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 The integration of large-scale wind power into modern grids gives rise to a complicated issue 
due to meteorological variability, threatening power stability and security. Although these 
adverse effects can be somehow mitigated by leveraging the geo-spatiotemporal distribution 
through the rapid response of energy storage devices, the wind power fluctuations are being 
increasingly taken up in public debate, even influencing energy prices and leading to acceptance 
problems. For this reason, in this work, we aim to minimize wind power fluctuations using 
improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) 
and Hilbert spectral analysis in a hybrid energy storage system (HESS). Initially, K-means 
clustering is used to find cluster center positions. Each cluster, median fluctuations, and noise 
levels are then analyzed from typical daily data. Statistical analysis to smooth wind output 
power is conducted, incorporating a weighted combination of moving average filtering (MAF) 
and anti-pulse interference average filtering (AIAF) algorithms. The HESS reference power is 
decomposed into various intrinsic mode functions (IMFs) spanning high- to low-frequency 
bands using ICEEMDAN methods. The time–frequency characteristics of each IMF are derived 
using Hilbert transform (HT) analysis. High-frequency power fluctuations are managed by a 
supercapacitor, whereas the battery handles low-frequency components. The effectiveness of the 
proposed strategy is validated using actual sampling data, demonstrating that the impact of wind 
power fluctuations on grid stability can be significantly reduced.
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1. Introduction

 As global climate change intensifies, decarbonization has become an urgent priority 
worldwide. Among renewable energy options, wind power has gained prominence owing to its 
clean energy generation and pivotal role in advancing sustainable power systems. Its abundant 
availability and ecofriendly attributes make wind power a pivotal element in efforts to mitigate 
climate change and energy sustainability. Consequently, optimizing wind energy utilization is 
essential for enhancing its contribution to a cleaner, more resilient energy landscape.(1) On the 
other hand, energy storage batteries are essential for the temporal and spatial translation of 
electric energy, as they help to smooth fluctuations in wind power output. However, relying on a 
single battery for energy storage can lead to excessive capacity requirements, driving up 
investment costs. Additionally, frequent charging and discharging, along with a high depth of 
discharge (DOD), can significantly shorten the battery’s cycle life and impair its normal 
operation. To address these issues, optimizing the configuration of energy storage systems 
(ESSs) to balance performance, cost, and longevity effectively is crucial.(2) 

 In recent years, ongoing research has been aimed at developing strategies for the optimal 
deployment of hybrid energy storage systems (HESSs) to achieve maximum efficiency and 
reliability.(3,4) Currently, numerous researchers are focused on the control strategies for HESSs 
to stabilize power source f luctuations and optimize the capacity configuration. Some 
achievements have contributed to enhancing the operational efficiency and reliability of HESSs 
in managing power output fluctuations.(5,6) For instance, the low-pass filtering principle has 
been employed to allocate energy storage power; however, it may lead to filtering delays if the 
time constant is not selected appropriately. Alternatively, the discrete Fourier transform (DFT) 
has been utilized to decompose unbalanced wind power, but it requires the presetting of basis 
functions, which increases the complexity of the optimization process.(7,8) Huang et al. 
introduced wavelet decomposition methods for HESS capacity configuration.(9) Yanan et al. first 
applied wavelet decomposition to determine the reference power for a HESS, followed by a 
secondary correction using a fuzzy controller to achieve a balanced power distribution within 
the HESS.(10) However, the results were very sensitive to the choice of wavelet bases. Also, 
wavelet decomposition is limited to processing linear nonstationary signals. Furthermore, 
empirical mode decomposition (EMD) combined with neural networks (NN) has been used to 
allocate HESS power, but EMD may suffer from mode mixing, affecting the accuracy of the 
energy storage configuration.
 The anti-pulse interference average (AIAF) method was proposed to smooth the original 
wind power and then compensate for the low accuracy of EMD using DFT, ultimately allocating 
the energy storage capacity.(11) However, the AIAF may cause a certain delay during the process. 
A combination of moving average filtering (MAF) and EMD was suggested to maximize 
benefits for the energy storage capacity configuration. Poor suppression and filtering delays may 
occur because the MAF is ineffective for high-frequency signals. Variational mode 
decomposition (VMD) was reported to allocate the internal power of HESS. Although it can 
effectively solve the problem of modal aliasing, presetting of the modal order in the decomposed 
model was required.(12) Therefore, poor adaptability cannot be avoided. In complete ensemble 
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empirical mode decomposition with adaptive noise (CEEMDAN), auxiliary Gaussian white 
noise was introduced to improve the signal decomposition accuracy, which reduced 
reconstruction errors. A CEEMDAN-based power allocation strategy was developed wherein 
mutual information entropy was employed to partition HESS power into distinct frequency 
bands.(13) However, it cannot intuitively indicate the occurrence of mode mixing between 
adjacent modal components. 
 To address the current research shortcoming, we propose a novel HESS architecture in which 
battery and supercapacitor technologies are combined to stabilize wind power. The framework 
utilizes K-means clustering of historical generation data to establish typical operation modes, 
with scenario selection optimized for maximum noise conditions through median-based 
fluctuation analysis. The MAF and AIAF weighted filtering algorithms were applied to obtain 
wind power, grid-tied power, and HESS reference power. The EEMD, CEEMDAN, and 
ICEEMDAN decomposition techniques were compared. Through ICEEMDAN and Hilbert 
transform processing, we systematically separate the HESS power requirements into high- and 
low-frequency elements for optimal storage allocation. The high-frequency component is 
allocated to the supercapacitor, while the low-frequency component is assigned to the storage 
battery. Actual data is used to demonstrate the effectiveness of the energy storage configuration.

2. Model of HESS Power Generation System

2.1 Fundamentals of wind and energy storage system

 This study is focused on centralizing energy storage allocation at the point of interconnection 
between wind farms and the main power grid. Figure 1 shows the complete topological layout of 
the combined wind power and energy storage system. The selection of lead-acid batteries over 
lithium-ion batteries was driven by their cost-effectiveness, resulting in lower capital expenditure 
for the system. In this context, Pwind(t) represents the initial output power, Phess(t) denotes the 
reference power of the HESS, Pbat(t) represents the battery’s reference power output, Psc(t) is the 
reference power of the supercapacitor, and Pgrid(t) refers to the reference power of the grid-tied 
wind system.
 Equations (1) and (2) are derived from the power relationships shown in Fig. 1.

 ( ) ( ) ( )grid wind hessP t P t P t= +  (1)

 ( ) ( ) ( )hess bat scP t P t P t= +  (2)

From Eq. (1), it is evident that the difference between the wind grid-connected reference power 
and the original wind output power constitutes the reference power of the HESS. When 
Phess(t) > 0, the HESS discharges; in contrast, when Phess(t) ≤ 0, the HESS charges.
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2.2 Standards for wind power grid integration

 According to wind power grid connection regulations around the world, wind farms must 
maintain stable output. For example, the grid-connected power with specific standards is defined 
for 10-min and 1-min intervals, as detailed in Table 1.(14) This ensures that active power 
variations remain within specified thresholds, thereby safeguarding the stability and reliability 
of the power system.

2.3 Scene selection based on K-means clustering algorithm

 Developed by MacQueen (1967), the K-means algorithm is a foundational technique in 
unsupervised learning, renowned for its simplicity and effectiveness in clustering analysis. Its 
widespread adoption stems from its ability to efficiently partition datasets into a predetermined 
number of distinct clusters, each treated as an independent subgroup. This decomposition of 
complex data into simpler, homogeneous clusters not only enhances interpretability but also 
significantly reduces computational overhead. The algorithm’s step-by-step procedure is 
systematically outlined in the flowchart presented in Fig. 2.

2.4 Typical days and data selection

 The K-means clustering algorithm was implemented to analyze wind power data. To facilitate 
the smoothing of power fluctuations for typical days in subsequent studies, representative days 
were chosen by optimizing both the cluster centroid proximity and volatility levels. Here, 
fluctuations are quantified as the absolute differences between consecutive one-min power 
measurements, while cumulative daily fluctuations represent the aggregate sum of these 
variations. For each cluster, the sample exhibiting the median fluctuation value was designated 
as the typical day dataset. The typical day dataset with the highest noise level is selected for 

Fig. 1. (Color online) Diagram of wind and energy storage system structure.
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subsequent analysis. The block diagram illustrating the typical day and data selection 
methodology is shown in Fig 3.

Table 1
List of wind power grid integration standards in major countries.

Country Wind power grid integration standards
United States Maintain instantaneous ramp rates below 10% of total installed capacity per 1 min
Canada Maintain instantaneous ramp rates below 10% of total installed capacity per 1 min
Denmark Maintain instantaneous ramp rates below 5% of total installed capacity per 1 min
Germany Maintain instantaneous ramp rates below 10% of total installed capacity per 1 min
United Kingdom 1-min power variation threshold: 10 MW & 1-min/10-min ramp rate ratio: ≤3:1

China

Installed capacity <30 MW: Maximum 10-min power deviation: 10 MW & Maximum 1-min 
power fluctuation: 3 MW
Installed capacity 30–150 MW: Maximum 10-min output deviation: 33.3% of rated capacity & 
Maximum 1-min output change: 10% of nameplate capacity
Installed capacity >150 MW: 10-min power fluctuations within 50 MW & 1-min power 
fluctuations below 15 MW

Fig. 2. Flowchart of K-means algorithm scene selection.
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3.	 Wind	power	fluctuation	suppression	methods

 The active power of the wind power station must meet the grid-tied requirements outlined in 
Sect. 2.2. Fluctuations across distinct time resolutions (1-min and 10-min intervals) are analyzed 
to assess both rapid variability and sustained deviations, with comparative results presented in 
Table 1. To achieve a smooth active power curve representing the grid-tied wind power, filtering 
is carried out. In this study, the raw wind output power is treated as a noisy signal to be filtered 
out. 

3.1 MAF method

 By the MAF technique, the mean of all values within a specified time window is calculated, 
progressing sequentially to produce the expected output as the window advances.(15) In the 
context of wind power output, the power data is sampled following the MAF principle. Each 
iteration forms a new data array of length by removing the oldest data point (first in, first out) 
and computing the arithmetic mean of the new array. Figure 4 shows the block diagram of MAF. 
This process is repeated to generate subsequent data arrays, ultimately yielding a highly smooth 
output for wind power generation.

Fig. 3. Flowchart of typical day and data selection.
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 The grid-tied wind power Psli(t) used to smooth wind power output is expressed as

 ( )
2
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L
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

   (3)

where L is the moving filtering window, treated as an even number here.

3.2 AIAF method

 The wind power output signal undergoes preprocessing by AIAF. It collects M data samples, 
eliminates outlier values (maximum and minimum), and computes the arithmetic average of the 
residual data points. The resultant data array is then produced, yielding a smooth output for wind 
power generation. The grid-tied wind power Pmid(t) derived from AIAF for the suppression of 
wind output power is represented by 

 , ,
1 ,

2
( ) ( ) ( 1) ... ( )mid wind wind wind wind max wind minM

P t P t M P t M P t P P  −
= − + − + + + − −  (4)

where Pmid(t) denotes the grid-tied wind power derived using the AIAF technique. The variable 
M denotes the cardinality of the filtered data subset. Pwind, max and Pwind, min correspond to the 
maximum and minimum values within the M filtered dataset, respectively. The index t counts 
each wind power measurement Pwind(t), with one sample recorded every minute.

3.3	 Weighted	filtering

 While the aforementioned filtering methods can smooth the wind power output signal 
effectively, they still present certain issues. Selesnick and coworkers proposed a power 
fluctuation smoothing algorithm with a combination of low-pass filtering and least-squares 
fitting. It can mitigate the time delay problem of low-pass filtering and the smoothing limitations 
of least-squares fitting.(16) Hence, we combine the advantages of MAF and AIAF. The weights of 
these methods are dynamically adjusted on the basis of the degree of wind power fluctuation, as 
shown in 

 , ( ) (1 ) ( ) ( ),wind grid mid sliP t P t P tθ θ= − +  (5)

where θ is the weight of the filtering model.

Fig. 4. MAF block diagram.
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Here, h1 and h2 are the maximum and minimum thresholds of the wind output standard 
deviation, respectively; (0,1)µ ∈ . In Eq. (7), σ(t) is the standard deviation of the wind power 
output. The greater the wind power fluctuation, the greater σ(t) is, where n is the wind power 
dataset number. windP  is the average value of the wind power output.

 ( )2
0

( )1( ) windwind

n

t
P t Pt

n
σ

=
−= ∑  (7)

 When σ ≤ h1 and θ = 0, AIAF can meet the wind power fluctuation requirements. If the 
degree of fluctuation becomes increasingly severe, θ increases with the increase in σ. At this 
stage, incorporating a smoother MAF method is necessary to mitigate wind output fluctuations. 
When σ ≥ h2, the weight θ no longer changes, and its value is fixed as μ.

4. Decomposition process using modal analysis

 Accurate real-time monitoring of wind power generation is critical for efficient energy 
storage management and signal analysis. Contemporary wind installations employ 
comprehensive sensor arrays featuring precision power measurement devices and advanced 
anemometry systems. The acquired data forms the basis for our fluctuation mitigation approach, 
undergoing initial weighted filtering before ICEEMDAN decomposition and Hilbert spectral 
analysis. The reliability of this control strategy is fundamentally dependent on the measurement 
accuracy and temporal resolution of the sensor infrastructure.

4.1 ICEEMDAN decomposition 

 EMD is a method particularly suitable for analyzing nonlinear data. Compared with 
traditional methods, EMD is more intuitive, direct, and adaptive.(17) A novel decomposition 
method combines ICEEMDAN and the Hilbert transform (HT), resulting in the enhanced 
ICEEMDAN-HT. The modified Hilbert envelope signal is subsequently combined with an 
enhanced residual network architecture through integration.
 Building upon EEMD’s limitations, Torres et al. developed CEEMDAN, which incorporates 
adaptive non-Gaussian white noise at each decomposition stage. This advanced technique 
generates both intrinsic mode functions (IMFs) and associated residual signals through its 
iterative process.(18) In EEMD, decomposing a signal containing noise can result in variations in 
the IMF components because of the different ways of adding noise. CEEMDAN effectively 
resolves this issue.
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 Two new operators are introduced: M(∙) and Ek(∙). M(∙) represents the local mean value of the 
original signal obtained through EMD, while Ek(∙) constructs the EMD decomposition model. 
Below is a step-by-step explanation of the ICEEMDAN decomposition process.

Step 1: Add Gaussian white noise to the original signal.

 ( )10i iP E WP β= +  (8)

P represents the input signal, β0 denotes the standard deviation of injected Gaussian noise, Wi 
represents a zero-mean Gaussian white noise process with null variance, and E1(∙) is the operator 
extracting the first IMF.

Step 2: Determine the initial residual value:

 ( )
1

1
1 ,i

N

i
r M P

N =
= ∑  (9)

where N denotes the number of data points in the original signal P.

Step 3: In the ICEEMDAN framework, each mode corresponds to a distinct frequency band, 
with k = 1 denoting the highest-frequency intrinsic mode function. 

 1
1

1 1
1 ( )

N

i
IMF E P P r

N =
= = −∑  (10)

Step 4: When k is set to 2, the second residual is obtained by calculating the local mean of r1 
after incorporating Gaussian white noise through the EMD process.

 ( )( )2
1

2 1 1
1 N

i
ir M r E W

N
β

=
= +∑  (11)

The second modal component is derived by calculating the difference between r1 and r2.

 ( )( )2 1 2 1 1 1 2 iIMF r r r M r E Wβ= − = − +  (12)

Step 5: For decomposition levels k = 3 to K, the ICEEMDAN procedure computes both the k-th 
residual component rk and the corresponding k-th intrinsic mode function IMFk.

 ( )( )1 1
1

1 N

i
k k k k ir M r E W

N
β− −

=
= +∑  (13)

 1k k kIMF r r−= −  (14)
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 Decomposition proceeds cyclically until the residual meets monotonicity criteria, at which 
point the original signal is resolved into a collection of oscillatory modes and a trend component.

 
1

N

i
n iP r IMF

=
= +∑  (15)

4.2 Extraction of instantaneous frequency from Modal function

 The HT method is a highly effective approach for processing nonlinear signals. It not only 
facilitates the analysis of the signal’s frequency domain characteristics but also enables the 
extraction of both the real and imaginary power spectra of the original signal.(19) To enhance the 
accuracy and optimize the capacity allocation, selecting an optimal frequency partitioning 
approach that capitalizes on ICEEMDAN’s distinctive decomposition characteristics is crucial. 
The developed technique successfully minimizes mode mixing artifacts between adjacent 
instantaneous frequency components in joint time–frequency analyses. The power signal of 
HESS is represented as

 
1 1
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P t IMF t r t e t r t
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 For the modal component IMFi(t), the HT to obtain the corresponding H[IMFk(t)] is

 ( )1[ ( )] .
1

k
k

IMFH IMF t dτ
τ

τ
∞

+

−

∞
=
π −∫  (17)

 The corresponding analytical signal z(t) is constructed through the HT:

 ( ) ( ) [ ( )] ( )exp[ ( )],k k k k kz t IMF t jH IMF t t j tϕ φ= + =  (18)

 2 2( ) ( ) [ ( )],k k kt IMF t H IMF tϕ = +  (19)

 
[ ( )]( ) arctan ,

( )
k

k
k

H IMF tt
IMF t

φ =  (20)

 ( )( ) .k
k

d tt
dt
φ

ω =  (21)

In Eq. (19), φk(t) denotes the instantaneous amplitude envelope of each IMF and ϕk(t) represents 
the instantaneous value of each IMF phase. ωk(t) represents the instantaneous value of each IMF 
frequency, and finally, the Hilbert time–frequency spectrum H(ω,t) expressed in polar 
coordinates is obtained. The analysis of the time–frequency spectrum reveals the temporal 
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evolution and spectral characteristics of the power signal across all frequency bands. The 
specific law is shown as

 
1

( , ) Re ( )exp ( ) .k

n

k
H t t j k t dtω φ ω

=

   =     
∑ ∫  (22)

4.3 Internal power distribution control strategy for batteries and supercapacitors

 Through the analysis presented in Sect. 5.2, the process of extracting instantaneous frequency 
characteristics of IMFs by the ICEEMDAN-HT method is illustrated in Fig. 5. Initially, the 
instantaneous frequency–time curves IMF1 to IMFk are derived, ranging from high- to low-
frequency bands. Subsequently, the curves IMFm and IMFm+1, which have no or minimal 
modal mixing, are selected from these curves. The curve IMFm and the modal components with 
instantaneous frequencies higher than IMFm are then accumulated and reconstructed to be 
absorbed by the supercapacitor. Meanwhile, IMFm+1 and the modal components with 
instantaneous frequencies lower than IMFm+1 are accumulated to be absorbed by the battery. 
Consequently, the result of power allocation for the HESS is determined to be

 1

1

( ) ( ),

( ) ( ) ( ),

m

sc k

bat n

k
n

k m

P t IMF t

P t IMFk t r t

=

= +


=



 = +


∑

∑
 (23)

Fig. 5. Process of ICEEMDAN-HT extraction of IMF instantaneous frequency.
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where Psc(t) is the reconstructed supercapacitor reference power, Pbat(t) is the reconstructed 
battery reference power, and rn(t) is the residual. The strategy of power allocation for HESS 
described in Sects. 2.2–2.7 is illustrated in Fig. 6.

5. Simulation Results and Discussion

5.1 Clustering in generating typical day

 The K-means clustering algorithm was applied to 1-min wind power data from a 2 MW 
system over an entire year. The total number of days, probability, fluctuation, and noise levels 
for different cluster configurations are presented in Table 2. Table 2 presents the results of a 
statistical analysis of four clusters for various parameters. The “Total Days” row quantifies the 
number of days each cluster was observed, with Cluster Three exhibiting the highest count (134 
days) and Cluster One the lowest (49 days).

Fig. 6. Power allocation strategy for HESS.

Table 2
Results of a statistical analysis of four clusters.
Cluster One Two Three Four
Total days 49 71 134 111
Total days probability (%) 13.42 19.45 36.71 30.41
Median fluctuation 42 17 67 63

Typical Day 1 Typical Day 2 Typical Day 3 Typical Day 4
Highest noise level 0.5676 0.62228 0.19159 0.2503
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“Total Days Probability” represents the proportion of each cluster within the dataset, where 
Cluster Three accounts for the largest percentage (36.71%). “Median Fluctuation” shows the 
median fluctuation values across clusters, which are used to identify a typical day within each 
cluster on the basis of the median fluctuation value. Finally, “Highest Noise Level” indicates the 
maximum noise levels recorded on the selected typical day for each cluster, with Cluster Two 
demonstrating the highest noise level (0.62228). For further analysis, the typical day from 
Cluster Two is selected.
 The clustering analysis results visualized in Fig. 7 demonstrate the grouping of daily wind 
generation patterns, with each cluster’s member profiles depicted in unique colors. Cluster 1 
exhibits stable power generation with a clear diurnal pattern, indicating consistent wind speeds 
and reliable power production. Cluster 2, however, shows highly irregular generation with abrupt 
fluctuations, suggesting unstable wind conditions and inefficient power output. Cluster 3, with 
the highest number of days, experiences significant turbulence, leading to chaotic power 
fluctuations and challenges in maintaining a steady grid supply. Cluster 4 demonstrates 
moderate variability, with noticeable but more structured fluctuations than Cluster 3. While not 
as stable as Cluster 1, power output is more manageable than the turbulence of Cluster 3. The 
characteristic wind generation patterns for all four clusters are presented Fig. 8. 

5.2	 Suppression	of	wind	power	fluctuation

 The MAF method and weighted filter method are employed to smooth the wind power 
output. With the window parameters set to L = M = 20, the impact of the MAF method on 
reducing wind power fluctuations is depicted in Fig. 9. The original wind power output curve 
presents a smoother trend, with significantly diminished random fluctuations. Figure 10 
illustrates that the signal remains unsmoothed at higher frequencies because of the low-pass-

Fig. 7. (Color online) Results of K-means clustering.
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filter nature of the MAF method and its inherent delay issue. The effect of suppressing wind 
power fluctuations by the weighted filtering method is illustrated in Fig. 8. It is evident that the 
grid-tied wind power, after being processed by weighted filtering, closely aligns with the 
original output power, resulting in a signal that is smoothed even at higher frequencies. This is 
particularly noticeable in the figures where abrupt changes in the output power are mitigated.
 As observed in Fig. 9, there is no time delay, and the original wind power output is 0.697 MW 
at approximately 00:46 mins. After applying MAF, the grid-connected wind power increases to 
0.885 MW, requiring the HESS to release 0.188 MW to smooth power fluctuations. Following 
weighted filtering, the grid-connected power is reduced to 0.727 MW, significantly lowering the 

Fig. 8. (Color online) Typical daily wind power curves.

Fig. 9. (Color online) Effect of stabilizing wind power fluctuations by moving average.
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required energy release to 0.03 MW. The proposed weighted filtering method reduces the energy 
storage demand by approximately 0.185 MW, minimizing unnecessary output. Experimental 
results indicate this methodology not only decreases capital expenditures but also extends the 
operational lifespan by optimizing component utilization.
 In Table 3, the maximum wind power fluctuations obtained with the MAF method within 1 
min and 10 min are 0.0866 and 0.6769 MW, respectively, both of which comply with grid-tied 
requirements. On the other hand, the maximum wind power fluctuations when using the 
weighted filtering method within 1 min and 10 min are 0.0667 and 0.5962 MW, respectively, 
both meeting grid-tied requirements. Although both methods can effectively suppresses wind 
power fluctuations, the weighted filtering method presents a slightly better performance than the 
MAF method. 

5.3 Analysis of HESS power decomposition and frequency domain 

 Following the acquisition of the reference grid-connected wind power, the HESS reference 
power is computed as the difference between this reference and the original wind output. 
Figure 11 shows that the HESS operational behavior exhibits nonstationary and nonlinear power 
exchange dynamics. The HESS reference power is decomposed using ICEEMDAN with a noise 
ratio of 0.1, 100 noise additions, and 5000 iterations. Figure 12(a) shows nine IMFs in descending 
frequency and a residual, while Fig. 12(b) presents their spectra obtained via fast Fourier 
transform. The HESS power is divided into ten frequency bands from 0 to 0.5 Hz.
 To highlight the advantages of ICEEMDAN over EEMD and CEEMDAN in the HESS 
configuration, EEMD is used to decompose the reference power. Figure 13 shows modal aliasing 
between adjacent components, making frequency separation challenging. Figure 14 shows that 
CEEMDAN reduces aliasing between IMFs 10 and 11 compared with EEMD, but some aliasing 
remains, affecting the battery cycle life. ICEEMDAN decomposition is presented in Fig. 15; it 

Fig. 10. (Color online) Effect of stabilizing wind power fluctuations by weighted filtering.
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yields nine IMFs and one residual. Unlike previous methods, IMFs 8 and 9 exhibit minimal 
aliasing, allowing for clear separation. IMF8 and higher-frequency components are assigned to 
the supercapacitor, while IMF9 and the residual are allocated to the battery. 
 Figure 13 shows that IMF6 approaches zero, revealing a fundamental EEMD limitation due 
to its noise-assisted decomposition structure. This oscillatory loss stems from incomplete mode 
alignment and will affect the reconstruction precision. CEEMDAN and ICEEMDAN overcome 
these limitations through the use of improved decomposition algorithms.
 Table 4 presents the results of a comparative analysis of EEMD, CEEMDAN, and 
ICEEMDAN based on key performance metrics. Among these algorithms, ICEEMDAN attains 
the lowest OI (0.80074), indicating better mode separation. It also exhibits the highest ER 
(0.92818), suggesting superior energy preservation. Additionally, it significantly presents the 
lowest MSE (6.0789 × 10−34) and achieves the highest SNR (316.59).
 Figures 16 and 17 present the outcomes of applying the operational strategy of the hybrid 
energy storage system (HESS) through ICEEMDAN-based component allocation. Figure 16 
shows the decomposition results, where high-frequency intrinsic mode functions (IMFs 1–8) are 

Table 3
Power fluctuation using various methods.
Period of time Power fluctuation status Original MAF method Weighted filtering method

1 min

Maximum power 
fluctuations (MW) 0.5165 0.0866 0.0667

Maximum grid-connected 
power fluctuation rate (%) 84.1654 14.1125 10.8724

10 min

Maximum power 
fluctuations (MW) 1.3250 0.6769 0.5962

Maximum grid-connected 
power fluctuation rate (%) 215.9034 110.3111 97.1605

Smoothness index (%) 0.9121 0.0042 0.0022

Fig. 11. (Color online) Operating status of HESS.
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Fig. 12. (Color online) IMF components obtained by ICEEEMDAN decomposition and spectrograms.

Fig. 13. (Color online) Instantaneous frequency–time curves of EEMD’s IMF.

(a) (b)
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assigned to supercapacitors to capitalize on their fast dynamic response characteristics. Figure 17 
shows the corresponding allocation of low-frequency components (IMF 9 to residual) to the 
battery bank, utilizing its superior energy storage capacity for sustained power delivery. In 
contrast, batteries operate over longer cycles with smoother charging and discharging, making 
them suitable for sustained energy supply. HESS significantly reduces the battery workload, 
enhancing its lifespan and mitigating thermal issues caused by excessive charge–discharge 
cycles. By reducing thermal runaway risks and exothermic reactions, HESS improves battery 
safety and the overall system reliability.

Fig. 14. (Color online) Instantaneous frequency–time curves of CEEMDAN’s IMF.

Fig. 15. (Color online) Instantaneous frequency–time curve of ICEEMDAN’s IMF.
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Table 4
Results of comparative analysis of various methods.
Parameters EEMD CEEMDAN ICEEMDAN
Orthogonality index (OI) 1.4494 1.3389 0.80074
Energy ratio (ER) 0.67006 0.71756 0.92818
Mean squared error (MSE) 2.4567 × 10−6 1.03 × 10−33 6.0789 × 10−34

Signal-to-noise ratio (SNR) 40.524 314.3 316.59

Fig. 16. (Color online) Supercapacitor reference power.

Fig. 17. (Color online) Battery reference power.
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6. Conclusions 

 We demonstrated an effective approach for smoothing wind power fluctuations through a 
HESS. From actual wind output data, K-means clustering was employed to extract representative 
daily data, followed by weighted filtering to smooth fluctuations while preserving the original 
power profile with minimal time delay. This is superior in decreasing the configuration capacity 
of the energy storage system—resulting in cost savings—as well as in enhancing its energy 
utilization efficiency, mitigating risks associated with power fluctuations. The grid-tied 
reference power was further decomposed using ICEEMDAN, and the instantaneous frequency–
time curves obtained via HT provided insights into mode correlations. A comparative analysis of 
EEMD, CEEMDAN, and ICEEMDAN confirmed that ICEEMDAN effectively separates high-
frequency and low-frequency components, enabling a more optimal energy storage 
configuration. For example, ICEEMDAN attains the lowest OI and the highest ER. Moreover, it 
achieves the lowest MSE with the highest SNR. Furthermore, HESS can significantly improve 
the battery workload so that thermal issues are effectively mitigated. In conclusion, valuable 
guidance for designing HESSs can be offered for wind power stations, enhancing system 
stability and efficiency.
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