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 In recent years, the population of green iguanas in Taiwan has grown rapidly, causing 
significant damage to the local ecosystem and agricultural crops. Because their coloration 
closely resembles the natural environment, accurately detecting green iguanas remains a 
challenging task. We propose an enhanced You Only Look Once (YOLO)v8-based image 
recognition framework tailored for green iguana detection. By integrating a global attention 
mechanism into the Backbone of the YOLOv8 architecture and incorporating color feature 
weighting, the model’s feature extraction capabilities are significantly improved. These 
enhancements allow for a more accurate and reliable identification of green iguanas in complex 
natural settings. The proposed method offers a fully automated detection solution that supports 
agricultural and environmental experts in developing effective management strategies to control 
the green iguana population, thereby mitigating their ecological and agricultural impacts.

1. Introduction

 With the rapid advancement of technology, image recognition techniques have demonstrated 
significant value across various fields, including agriculture, industry, and medicine. Among 
these techniques, You Only Look Once (YOLO) has emerged as a highly efficient object 
detection framework, renowned for its speed and accuracy, making it widely adopted for real-
time object detection tasks. With continuous iterations, the newer versions of YOLO have shown 
notable improvements in detection performance, establishing it as a crucial tool in modern 
object detection applications. Despite these advances, the application of image recognition 
technology in ecological conservation still faces many challenges. In recent years, green iguanas 
have had a profound impact on Taiwan’s ecosystem. As an invasive species, they have caused 
various environmental problems. Their voracious feeding behavior has significantly reduced 
vegetation cover, destroying habitats of native species. Their rapid reproduction and strong 
adaptability have further threatened native wildlife by reducing available food resources and 
living space, even leading to starvation and population decline. Additionally, their burrowing 
activity damages farmland, reduces crop yields, and negatively affects the livelihoods of 
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farmers. YOLO, as a one-stage object detection method, eliminates the need for multistage 
region proposal generation, offering fast and accurate detection capabilities. Applying YOLO to 
green iguana monitoring facilitates the effective tracking of their movements. However, under 
the pursuit of efficiency, YOLO’s performance in complex or natural environments often suffers 
in terms of precision. To address this limitation, in this study, we enhance the YOLOv8 model 
by integrating the global attention mechanism (GAM) along with color feature weighting. The 
improved model, equipped with the modified GAM, shows a slight trade-off in accuracy but 
increases detection quantity in complex scenes. Furthermore, it effectively reduces false 
positives and false negatives in situations where the target and background share similar colors, 
thereby enhancing the model’s detection robustness and stability.

2. Background

 Green iguanas are an invasive species in Taiwan, and detecting them in complex natural 
environments presents significant challenges owing to their camouflage coloring and 
environmental similarity. To enhance target detection performance under such conditions, we 
integrate an attention mechanism into the YOLOv8 architecture, aiming to improve the stability 
and robustness of feature extraction and object recognition in complex backgrounds.

2.1 YOLO evolution

 With the continuous advancement of visual imaging technology, its applications have 
expanded to various fields such as face recognition, object detection, medical image analysis, 
and image segmentation, becoming increasingly integrated into everyday life. The YOLO series, 
as a real-time object detection framework, has undergone numerous iterations from YOLOv1 to 
YOLOv8, each version bringing notable improvements to both performance and efficiency. 
 YOLOv1(1) was proposed by Redmon et al. in 2016. It divides the input image into X × X 
grids, where it only needs one forward propagation to complete the prediction. The recognition 
speed is very high and is especially suitable for the real-time recognition of large objects. 
However, the recognition effect of small objects and complex scenes is poor.
 YOLOv2(2) improves upon the defects of YOLOv1, adding an anchor box function to improve 
the detection of objects of different sizes and using the Darknet-19 network architecture to 
improve the feature extraction capabilities of the model, thus improving the model’s inference 
speed and accuracy. Furthermore, through multiscale training, the model can adapt to different 
image resolutions, and regularization is introduced to improve the stability of model training and 
reduce overfitting in model training.
 YOLOv3(3) uses Darknet-53 in place of the Darknet-19 network architecture in YOLOv2 to 
enhance feature extraction. YOLOv3 combines the ResNet residual network to prevent gradient 
explosion or disappearance problems caused by deepening, and adds a new network, the feature 
pyramid network (FPN). Object detection is performed on the basis of feature maps of different 
sizes to improve the detection of small objects. However, the recognition accuracy of YOLOv3 
will decrease when dealing with a large number of targets or complex scenes.
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 YOLOv4(4) was proposed to address the shortcomings of YOLOv3. The Backbone part 
extracts image features and combines Darknet-53 with cross-stage partial DenseNet (CSPNet) to 
form CSPDarknet-53. CSPDarknet-53 improves the learning capabilities of convolutional neural 
networks (CNNs). CSPNet allows the model to obtain richer gradient fusion information and 
reduce computing time. The Neck part fuses the obtained shallow and deep features using 
spatial pyramid pooling (SPP) and the path aggregation network (PANet). The SPP part enhances 
the multiscale feature capturing by the model, and its functionality is to process objects with 
clear differences in size. PANet adds a layer of series connection to the FPN to fuse the original 
features to improve the detection of small objects while avoiding feature degradation. The Head 
part converts the features after the fusion by the Neck part to generate the final detection results, 
including bounding box prediction, target classification, and confidence evaluation. YOLOv4 
continues to be used with YOLOv3.
 YOLOv4 also uses Bag of Freebies (BoF) and Bag of Specials (BoS). BoF includes CutMix, 
Mosaic data enhancement, and DropBlock. CutMix combines parts of two different pictures to 
improve the model’s adaptability to different scenes. Mosaic data enhancement combines four 
different images to improve the model’s learning of targets at different scales. DropBlock 
partially shields the feature map, allowing the model to learn a partially occluded object. BoF 
improves the model accuracy without increasing the cost of inference time. BoS includes 
CSPNet and Mish activation functions, which slightly increase the inference time and improve 
the accuracy.
 YOLOv5(5) uses the PyTorch framework to facilitate development and use by users. YOLOv5 
is an optimized version of YOLOv3 and includes functions such as adaptive anchor frame 
calculation, Mosaic data enhancement, and Focus structure. The adaptive anchor frame can 
automatically calculate the anchor frame size suitable for the dataset to improve the accuracy of 
detection. The Focus structure uses the Focus layer in the Backbone. The Backbone extracts 
image features and cuts the image through Focus and increases the number of channels, reducing 
the extraction time of feature maps.
 YOLOv8(6) has an improved network architecture to address the shortcomings of previous 
generations of models and inherits the advantages of YOLOv5 for light weight, maintaining 
accuracy and reducing inference time. YOLOv8 has model versions of different sizes 
(YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x) that users can use in accordance 
with different scenarios. Among them, YOLOv8n is the smallest model (lightweight model) in 
the YOLOv8 series, having the lowest amount of calculation, although the accuracy of 
identification will be reduced; hence, it is suitable for use on devices with limited computing.
 A 640 × 640 RGB image is input to the Backbone for target feature extraction. The Backbone 
consists of three main components: the convolution + batch normalization + sigmoid linear unit 
(SiLU) (CBS) module, C2f module, and spatial pyramid pooling fast (SPPF). The CBS module 
comprises a standard 2D convolutional layer (Conv2D), batch normalization (BN), and the SiLU 
activation function. The SiLU function introduces nonlinearity during feature extraction, 
thereby enhancing the representational capacity of the extracted features and improving the 
model’s overall detection performance.
 The C2f module first processes the initial features through a CBS block. A portion of these 
features is temporarily held for fusion via Concat, while the remainder is passed to a Split 
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operation that divides the feature map into two branches. One branch bypasses further 
processing and is directly sent to Concat for subsequent feature fusion, preserving shallow 
features. The other branch undergoes multilayer bottleneck processing to perform deep feature 
extraction, enabling the model to capture semantic information at different scales. After this, the 
shallow and deep features are fused via Concat, followed by another CBS layer to refine the 
fused features and enhance the model’s recognition capability.
 In addition, the improved SPP module—SPPF—is incorporated to enhance feature extraction 
efficiency and accelerate model inference. This module integrates multiscale contextual 
information by applying a sequence of max-pooling operations. The process begins with a 
convolutional layer that reduces the dimensionality of the input feature map. The reduced feature 
map is then passed through several max-pooling layers with different receptive field sizes to 
capture spatial features at multiple scales. Finally, another convolutional layer restores the 
feature map to its original dimensions, facilitating effective multiscale feature fusion. This 
design improves the model’s ability to detect targets in complex environments by capturing both 
local and global contextual information more efficiently.
 The Neck module integrates both FPN and the path aggregation network (PANet) to achieve 
comprehensive multilevel feature fusion. FPN enhances detection capabilities by transmitting 
deep semantic features from the Backbone to shallower layers, thereby constructing a 
hierarchical multiscale feature pyramid. This top-down fusion strategy allows the model to 
effectively detect objects of various sizes by combining high-level contextual information with 
low-level spatial details. However, the unidirectional nature of FPN may lead to the loss of fine-
grained details during downward propagation, potentially hindering the detection of small or 
subtle targets. To overcome this limitation, PANet is employed to introduce a bottom-up 
information flow. By channeling precise localization cues from lower layers back to higher 
layers, PANet complements FPN’s top-down semantics with enhanced spatial accuracy. This 
bidirectional feature fusion ensures that both detailed positional information and abstract 
semantic features are preserved across all scales. As a result, the model’s overall detection 
accuracy is significantly improved, particularly in complex environments and scenarios 
involving small object detection.
 The Head module is responsible for the final stage of target detection and comprises three 
detection layers, each corresponding to multiscale fused feature maps. These layers are designed 
to detect objects of various sizes by extracting features at different spatial resolutions. High-
resolution feature maps are dedicated to identifying smaller objects, whereas low-resolution 
maps are optimized for detecting larger ones. This multiscale strategy enables the model to 
simultaneously detect targets across a broad size spectrum, thereby enhancing detection 
accuracy and robustness. YOLOv8 adopts a decoupled head architecture in which the processes 
of bounding box regression and classification are separated. This decoupling mitigates the risk 
of mutual interference during training, allowing each task to be optimized more effectively. To 
further improve bounding box prediction accuracy—especially for small targets—distribution 
focal loss (DFL) is employed. DFL models the bounding box regression task as a probability 
distribution, enabling more precise localization. In addition to the conventional anchor-based 
detection paradigm, YOLOv8 integrates an anchor-free detection framework, which directly 
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regresses object positions and sizes without relying on predefined anchor boxes. This dual 
detection strategy—combining both anchor-based and anchor-free approaches—enhances the 
model’s flexibility and detection capability across diverse object scales. As a result, YOLOv8 
demonstrates superior performance in detecting small objects and maintaining high accuracy in 
complex and cluttered environments.

2.2 GAM 

 GAM(7) mainly captures the global features in the image and relies on the global context to 
adjust each position in the feature map so that the model can clearly identify the target and focus 
on important positions. Furthermore, the semantics of the overall image are extracted by 
calculating the global average, and dynamic weight allocation is performed on the basis of local 
features, thereby achieving accurate global contextual attention guidance. GAM as shown in 
Fig. 1 mainly implements the weighted processing of features through two attention mechanisms, 
namely, channel attention and spatial attention. First, provide the input feature map F1 to the 
channel attention Mc to generate the channel-weighted weight Mc(F1). Multiply the channel-
weighted weight Mc(F1) with the feature map F1 element by element to obtain the channel-
weighted feature map F2. Then, provide the channel-weighted feature map F2 to the spatial 
attention Ms to generate the spatial weight Ms(F2), and multiply the channel-weighted feature 
map F2 and the spatial weight Ms(F2) element by element to obtain the feature map F3 of the 
final target position.

 ( )1 0 0= ⊗cF M F F  (1)

 ( )2 1 1= ⊗sF M F F  (2)

2.2.1 Channel attention

 Figure 2 shows that the spatial information of each channel is first compressed into a single 
global feature value through the global pooling layer, the global semantic information of each 
channel is next extracted, and then the compressed features are processed through the multilayer 

Fig. 1. (Color online) Global attention mechanism.
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perceptron (MLP). Linear transformation maps the generated channels to attention weights. 
These weights are then aligned with the original feature map through the inverse arrangement 
operation, and the weights are compressed to between 0 and 1 through the sigmoid activation 
function, which is applied to each channel of the original feature map. This processing can 
strengthen important channels, suppress interference from unimportant channels, and help the 
model focus on important features.

2.2.2 Spatial attention

 After channel attention processing, spatial attention, as shown in Fig. 3, is then used to 
process the spatial position in the feature map. Spatial attention uses two layers of 7 × 7 
convolutions to capture spatial contextual information in images. The first layer of convolution 
is responsible for expanding the detection range and capturing a wide range of spatial 
information in the feature map. The second layer of convolution is responsible for refining 
spatial features and will generate attention weights corresponding to spatial positions. After 
passing these weights through the sigmoid activation function, the values   are compressed to 
between 0 and 1 and applied to the spatial position of the feature map. Such processing can 
emphasize local features in the image, suppress interference from the background or irrelevant 
targets, and help the model focus on local features in the image.

3. Proposed Method

3.1 Network architecture

 We use the YOLO target detection method, which has the advantages of high immediacy and 
accuracy, so the YOLOv8 model is chosen as the basis for modification.
 We take this thesis(8) as the building block reference and adopt the 8.2.90 version of 
YOLOv8n to introduce GAM into YOLOv8. In the Backbone, the feature map is weighted to 
enhance the ability to identify important features in the image. As shown in Fig. 4, we add the 
modified GAM to the C2f modules of 40 × 40 pixels × 512 channels and 20 × 20 pixels × 512 
channels in the Backbone, respectively. To clearly identify the target in the natural environment, 
color feature weighting is added to GAM. This model enhances the color of the green iguana to 
highlight the color features of the target, so that subsequent spatial features can identify the 
target from the natural environment. A new 160 × 160 pixel detection head is added to the Head 
part to ensure that large and small targets can be identified and also to enhance detection in 
complex environments.

Fig. 2. (Color online) Channel attention.
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3.2 Data preprocessing and enhancement

 We use the green iguana part of Kaggle’s public dataset.(9) Since this target has high alertness 
and is difficult to photograph, the collected public datasets are organized. The public dataset 
used lacks multitarget images, so some images are captured from the Internet(10,11) to obtain 
more images to increase the number. The sorted dataset will be preprocessed and enhanced 
through the Roboflow platform to ensure the image diversity of the dataset. Since targets are 
difficult to identify in the natural environment, the model’s identification capabilities are 
improved through data preprocessing and enhancement. In the preprocessing part of this work, 
because the number of image pixels in the collected dataset is 512 × 512, the number of pixels of 
the images is uniformly adjusted to 640 × 640 to ensure the consistency of the image input into 
YOLOv8 and to avoid inconsistency in training results caused by different image sizes. The data 
enhancement involves horizontal and vertical flipping, rotation (−15–+15%), hue adjustment 
(−15°–+15°), brightness adjustment (−15–+15%), and noise (up to 0.1%), allowing the model to 
clearly identify targets at different viewing angles and in various environments.

Fig. 3. (Color online) Spatial attention.

Fig. 4. (Color online) Overall structure of the identification method.
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3.3 Channel attention

 The YOLOv8 model has the Backbone, Neck, and Head structures, which correspond to 
different tasks. We import the modified GAM into the Backbone of YOLOv8 to strengthen the 
model’s important features in green iguana identification. Compared with the original YOLOv8, 
the modified GAM is added after the 40 × 40 pixel × 512 channel and 20 × 20 pixel × 512 
channel C2f modules in the YOLOv8 Backbone. This GAM addition improves the model’s 
ability to capture global and local features by combining channel attention and spatial 
attention.(12–15) Channel attention dynamically adjusts global information to each channel for 
weight distribution, strengthens the model’s focus on important channels, and suppresses the 
effect of unimportant channels. Spatial attention captures the characteristics of each spatial 
location in the image through 7 × 7 convolution and generates corresponding weight maps to 
strengthen the characteristics of important areas. To improve the recognition effect of targets in 
the natural environment, as shown in Fig. 5, we add color feature weighting to GAM to highlight 
the color features of the green iguana, and combine spatial attention to focus on the local features 
of the target. This allows the model to enhance its ability to identify targets when the background 
and target colors are similar. Such improvements are particularly helpful for target detection in 
natural environments, ensuring the model’s recognition accuracy in complex environments.

3.3.1 Improved GAM

 As shown in Fig. 6, the feature map is converted from the RGB image to the HSV color space 
and the color feature information in the image is extracted. The HSV color space can divide 
colors into hue (H), saturation (S), and brightness (V), capturing subtle differences in target 
color characteristics, particularly in complex backgrounds where the target is similar to the 
natural environment. Then, an adaptive global pooling layer is applied to the HSV feature map 
to compress the spatial information of each channel into a single global feature value and extract 
the global semantic information of color. The global color feature value is nonlinearly 
transformed through the MLP to generate a dynamic color feature weight for the environment. 
The color feature weight represents the importance of the target color channel. It is compressed 
by the sigmoid function to limit the color feature weighting to between 0 and 1. Finally, the 
generated color feature weight is applied to each channel of the feature map to strengthen the 
target color feature.

Fig. 5. (Color online) Improved GAM.
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4. Experiment Analysis

4.1 Experimental software and hardware

 The experiments were conducted on the Windows 10 operating system, using Anaconda to 
create a virtual environment for deep learning model training and testing. The detailed 
configurations of the software and hardware used in the experiment are summarized in Tables 1 
and 2, respectively. We use the preprocessed and enhanced dataset, and YOLOv8n is used as the 
basis for the training and testing of the dataset. The image size is uniformly 640 × 640 pixels for 
training and testing. The dataset data are divided into approximately 8:1:1 corresponding to 3156 
images in the training set and 345 images each in the test and verification sets to detect the target 
and test the effect of the model.

4.2 Experimental values

 We obtained the following data through experiments; they are the model results of the 
original YOLOv8 version 8.2.90 and the model results of YOLOv8 with the modified GAM 
and the new hierarchical detection head. These two models were compared and analyzed in 
terms of their green iguana detection performance: F1–confidence curve, precision–confidence 
curve, precision–recall curve, recall–confidence curve, and various loss (loss) curves during 

Fig. 6. (Color online) Color feature weighting.

Table 1
Software device configuration.
Software Version
Python 3.10.14
PyTorch 2.4.1
CUDA 11.8
CuDNN 8.9.7

Table 2
Hardware device configuration.
Hardware Specification
CPU Intel i5-12400
GPU Nvidia-RTX-3060-Ti
RAM DDR4-32GB (16GBx2)
Storage 1TB SSD
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the training process. These indicators were used to evaluate the performance of the model in 
training. Figures 7(a) and 7(b) show the various loss values   of YOLOv8 before and after 
modification, respectively. The box_loss term is the accuracy of the position of the target 
bounding box when using the slowest model. The smaller the value, the more accurate the 
model is in predicting the target. Partly because we only targeted green iguanas, the lower the 
classification accuracy, the more accurate the targeting of the target. The goals for all metrics 
were the same as those in real applications. There are 95% average accuracies across multiple 
IoU metrics (0.5 to 0.95), and we also show the performance of the main models at different 
detection accuracies in Fig. 7.
 We compared the results for YOLOv8n before and after modification. F1-Score, Recall, and 
mAP (@0.5) were used to compare model benchmarks. Most people directly use YOLOv8 for 
training. We added a modified GAM and a 160 × 160-pixel detection head to the model, 
compared it with the original YOLOv8, and evaluated the advantages and disadvantages of the 
modified YOLOv8. The Accuracy, Precision, Recall, and F1-Score of the two models are 
calculated using confusion matrices. The number of confusion matrices used for performance 
evaluation is summarized in Table 3 to facilitate subsequent comparison and analysis. As 
shown in Table 4, the Recall of the modified YOLOv8 increases from the original 0.9 to 0.93, 
indicating that the model effectively reduces the number of missed detections of targets. 
Precision drops from the original 0.91 to 0.87, indicating that the model captures more 
potential candidate frames when the target is very similar to the background. At the same 
time, the number of false detections still increases when the colors are very similar. The F1-
Score still remains at 0.9, indicating that the model had not declined in terms of comprehensive 
values. mAP(@0.5) increases from the original 0.945 to 0.964, indicating that the model 
demonstrates higher accuracy when there is greater overlap between the predicted frame and the 
ground truth annotation (IoU > 0.5), and it consistently identifies targets even in complex 
background environments.

Fig. 7. (Color online) (a) Loss values of unmodified YOLOv8. (b) Various loss values of YOLOv8 after 
modification.

(a) (b)
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4.3 Experimental results

 After the experiment, we compared the detection effects of the original YOLOv8n model and 
YOLOv8n with the modified GAM and the 160 × 160-pixel detection head. In Fig. 8, we can see 
the difference between the models in green iguana detection. (a) Compared with (d), the original 
YOLOv8 model cannot identify the target within a complex background. The modified model 
can effectively distinguish the target from the background with similar colors and has better 
background suppression. (b) Compared with (e), the original YOLOv8 model makes repeated 
judgments and misjudgments. The modified model can accurately locate the target. Comparing 
(c) and (f), we can see that the original model cannot distinguish or clearly identify the targets 
when there are multiple targets. The modified model can accurately identify the targets in the 
same situation.

Table 3
Number of confusion matrices used for YOLOv8 before and after modification.

TP FP FN TN
YOLOv8 model before modification 3163 296 347 0
The proposed method 3291 489 219 0

Table 4
Performance evaluation indicators of YOLOv8 before and after modification.

Accuracy Precision Recall F1-Score mAP(@0.5)
YOLOv8 model before modification 0.831 0.91 0.9 0.9 0.945
Proposed method 0.822 0.87 0.93 0.9 0.964

Fig. 8. (a)–(c) Detection images obtained using YOLOv8 before modification. (d)–(f) Modified YOLOv8 detection 
maps.
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5. Conclusions

 We improved YOLOv8 with the addition of GAM to the Backbone of the YOLOv8 model, 
as well as an attention mechanism to the Backbone’s 40 × 40 pixel × 512 channels and 20 × 
after C2f with 20 pixels × 512 channels. The model effectively improved the accuracy of target 
and false detection in natural environments. An additional 160 × 160-pixel detection head was 
added to the model to enhance the recognition accuracy of targets within complex backgrounds 
and the recognition accuracy of small targets. The experimental results showed that the 
modified model’s indicators improved; the two indicators Accuracy and Precision declined 
slightly. Such a decline allows the model to identify more targets from the environment. While 
the F1-Score was maintained, indicators such as Recall and mAP (@0.5) were slightly 
improved compared with those of the original YOLOv8 model, indicating that the feature 
extraction function of the modified model can capture the color, texture, and shape 
characteristics of green iguanas in complex backgrounds, thereby enhancing the model 
accuracy for detecting targets and improving the stability and accuracy of identification in 
natural environments. In low-contrast or complex background environments, the green iguana 
target and background can be effectively identified, reducing erroneous detection and missed 
detection situations.
 The YOLO model is constantly being updated. It is currently at the YOLOv11 version. 
YOLOv11 is improved upon the YOLOv8 version. The accuracy is slightly improved and the 
CPU execution speed is considerably improved. Compared with the GPU, it is slightly slower 
but maintains the same accuracy. At the same time, using fewer parameters reduces the 
running time, but the new model will still be facing difficulties depending on the environment 
in which it is used. Future research will further the understanding of the attention mechanism 
in complex environments and modify it to improve the recognition accuracy, especially target 
detection in complex backgrounds and natural environments. It is hoped that low-cost 
equipment can be used for real-time identification and incorporating more ecological data, 
such as temperature changes and humidity in the ecological environment, to achieve the long-
term monitoring and data accumulation of species. In future research, we will further optimize 
the adaptability of the model in various seasons and climate conditions, evaluate the stability 
of the model, and evaluate the performance of the model under long-term environmental 
changes. As the changes in the ecological environment intensify, it is necessary to protect the 
ecological environment and provide early warning to enable timely responses to ecological 
changes.
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