assesses classification accuracy, 
FAR, and MDR, ensuring reliable fault detection under varying conditions.
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3.3 CNNs

 In this study, the experimental process for sound recognition involved a series of methodical 
steps designed to convert raw sound signals into meaningful features, train models, and evaluate 
their performance. The comprehensive procedure is as follows.

a. Preprocessing and Feature Extraction
 Sound Signal Conversion: Raw sound signals from car window motors were processed into 
MFCCs through the following:
•  Data Segmentation: Audio files were split into 70% for training and 30% for testing, ensuring 

a balanced dataset for evaluation.
•  Feature Extraction: MFCCs were computed to capture key spectral characteristics, enabling 

differentiation between normal and abnormal sound patterns.

b. Preprocessing and Feature Extraction
•  CNN Model Design: The model used 129 × 510 input images, with the three convolutional 

and pooling layers shown in Fig. 14 to process MFCC features.
•  Conv1D Layers: Extracted temporal features from raw audio signals, detecting intensity and 

frequency variations
•  Conv2D Layers: Analyzed spectrograms to identify spatial patterns and anomalies for 

classification
•  LSTM Model Design: Captured temporal dependencies and sequential patterns in sound data 

shown in Fig. 15, enhancing classification accuracy

c. Proposed CNN Architecture for Motor Sound Analysis
 CNNs analyze motor sound spectrograms through three Conv2D layers, each equipped 
with 3 × 3 kernels, a stride of 1, and the “same” padding, to facilitate the extraction of both 
spectral and temporal features. Each convolutional layer is succeeded by a 2 × 2 max pooling 

 Fig. 13. (Color online) MTS for abnormal signal evaluation using MD. 
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layer (stride = 2), which serves to decrease the dimensionality and increase the computational 
efficiency. The CNN-LSTM architecture expands on this foundation by integrating a 
bidirectional long-short-term memory (Bi-LSTM) layer to capture sequential dependencies 
within the feature maps. Furthermore, skip connections are employed to preserve low-level 
feature information throughout the network. A concluding SoftMax layer performs the 
classification, discerning between four categories, namely, normal (forward/reverse) and 
abnormal (forward/reverse) motor conditions. Table 4 shows the layer configurations and output 
dimensions for the CNN and CNN-LSTM models.
 
d. Hyperparameter Tuning and Training
 Hyperparameter optimization was performed through grid search with the aim of improving 
accuracy, precision, and recall. The model used the Adam optimizer, which began at a learning 
rate of 0.001 that decreased by a factor of 0.1 upon the stabilization of the validation loss over 
five epochs. A batch size of 32 was maintained to ensure stable convergence, with training 
carried out over 50 epochs. The configuration incorporated ReLU activation, cross-entropy loss, 
and SoftMax output, thus attaining optimal performance while mitigating overfitting.

Fig. 14. (Color online) CNN model design. 

Fig. 15. LSTM model design. 
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e. Performance Assessment and Comparative Analysis
 Following the training phase, the model was evaluated using an independent test set. 
Metrics such as precision and recall were used to evaluate diagnostic performance. The CNN 
model was contrasted with the enhanced MTS to ascertain its respective efficacies in identifying 
motor anomalies. To enhance auditory recognition, CNNs were integrated with FFT, STFT, and 
MFCCs to extract crucial spectral and temporal characteristics, thus increasing the model’s 
ability to differentiate between normal and abnormal acoustic patterns.

f. Feature Selection Methodology
 To enhance the efficacy and performance of classification, RFE alongside χ2 analysis was 
utilized for feature selection. The methodology included several stages: Feature extraction: 
Features from both the time and frequency domains, such as MFCCs, spectral centroid, zero-
crossing rate, and short-time energy, were extracted to effectively represent motor acoustics. 
Statistical Evaluation: The χ2 test facilitated the identification of features that demonstrated 
substantial relevance to classification labels, thereby enabling the elimination of less significant 
features to increase robustness and mitigate overfitting.

3.4 FFT

 FFT is a fundamental technique for converting time-domain sound signals into frequency-
domain sound signals. This transformation reveals the frequency components of the sound, 
which is critical for understanding its spectral characteristics. The FFT formula is given by

 [ ] [ ]1
0 , 0,1, 2,3, , 1.N kn

NnA K W a n n N−
=

= ⋅ = … −∑  (8)

  

Table 4
Comparison of CNN and CNN-LSTM model architectures with layer configurations and output shapes.
Layer (type) Output shape Layer (type) Output shape
stft_input (InputLayer) [(None, 44100, 1)] stft_input (InputLayer) [(None, 44100, 1)]
stft (STFT) (None, 129, 513, 1) stft (STFT) (None, 138, 1025, 1)
magnitude (Magnitude) (None, 129, 513, 1) magnitude (Magnitude) (None, 138, 1025, 1)
apply_filterbank (None, 129, 512, 1) apply_filterbank (None, 138, 256, 1)
magnitude_to_decibel (None, 129, 512, 1) magnitude_to_decibel (None, 138, 256, 1)
batch_norm (None, 129, 512, 1) batch_norm (None, 138, 256, 1)
td_conv_1d_relu_1 (None, 129, 510, 8) reshape (None, 138, 256)
max_pool_2d_1 (None, 64, 255, 8) td_dense_relu (None, 138, 16)
td_conv_1d_relu_2 (None, 64, 253, 16) bidirectional_lstm (None, 138, 256)
max_pool_2d_2 (None, 32, 126, 16) skip_connection (None, 138, 272)
td_conv_1d_relu_3 (None, 32, 124, 32) dense_1_relu (None, 138, 64)
max_pool_2d_3 (None, 16, 62, 32) max_pool_1d (None, 69, 64)
dropout (Dropout) (None, 32) flatten (Flatten) (None, 4416)
dense (Dense) (None, 128) dense_relu (Dense) (None, 64)
softmax (Dense) (None, 4) softmax (Dense) (None, 4)
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Here, WN represents the complex roots of unity used in the discrete Fourier transform (DFT) and 
A[K] denotes the discrete Fourier transform of the N data points. The following explains how the 
inverse DFT (IDFT) reconstructs the original signal from these N transformed points:

 [ ] [ ]1
0

1 , 0,1,2,3, , 1.N kn
NNa k W A n n N

N
− −
=

= ⋅ = … −∑  (9)

 Equation (8) indicates that each DFT value requires N complex multiplications and N − 1 
additions, underscoring the computational intensity of the process and the necessity for more 
efficient algorithms such as FFT.

3.5 STFT

 To ensure the accurate time-frequency representation of motor acoustic signals, in this study, 
we employed STFT for spectral analysis. STFT enables localized frequency analysis by 
segmenting the signal into fixed-length windows and applying the Fourier transform to each 
segment. This method is particularly effective in capturing time-dependent frequency variations 
in motor sounds, which are crucial for identifying anomalies such as bearing wear, misalignment, 
and gear friction noise.

Mathematical Representation of STFT
 STFT is mathematically defined as

 ( ) ( ) ( )
1

0
, ,  0, , 1,

N
mk
N

k
X n m x k w k n W m L N

−

=

= − = −∑  (10)

where N is the signal length, n is the shift in window function, w(k) is the window function, L is 
the window length.
 A 2048-sample Hamming window was selected for its optimal balance between frequency 
preservation and spectral leakage suppression. It outperformed the Hann and Blackman 
windows in resolution and distortion control, which are critical for fault detection. An ablation 
study confirmed its effectiveness in distinguishing faulty signals and enhancing feature 
robustness under varying speeds and loads.

3.6 MFCCs

 In this study, MFCCs were used as a feature extraction method to analyze sound signals from 
car window motors. MFCCs are widely recognized for their ability to represent the spectral and 
perceptual properties of audio signals effectively, making them ideal for sound classification 
tasks. MFCCs transform raw acoustic signals into condensed feature sets, encapsulating 
essential characteristics while mitigating noise, as depicted in Fig. 16. This methodology 
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facilitates a robust comparison of the MTS and CNNs in the context of motor anomaly detection. 
A Mel spectrogram containing 128 filter banks was constructed to achieve high-resolution 
frequency representation, customized for the CNN2D-LSTM model. A selection of 13 MFCCs 
was made to retain crucial spectral attributes. Although Delta and Delta-Delta MFCCs, which 
are effective in capturing temporal variations, were not included, their inclusion may be 
considered in subsequent studies to further refine classification precision.
 In this study, we employed MFCCs, FFT, and STFT to extract critical spectral and temporal 
features for motor sound analysis, aligning with the distinct processing requirements of the MTS 
and CNNs. STFT serves as a foundational transformation, converting time-domain signals into 
time-frequency representations, which then facilitate further feature extraction through FFT and 
MFCC computations. For the MTS, FFT and STFT are utilized to capture frequency-domain 
characteristics, with the spectral centroid method determining the FFT centroid threshold. This 
threshold is subsequently incorporated into the MD formula, quantifying deviations from 

Fig. 16. (Color) Comparative analyses of FFT spectrum, STFT, and Mel spectrogram for (a) GO and (b) NG motor 
sounds.

(a) (b)
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normal operating conditions and enabling anomaly detection. For CNNs, MFCCs serve as direct 
input features, preserving both spectral and temporal patterns essential for deep-learning-based 
classification. Unlike Mel spectrograms, which are primarily used for visualization, the CNN 
model processes MFCC numerical representations, ensuring a more structured and high-
dimensional feature set optimized for deep learning.
 MFCCs are extracted from the STFT spectrogram through the application of a Mel filter 
bank to the power spectrum, followed by logarithmic compression and a discrete cosine 
transform (DCT). An analysis comparing MFCC- and STFT-based CNNs indicated that, 
whereas STFT provides intricate spectral resolution, MFCCs offer a more compact and efficient 
feature set suitable for classification tasks. Both FFT and STFT facilitate robust frequency 
analysis for multi-time series-based statistical modeling; however, MFCCs provide structured, 
high-dimensional features specifically optimized for CNN architectures. This method 
effectively establishes a balanced, interpretable, and efficient framework to detect motor 
abnormalities. Figure 17 shows the MFCC feature extraction process in the context of motor 
sound analysis.

4. Results and Discussion

 Each of the 20 automotive window motors was subjected to recording over the course of 40 
distinct sessions, with individual session durations of 10 s. To maintain sufficient temporal 
resolution, these recordings were subdivided into 1 s intervals, producing 10 audio segments per 
session. Considering the motor’s functioning in both forward and reverse directions, the 
recording process encompassed a total of 800 sessions, culminating in 16000 audio segments. 
This segmentation methodology facilitated a comprehensive representation of acoustic behavior 
in various operational states, providing a robust dataset for model training and evaluation.
 In this comparative analysis, the MTS used the MD to quantify deviations from normative 
conditions, whereas CNNs used spectrograms and temporal features for the classification of 
motor sounds. Despite the limited diversity of motors, both models demonstrated efficacy in 

Fig. 17. (Color online) MFCC feature extraction for motor sound analysis.
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distinguishing between normal and abnormal sounds. Future research will focus on enhancing 
the dataset to enhance the robustness and statistical dependability of the model. Figure 18 shows 
the workflow, from data acquisition to preprocessing and classification, highlighting a 
systematic methodology for feature extraction and anomaly detection in automotive motor 
diagnostics.
 In this research, we used both the MTS and CNNs to examine acoustic emissions from 
vehicle window motors. Motor operation was managed by a LabVIEW-based system, with 
signals transmitted through a USB-2405 module and relay to facilitate forward and reverse 
motions. The DC motor generated low-speed linear movement (~20 mm/s), while a high-
sensitivity microphone captured sound emissions. The audio was digitized at 44.1 kHz and 
stored as mono WAV files using LabVIEW, ensuring that the data maintained a high resolution 
for analysis. The complete system workflow is shown in Fig. 19, which describes the process 
from signal generation to data acquisition and storage.

Fig. 18. Flowchart of motor sound recognition experiment using MTS. 



2900 Sensors and Materials, Vol. 37, No. 7 (2025)

4.1 Feature analysis and diagnostic output – MTS performance

 In this study, the synchronization of acoustic data with the motor’s operation was meticulously 
conducted to accurately represent its performance across diverse conditions. The recognition 
software acquired sound over a two-second duration per session and then applied FFT analysis 
to extract features within the frequency domain. FFT facilitated the examination of the motor 
sound’s frequency characteristics. Critical data, such as the center of gravity frequency, were 
preserved for further analysis. As depicted in Fig. 20, the system identified the peak frequency 
and amplitude values, implementing a root mean square (RMS) calculation for each interval to 
produce characteristic values for subsequent evaluation. Furthermore, to assess the consistency 
and detect anomalies in the extracted features, MD analysis was conducted to quantify 
deviations from the normal operating patterns by considering correlations among multiple 
variables. This approach provided a robust method for identifying both minor and severe 
anomalies in the motor’s performance.
 To examine the dynamic frequency characteristics of motor sounds, FFT was employed to 
evaluate sound pressure fluctuations, thus offering a comprehensive acoustic profile conducive 
to precise diagnostics. The outcome of the MTS was juxtaposed with that of CNNs in the context 
of anomaly detection. The data acquisition system facilitated real-time evaluation, initiated via 

Fig. 19. (Color online) Flowchart of motor sound recognition experiment using CNNs.
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Fig. 20. (Color online) (a) Analysis curves of sound signal, (b) FFT frequency, (c) STFT frequency, and (d) MD 
analysis.

the ‘DAQ Start’ button, which ensured the adherence of the signal to established parameters. As 
illustrated in Fig. 21, the results were visualized using color-coded dots: green indicated 
normality, yellow signified a warning (5% deviation), and red denoted abnormality (1% 
deviation), thus allowing the prompt identification of motor faults.

(a)

(b)

(c) (d)
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4.2 CNN performance and spectrogram-based fault detection

 Motor acoustic signals were analyzed using CNNs, which leveraged features extracted from 
both the temporal and spectral domains for anomaly detection. In the temporal domain, 
waveform analysis revealed patterns related to periodicity and amplitude variations. As shown in 
Figs. 22 and 23, the waveform associated with the GO (normal) motor exhibited consistent and 
stable patterns, whereas the NG (abnormal) motor demonstrated irregular and unstable 
fluctuations. These observations suggest that waveform characteristics serve as effective 
indicators for distinguishing between normal and abnormal motor conditions, indicative of 
potential problems such as increased friction or structural faults. Spectral domain analysis by 
applying FFT and STFT facilitates the identification of frequency characteristics essential to 
fault diagnosis. In Fig. 22 (GO), a consistent frequency distribution is observed, while Fig. 23 
(NG) presents deviations at approximately 3, 5, and 8 s, characterized by vertical spectral 
disturbances and elevated energy within the 2–5 kHz range, indicative of potential mechanical 
issues such as gear misalignment or wear. CNNs proficiently identify such anomalies by 
recognizing frequency deviations and transient patterns. When contrasted with MTS models 
that use the MD, CNNs exhibit superior accuracy, as they more effectively capture subtle 
spectral variations. Consequently, deep-learning-based spectrogram analysis advances 
diagnostic reliability, positioning CNNs as a robust instrument for automated motor fault 
detection.

Fig. 21. (Color) Motor recognition system verification chart: (a) green dots: GO and (b) red dots: NG.
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 The CNN-LSTM model outperformed the MTS approach in motor anomaly detection, 
effectively combining convolutional feature extraction with temporal modeling. Trained on a 
70/30 train–test split and optimized through hyperparameter tuning, the model achieved an 
accuracy of 93.1% [Fig. 24(a)] and a final loss of 0.116, indicating stable convergence and 
minimal overfitting. Validation on 800 unseen samples yielded a recognition rate of 97%, 
confirming strong generalization across varying motor conditions. The confusion matrix is 
shown in Fig. 24(b).
 Comparative training evaluations revealed that CNNs achieved an accuracy rate of 98% with 
rapid convergence, whereas CNN-LSTM exhibited a marginally lower convergence rate, which 
can be ascribed to its elevated complexity. To enhance the generalization capabilities of the 

Fig. 22. (Color online) GO spectrum sound signal graph. 

Fig. 23. (Color) NO GO spectrum sound signal graph.
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model, measures such as a 30% dropout rate, L2 regularization (λ = 0.001), early stopping 
mechanisms, and adaptive learning rate adjustments were used. The CNN-LSTM model attained 
an accuracy of 96.6%, as shown in Fig. 25(a), with the confusion matrix depicted in Fig. 25(b) 
corroborating its high precision in distinguishing between normal and defective motors. These 
findings highlight the efficacy of the model in encapsulating temporal and spectral attributes. It 
is recommended to further substantiate these observations through the analyses of the accuracy 
and trends of loss of the test to evaluate its practical applicability.

4.3 Comparative evaluation of CNN-LSTM and MTS models for motor anomaly 
detection 

 The CNN-LSTM model demonstrated superior performance compared with the MTS in the 
domain of motor anomaly detection, achieving an accuracy rate of 96.6%. This result was 
particularly evident in the enhancement of identifying functional (GO) motors. The model’s 
capacity to assimilate both spectral and temporal characteristics augmented the detection of 
minute sound variations. The statistical validity of its enhanced performance was corroborated 
by McNemar’s test (p = 0.0034), which affirmed the robustness of the CNN-based approach. 
Conversely, although the MTS attained an accuracy of 100% in the identification of defective 
(NG) motors, its performance was limited to an accuracy of 86.6% for GO motors. This 
limitation reflects its constraints in distinguishing subtle differences in acoustic signatures, 
subsequently resulting in a heightened false positive rate. Nevertheless, owing to its reduced 
computational complexity, the MTS remains beneficial in environments with constrained 
resources, rendering it a practical alternative for real-time edge computing applications.
 The CNN-LSTM model demonstrated a precision of 94.3% and a recall of 90.5%, 
underscoring its efficacy in detecting motor abnormalities for predictive maintenance purposes. 
As presented in Table 5, CNN2D + LSTM surpasses the MTS in all essential metrics, including 
accuracy, precision, recall, and F1 score. Future research will be directed towards augmenting 
the dataset to improve generalizability and investigating hybrid models that integrate CNN 
feature extraction with MTS analysis to advance diagnostic accuracy and efficiency.

Fig. 24. (Color online) (a) CNN method accuracy and loss rate of model training results and (b) confusion matrix.

(a) (b)
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5. Conclusion

 In this study, we conducted a comparative analysis of the sophisticated MTS and CNNs in the 
detection of abnormal acoustic emissions in automotive window motors. The objective was to 
develop an intelligent auditory system capable of distinguishing functional motors (GO) from 
defective motors (NO GO), thus reducing the dependence on manual inspection. When signal 
processing was integrated with machine learning techniques, an automated acoustic recognition 
platform was formulated. The experimental findings indicated that the Conv2D+LSTM model 
attained an accuracy of 96.6%, surpassing the MTS accuracy of 86.6%. CNNs demonstrated 
superior effectiveness in managing spectrogram data and capturing temporal patterns, exhibiting 
higher precision and recall. This makes them highly suitable for applications in predictive 
maintenance and quality control.
 Although the proposed system demonstrates promising results, further improvements are 
required to optimize adaptability and robustness. Subsequent research efforts will focus on 
broadening the dataset to encompass a more extensive array of motor conditions, thereby 
augmenting generalization. The investigation of hybrid deep learning models that integrate 
CNNs with anomaly detection methodologies is expected to enhance diagnostic accuracy. 
Furthermore, the inclusion of predictive modeling is expected to facilitate early fault detection, 
significantly advancing intelligent manufacturing and industrial automation.
 The implementation of machine learning and artificial intelligence in sound-based anomaly 
detection lays a foundational framework for advanced quality control solutions within industrial 

Fig. 25. (Color online) (a) CNN+LSTM method accuracy and loss rate of model training results and (b) confusion 
matrix.

Table 5
Performance comparison of CNN2D+LSTM and MTS in motor anomaly detection.

Model Accuracy 
(%)

Precision 
(%) Recall (%) F1-score (%) p-value

(McNemar’s test)
CNN2D+LSTM 96.6 94.3 90.5 92.3 0.0034 (Significant)
MTS 86.6 85.1 81.8 83.4 –

(a) (b)
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manufacturing. In this study, the proficient application of CNN-based acoustic recognition 
underscores its transformative potential in predictive maintenance, thus reducing operational 
downtime, improving product reliability, and bolstering manufacturing efficiency. Anticipated 
progress in data augmentation, lightweight architectures, and multimodal fusion—such as the 
integration of vibration and electrical signal monitoring with CNNs and the MTS—is projected 
to further strengthen the robustness of the system, making it a feasible solution for large-scale 
industrial applications. Furthermore, the expansion of datasets and the implementation of real-
world validation within production settings will facilitate standardized evaluation and improve 
generalization under diverse motor conditions.
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