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 The accurate prediction of power load is a prerequisite for maintaining the supply-demand 
stability of the power system. To improve the accuracy of load forecasting, we proposed a novel 
fluctuation- and smooth-channel-based deep learning model for load forecasting. First, the 
multidimensional information-aware sensor technology is used to collect wind speed, 
temperature, and humidity information through the analog-to-digital converter (ADC) digital-
information-acquisition, filter-circuit-noise-elimination, and amplification circuits. The 
microcontroller in the sensor is employed to process the output of the characteristics of the 
impact of the load data information. Then, the interquartile range was employed to detect the 
abnormal values in the load data, and the missing values caused by their removal were filled and 
eliminated by cubic spline interpolation to enhance the quality of the load data. Second, the long 
short-term memory (LSTM) model based on a fluctuation channel and a smooth channel was 
constructed, which can autonomously distinguish the fluctuation period from the smooth period 
in the data, fully exploiting the fluctuation information in the fluctuation period and the subtle 
changes in the smooth period. Additionally, an improved catch fish optimization algorithm was 
specifically designed to optimize the hyperparameters of the prediction model, enhancing its 
ability to characterize complex load sequences. Finally, the proposed method and model were 
validated through case studies. The results demonstrated that compared with existing load 
prediction models, the proposed model achieved a mean absolute percentage error below 3% and 
a goodness-of-fit exceeding 98%, effectively capturing the fluctuation trend of complex load 
sequences.

1. Introduction

 Under the background of large-scale landscape grid connection, enhancing the power load 
forecasting accuracy has evolved into a critical technical requirement for ensuring grid 
stability.(1,2) The high-precision data acquisition system based on multidimensional sensor 
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technology enables the real-time capture of pivotal meteorological parameters, which, when 
processed through advanced analytics and deep learning models, provide decision-makers with 
actionable load predictions.(3,4) Constructing an integrated framework that unifies environmental 
sensing, data analytics, and predictive modeling has become pivotal for achieving dynamic 
supply–demand equilibrium in contemporary power systems.(5)

 Currently, load prediction can be categorized into four types: physical models, traditional 
statistical models, artificial intelligence models, and hybrid models. First, physical models are 
typically constructed by exploring the intrinsic relationships between historical data and 
physical parameters to predict load.(6) Typical physical forecasting methods include the unit 
consumption, elasticity coefficient, and load density methods.(7) For example, Wang et al.(8) 
employed the unit consumption and elasticity coefficient methods to forecast and analyze future 
long-term electricity consumption trends, although they require a substantial amount of data. 
However, Liu et al.(9) argued that physical models are heavily dependent on expert knowledge, 
and obtaining the relevant data can be time-consuming.
 In contrast to physical models, statistical models mainly analyze historical data to reveal the 
relationship between load fluctuations and time.(10) For example, Li et al.(11) combined a genetic 
algorithm with the auto-regression and moving average (ARMA) model to develop a more 
robust model with a prediction error lower than that of the ARMA model. In addition, Bikcora et 
al.(12) integrated the ARMA model with the generalized autoregressive conditional 
heteroskedasticity framework, with experimental results indicating that this model outperformed 
other traditional ARMA models. Rendon-Sanchez and de Menezes(13) proposed two types of 
structural combination using seasonal exponential smoothing as the base model and applied 
them to forecast short-term electricity demand. However, they ignored that this model might rely 
on seasonal patterns in historical data.
 Models such as random forest,(14) extreme learning machine,(15) support vector machine,(16) 
and deep learning fall into the category of computational intelligence models. For example, 
Chaturvedi et al.(17) noted that load forecasting typically uses periodic time series information as 
input sequences and applied a recurrent neural network (RNN) specifically designed for 
handling sequence information in load prediction. To improve the generalization and 
effectiveness of the forecasting model, Fang et al.(18) proposed a short-term electric load 
forecasting method based on the Fourier multi-layer perception (FMLP)-Transformer model. It is 
suitable for scenarios with the large-scale integration of intermittent renewable energy into the 
power grid and demonstrates excellent adaptability and generalization ability.
 Experimental results showed that hybrid models often have better prediction performance 
than single models.(19) For example, Li et al.(20) proposed a prediction model based on 
bidirectional long short-term memory (BiLSTM)-Transformer model and experimentally 
demonstrated its superiority over single prediction models. Guo et al.(21) proposed a new short-
term load forecasting method for the power system based on the graph convolutional network 
and long short-term memory (LSTM). Their experimental results showed that their proposed 
method can fully utilize the effect of multidimensional data and effectively improve the load 
forecasting accuracy and training efficiency.
 On the basis of the issues identified, deep-learning-based power load forecasting methods 
still face several urgent challenges. First, current models struggle to effectively capture and 
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predict significant fluctuations in power system load. Second, integrating data from different 
sources and time scales, as well as dynamically optimizing model structures to adapt to various 
forecasting scenarios, requires further research and exploration.
 To address these challenges, we propose a multidimensional information-aware sensor 
technology combined with a hybrid power load forecasting model that integrates multichannel 
deep learning, attention mechanisms, and evolutionary algorithms to enhance the forecasting 
performance. Initially, the proposed sensor technology incorporates acquisition circuits, 
operational amplifiers, and filtering modules to accurately capture temperature, humidity, and 
wind speed data. A sophisticated data preprocessing pipeline is implemented to eliminate 
outliers and smooth the raw dataset, ensuring robust input for subsequent predictive analytics. 
Subsequently, a multichannel LSTM network processes data across different time scales. 
Attention mechanisms are introduced to enhance the model’s ability to capture critical 
information, and an improved fishing optimization algorithm is employed for parameter 
optimization. The main innovations and contributions of this study are reflected in the following 
aspects.
 • A multidimensional information-aware sensor technology for power load forecasting was 

constructed, enabling the precise and stable acquisition of temperature, humidity, and wind 
speed datasets.

 • A deep learning network architecture containing fluctuation and smooth channels was 
proposed, which, after the parallel processing of power load data with different volatilities, 
uses attention mechanisms to effectively capture and integrate critical information.

 • An anomaly correction technique that improves the quality of model input data by detecting, 
removing, and completing anomalies in the original data, followed by smoothing, was 
introduced, thereby providing more accurate data support for the model.

 The remaining structure of this paper is as follows: in Sect. 2, the details of the data 
preprocessing methods are given; the fundamental principles and model construction of power 
load forecasting are explored in Sect. 3; in Sect. 4, we describe the entire power load forecasting 
process; in Sect. 5, the superiority and effectiveness of the proposed model and algorithm are 
validated using multiple examples; and the main research findings, contributions, and limitations 
of this study are summarized in Sect. 6.

2. Interquartile Range and Cubic Spline Interpolation-based Data Preprocessing 
Driven by Multidimensional Information-aware Sensor

 In the field of electrical load forecasting, data preprocessing is a crucial step to ensuring the 
effectiveness and accuracy of the models. However, if the abnormal data is not properly 
addressed, it may negatively impact the model’s predictive performance. Therefore, we employed 
the interquartile range (IQR) and cubic spline interpolation (Spline) to correct anomalies in the 
electrical load data. For this study, power load data collected at 15-min intervals from a specific 
region in southern China during February were selected as the input dataset for analysis. The 
steps for anomaly correction are as follows.
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2.1 Outlier detection and removal with the following mathematical model

 Outliers are detected using IQR.
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Q1 is the minimum value of the lowest 25% of the data points in the dataset, known as the first 
quartile; Q3 is the maximum value of the highest 25% of the data points, known as the third 
quartile. LOW and UP are the distinct lower and upper boundaries, respectively. The sample is 
considered an outlier and is removed from the dataset when it is below LOW or above UP.

2.2 Missing value completion

 After the removal of outliers, some missing values may appear in the dataset. To address 
these missing values, we employ spline cubic interpolation as follows.
(1) Define the set of interpolation points 0 1 }, ,. ,{ .. nx x x  and their corresponding function values 

0 1 }, ,. ,{ .. ny y y . Here, xi represents the x-coordinate of the ith known data point and yi denotes the 
y-coordinate corresponding to xi.
(2) For each interval, define a cubic polynomial:

 ( ) 2 3,( ) ( ) ( )i i i i i i i iS x a b x x c x x d x x= + − + − + −  (2)

where Si(x) represents the vertical coordinate on the spline curve corresponding to xi. The spline 
curve must pass through each data point (xi, yi), meaning that for each i, Si(x)=yi; ai, bi, ci, di are 
the coefficients to be determined.
(3) To ensure the continuity of the curve, each xi must satisfy the following conditions: 

1( ) ( )i i i iS x S x− = , 1( ) ( )i i i iS x S x′ ′
− =  and 1( ) ( )i i iiS x S x′′ ′′

− = .
(4) To determine the coefficients ci and di, boundary conditions must also be applied. We used 
natural boundary conditions, where the second derivatives at the endpoints are 0.

 0( ) 0 ( ) 0nS x S x=′′ ′′∧ =  (3)

(5) The spline cubic interpolation function S(x) is the combination of all these cubic polynomials, 
with each polynomial Si(x) defined over its respective interval [xi, xi+1]:

 3
0 .( ) ( ) ( )n

i i iiS x c x x S x
=

= − +∑  (4)
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 Given the known missing value on the x-coordinate, the corresponding S(x), i.e., the input 
value for the missing data, is obtained. Outlier handling using IQR and Spline provides high-
quality and highly relevant data inputs for the power load forecasting model.
 However, it is not enough to use previous load data for load forecasting; some indirect 
features are also needed to assist the improvement of the forecasting accuracy. For example, 
temperature, humidity, and wind speed show a correlation with electrical load, and in this study, 
we will use three types of advanced sensor for data collection. The process of using 
multidimensional information-aware sensor technology to collect weather and electric load 
characteristics is illustrated in Fig. 1.
 The selection and parameters of each component in the circuit diagram are shown in Table 1.

3. Formulation of Fluctuation-smoothing Feature-fusion-based Dual-channel 
LSTM

 LSTM is a special type of RNN structure. It has three gates, namely, the Forget gate, Input 
gate, and Output gate.

Table 1
Selected components and their parameters.
Component type Type Parameter
Resistance RC0603 ±1% accuracy

Audion BD237 NPN type, rated voltage 80 V, rated current 2 A, rated power 25 W,
DC current gain 40 times

Operational amplifier OPA2188 Low noise, 1.7 μVpp with 0.1–10 Hz noise
Capacitance C0603 ±10% accuracy, X7R medium
Temperature and 
humidity sensor HTY7843 ±0.3 ℃, 1–10 Hz sampling frequency

Wind sensor FTM95 ±1.5% F.S., 10–100 Hz sampling frequency

Fig. 1. (Color online) Multidimensional information-aware sensor technology process.
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 The Forget gate determines which information to discard. Through a sigmoid function, it 
calculates a vector between 0 and 1 on the basis of the previous hidden state and current input, 
indicating the extent of forgetting for each unit state, where 0 means complete forgetting and 1 
means complete retention.
 The Input gate determines which new information to store. It consists of a sigmoid function 
and a tanh function. The sigmoid function decides which information to update, while the tanh 
function generates candidate new memory content.
 The Output gate determines which information to output. Similarly, it utilizes a sigmoid 
function and a tanh function. First, the sigmoid function decides which part to output, then the 
tanh function processes the cell state to bring its value between −1 and 1, and finally, the two are 
multiplied to obtain the final output.
 However, the precision of LSTM decreases when dealing with highly volatile data. Therefore, 
in this study, the LSTM is divided into two channels on the basis of the volatility rate η. The 
calculation principle of the volatility rate is as follows.
 The index η, used to characterize the volatility of load data, is defined as 
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where x0 represents the starting point of the first data and xN represents the endpoint of the last 
data. When the volatility of the interval is low, η tends to 0 and vice versa.
 The volatility channel is mainly used to process segments of load data with high volatility 
and outputs the hidden layer state F

th  containing volatility information.
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Here, F represents the parameters of the fluctuation channel; the control of the weight parameters 
and bias parameters selectively forgets, inputs, or outputs features related to the fluctuation at 
different time steps. 
 The smooth channel works the same as the fluctuation channel.
 The mathematical principle of the fusion gate mechanism is 

 ( ) ,t t
F F S SW Fullyconnect W h W h b= + +  (7)

where FSD
th  represents the global feature hidden state; WF and WS are the weight parameters of 

the fusion gate mechanism; bo is the bias parameter; W is the final prediction result output 
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through a fully connected layer. WF and WS undergo joint optimization using Forget gate 
parameters and other modular components through gradient-descent-based algorithms and 
backpropagation. The proposed fusion gate mechanism dynamically calibrates these weighting 
factors on the basis of real-time input characteristics, enabling the model to adaptively 
harmonize feature contributions from dual-channel encoding pathways. This parametric 
interaction ensures optimal feature fusion by striking a data-driven balance between temporal 
continuity and abrupt variations, thereby significantly enhancing the forecasting accuracy in 
complex load scenarios.
 The fusion gate achieves the integration of fluctuation and smooth features by adaptively 
adjusting the relevant weights. The FSD-LSTM-Attention model is illustrated in Fig. 2.

4. Catch Fish Optimization Algorithm Based on Leader-guided Capture 
Strategies

 The catch fish optimization algorithm (CFOA) simulates fishermen catching fish in a pond to 
optimize algorithm search and parameters. CFOA consists of two main phases: exploration and 
exploitation. During the exploration phase, the algorithm searches in reference to individual and 
collective fishing behaviors. In the exploitation phase, it simulates fishermen surrounding fish 
schools and employs collective fishing strategies for exploitation.

4.1 Exploration phase

 Each fisherman possesses a certain level of fishing experience, enabling them to adjust their 
exploration direction and position in accordance with the fishing situations of other fishermen. If 

Fig. 2. (Color online) FSD-LSTM-Attention model.
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their own catching situation is more favorable, they will continue searching in the original 
direction; if the reference catching situation is more advantageous, they will alter their original 
direction, thereby moving towards a better catching position.
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Exp is the experience analysis value obtained by the fisherman with any reference position p; 
fitworst and fitbest are the worst and best fitness values at the Tth iteration, respectively; Dis is the 
Euclidean distance between the ith and pth populations; rs is a random number; s is a random 
vector of dimension d; R is the exploration range; EFs represents the current number of iterations; 
MaxEFs denotes the maximum number of iterations for the algorithm.
 Fishermen use fishing nets to expand their fishing capabilities and cooperate with other 
fishermen, randomly forming groups of three to four individuals who collaborate. Leveraging 
each person’s unique mobility, they explore the area more precisely. The position update formula 
is

 ( )
2

1
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where c is a group of three to four individuals; Centrec is the target area surrounded by group c; 
r2 is the speed at which fishermen approach the central area, with values varying among 
individuals in the range from 0 to 1; r3 is the offset of movement, with values in the range of 
(−1, 1).

4.2 Exploitation phase

 During the development phase, all fishermen search under a unified strategy, purposefully 
driving and concentrating the fish for capture. In the process of luring, with the fish as the 
center, fishermen gradually gather from the center to the periphery, leading to decreasing 
density and range as they move outward. This distribution pattern is simulated using a Gaussian 
distribution, with the update formula 
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where GD is the Gaussian distribution function with a mean of 0 and a variance decreasing from 
1 to 0 as the number of iterations increases; Gbest is the global best position; r4 is a random 
number in the range of {1, 2, 3}.
 CFOA struggles in early exploration as it is prone to falling into local optima, hindering later 
development. Improved fishing optimization algorithm (LCFOA) incorporates two 
improvements to address this problem: chaotic mapping for better population initialization and a 
leader-guided strategy for enhanced search.

4.2.1 Initialization of population using logistic-tent chaotic mapping

 First, the first population of fishermen is initialized with the following formula:

 ( )1, ,j j j jFisher ub lb r lb= − ⋅ +  (11)

where Fisher1,j represents the position of the first population in dimension jth; ubj and lbj are the 
upper and lower bounds of dimension jth, respectively; r is a random number between 0 and 1.
 To ensure that subsequent populations are evenly distributed in the solution space, the 
logistic-tent algorithm is introduced to generate chaotic sequences for population initialization:
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where i is the population sequence number with a range of { }2,3,4i N∈  ; rx is a control 
parameter with values in the range of (0, 4).

4.2.2	 Leader-guided	fishing	strategy

 The leader-guided fishing strategy enhances the original algorithm by using the top three 
fishermen in terms of fishing efficiency to guide position updates, replacing random reference 
selection. This accelerates convergence speed and precision, offering numerous potential 
optimal solution regions. It boosts later-stage development and improves the global optimal 
solution accuracy. The modified mathematical model is

 ( )1 2 / 3,T T T T
best best bestLeader Fisher Fisher Fisher− −= + +  (13)

 ( )1 ,T T T T
i i i sFisher Fisher Leader Fisher Exp r s R+ = + − × + × ×  (14)

where LeaderT is the position of the leader in the Tth iteration; T
bestFisher , 1

T
bestFisher −  and 

2
T
bestFisher −  are the top three individuals ranked by fishing efficiency.

 The structure and pseudocode of the LCFOA algorithm are shown in Fig. 3. 
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5. Case Studies

 The power load forecasting process is illustrated in Fig. 4. The load forecasting process of the 
fluctuation- and smooth-channel-based deep learning model is as follows.
(1) Data preprocessing. Remove outlier data from the power load data set using the interquartile 

range and complete the data using cubic spline interpolation.
(2) Initialize model and algorithm parameters. Initialize the parameters of the FSD-LSTM-

Attention and LCFOA models, as shown in Table 2.
(3) Optimize model hyperparameters with LCFOA. Use the LCFOA algorithm to optimize the 

hyperparameters of the FSD-LSTM-Attention model to enhance the accuracy of power load 
prediction.

(4) Predict load results. With the best hyperparameters, use the FSD-LSTM-Attention model to 
forecast the load for the next day. 

5.1	 Case	1:	Power	load	forecasting	using	different	algorithms

 In Case 1, under the condition of keeping the prediction model unchanged, the original CFOA 
algorithm, Grey Wolf Optimization (GWO), and Great Wall Construction Algorithm (GWCA) 
were selected as comparative optimization algorithms to search for the hyperparameters of the 
LSTM-Attention model to examine the effectiveness and feasibility of the LCFOA algorithm in 
power load forecasting. Furthermore, a comparative analysis was conducted between the 

Fig. 3. (Color online) Structure and pseudocode of the LCFOA algorithm.
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classical grid search and random search methodologies. To ensure a rigorous evaluation of each 
method’s performance, the optimization algorithm configuration was standardized as follows: 
the maximum number of iterations was set to 50, the population size was set to 20, the initial 
learning rate range was defined as [0.001, 0.5], and the hidden units range was specified as [20, 
200]. Since random optimization and grid optimization differ among iteration methods, the 
maximum number of iterations was set to 1000 for both random search and grid search, which is 
the maximum number of iterations multiplied by population size.
 The power load prediction results for Case 1 obtained using each model are shown in Fig. 5. 
As presented in Fig. 5(a), specifically, the deviation between the values predicted using the 
LCFOA-based model and the actual values was notably lower. In contrast to the CFOA-based, 
GWO-based, and GWCA-based models, the load prediction curve obtained using the LCFOA-

Fig. 4. (Color online) Power load forecasting process.

Table 2
FSD-LSTM-Attention parameter settings.
Parameter Value

FSD-LSTM-Attention

Input dimension 5
Output dimension 1

Epochs 40
Min batch size 24

Number of LSTM layers 2
Optimizer Adam

Loss function MAE
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based model showed remarkable consistency with the actual load curve. In the region with the 
largest prediction error, where the original load was approximately 1.24 × 104 MW, the LCFOA-
based model predicts a value of around 1.22 × 104 MW, resulting in a maximum prediction error 
of 1.6%. This outcome highlights the superiority and competitiveness of the LCFOA algorithm 
in load forecasting. Figure 5(b) reveals that, compared with other algorithms, the prediction 
results obtained with the LCFOA-based model mostly aligned along the 1:1 line, indicating 
predictions closest to the true values.
 The evaluation results of power load forecasting for Case 1 are detailed in Table 3. Table 3 
shows that the R2 value of LCFOA is 99.90%, which is 1.9, 1.1, and 0.8% higher than the results 
obtained respectively by CFOA, GWO and GWCA. Its optimization time only increases by 
128.3, 189.24, and 76.93 s compared with those of the CFOA-, GWO-, and GWCA-based 
algorithms, respectively. This indicates a very high degree of fit between the predicted curve and 
the actual load curve. Additionally, the LCFOA-based model reduced MSE by approximately 
50% compared with the other algorithms, demonstrating higher prediction accuracy. For grid 
search, its search effect is poor, and various indicators have a large gap compared with the 
prediction results of the parameters obtained with the metaheuristic algorithm. This is because 
grid search is a traversal method with extremely high time cost. However, with the maximum 
number of searches set to 1000 in this study, grid search cannot traverse the hyperparameter 
space, resulting in poor returns. Random search, on the other hand, is slightly inferior to the 
proposed LCFOA because its completely random sampling makes it difficult to effectively 
capture the optimal combination of hyperparameters of the model.

5.2	 Case	2:	Power	load	forecasting	using	different	models

 Case 2 primarily validates the improvement effect of the proposed FSD-LSTM-Attention 
model. Therefore, under the optimization algorithm of LCFOA, the load forecasting results are 
compared with those of CNN and bidirectional gated recurrent unit (BIGRU).
 The power load prediction results obtained by each model for Case 2 are illustrated in Fig. 6. 
Figure 6(a) shows the prediction results of each model. Specifically, the FSD-LSTM-Attention 

Fig. 5. (Color online) Predicted results obtained from different optimization algorithms for Case 1.
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model demonstrated outstanding predictive capabilities. During phases of relatively stable power 
load, the proposed model’s prediction curve captured subtle variations in the actual load curve, 
with the prediction curve almost aligning with the actual curve. In Fig. 6(b), the radar chart 
shows the relative evaluation metrics of the three models. The arc radius corresponding to the R2 
metric for the FSD-LSTM-Attention model was the longest, indicating the best fitting effect; the 
arcs for MAE and RMSE are the shortest, especially with MSE being nearly zero, suggesting 
minimal prediction errors for the proposed model. Table 4 provides the evaluation results of each 
model for Case 2.
 The data in Table 4 indicate that the FSD-LSTM-Attention model demonstrated the most 
competitive performance in terms of prediction error and directional accuracy. The LCFOA-
FSD-LSTM-Attention model outperformed the other models across all evaluation metrics, 
showcasing strong competitiveness. Specifically, the R² metric of the LCFOA-FSD-LSTM-

Table 3
Load forecasting evaluation indexes of each algorithm.

Model Assessment index Wall-clock time (s)R2 (%) MAE MAPE (%) MSE
LCFOA-LSTM-
Attention 99.90 91.4 0.82 11221 1981.47

CFOA-LSTM-
Attention 98.00 249 2.25 81074 1853.17

GWO-LSTM-
Attention 98.80 245.6 2.15 97918 1792.23

GWCA-LSTM-
Attention 99.10 217.9 1.99 60640 1904.54

Grid Search-
LSTM-Attention 94.26 433.7 3.30 133726 2031.24

Random Search-
LSTM-Attention 98.22 219.4 3.05 77104 1742.19

Fig. 6. (Color online) Predicted results using different optimization algorithms.
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Attention model exceeded 99%, indicating robust data-fitting capabilities.
 To further validate the predictive performance of the proposed LCFOA-FSD-LSTM-
Attention model across diverse scenarios, we employ hourly resolved datasets collected over 
consecutive 10-day periods spanning four distinct seasons (March, June, September, and 
December) in South China. Leveraging a temporal sliding window approach, the data of the first 
six days is utilized to forecast values for the subsequent four days. The benchmark models 
include TCN,(22) Autoformer,(23) and GRU-Attention,(24) with hyperparameters of all models 
optimized using LCFOA while maintaining consistency with parameter configurations reported 
in their respective reference papers. Table 5 presents the forecasting performance metrics of 
different models across the four seasonal datasets.
 As shown in Table 5, the proposed LCFOA-FSD-LSTM-Attention model demonstrates 
superior predictive performance across all four seasonal datasets when evaluated using the four 
forecasting metrics. Specifically, during spring, the model achieves R2 score improvements of 
6.90, 4.49, and 2.20% compared with LCFOA-TCN, LCFOA-Autoformer, and LCFOA-GRU-
Attention, respectively. This performance advantage persists across other seasons, with the 
proposed model consistently outperforming baseline architectures under diverse climatic 
conditions. Notably, the R2 metric of the LCFOA-FSD-LSTM-Attention model remains above 
85% throughout all seasonal evaluations. These results collectively validate the model’s robust 
adaptability and practical applicability across temporal and environmental variations.
 Figure 7 shows the prediction curves of different models in the four different seasons. As 
illustrated in Fig. 7, the LCFOA-GRU-Attention model demonstrates the closest alignment with 
actual load profiles across all four seasons. During spring, summer, and winter, the proposed 
model exhibits remarkable fitting accuracy at most time points, with predicted load trends 
showing strong consistency with observed patterns. Although the proposed model exhibits 
relatively large errors in autumn compared with other seasons, it still maintains the smallest 
prediction error among the three traditional models.

5.3	 Case	3:	Proof	of	effectiveness	of	the	proposed	dual-channel	models

 Case 3 employs hourly industrial load data collected over a consecutive 10-day period in 
September from South China. The initial 6-day subset serves as the training set, while the 
subsequent 4-day period constitutes the forecasting horizon. A comparative evaluation was 
conducted among three proposed architectures: single-channel smooth, single-channel 
fluctuation, and combined dual-channel models. Furthermore, a rolling forecast mechanism was 
implemented to iteratively refine the pretrained model by incorporating sequential feedback 
from both predicted values and actual load observations, thereby enhancing practical 

Table 4
Prediction indicators of different models.

Prediction model Assessment criterion
MSE R2 (%) MAPE (%) MAE

LCFOA-FSD-LSTM-Attention 1686.1 99.93 0.26 28.1
LCFOA-CNN 51916 98.3 2.05 216.43
LCFOA-BIGRU 24990 99.59 1.13 127.1
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Fig. 7. (Color online) Predicted results for different seasons.

Table 5
Prediction indicators of different seasons.

Season Prediction model Assessment criterion
R2 (%) MSE MAPE (%) RMSE

Spring

LCFOA-TCN 87 232661 2.92 482
LCFOA-Autoformer 89 234155 2.82 483

LCFOA-GRU-Attention 91 183282 2.33 428
LCFOA-FSD-LSTM-Attention 93 154600 2.32 393

Summer

LCFOA-TCN 93 296802 2.91 544
LCFOA-Autoformer 92 398935 3.58 631

LCFOA-GRU-Attention 93 267363 2.68 517
LCFOA-FSD-LSTM-Attention 98 82071 1.53 286

Autumn

LCFOA-TCN 75 450588 4.27 671
LCFOA-Autoformer 74 476246 4.54 690

LCFOA-GRU-Attention 76 433194 4.19 658
LCFOA-FSD-LSTM-Attention 85 50 4.27 84

Winter

LCFOA-TCN 89 326616 3.73 571
LCFOA-Autoformer 85 449963 4.47 670

LCFOA-GRU-Attention 88 327085 3.73 571
LCFOA-FSD-LSTM-Attention 89 287592 3.58 536

applicability in operational forecasting scenarios.
 To further validate the efficacy of the proposed interquartile range and cubic spline 
interpolation-based data preprocessing, Table 6 shows the results of a comparative analysis of 
forecasting performance across the four model configurations: original LSTM model, single-
channel smooth, single-channel fluctuation, combined dual-channel models before data 
preprocessing, and combined dual-channel models after data preprocessing.
 As shown in Table 6, single-channel models (smooth and fluctuation variants) demonstrate 
suboptimal performance when trained independently, with MSE values exceeding 2 × 105. This 
limitation arises from the inability of isolated channels to capture holistic load power 
characteristics. The comparative analysis of pre-preprocessing and post-preprocessing 
performance reveals severely degraded accuracy in raw data scenarios, where outliers impede 
the model’s ability to discern critical patterns within the dataset. After implementing 
preprocessing and fusing smooth/fluctuation channel information, the model exhibits substantial 
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performance gains: the R2 metric exceeds 90%, while the other evaluation indices show marked 
reductions. These results confirm the superior performance of combined dual-channel 
architectures in industrial load forecasting contexts.
 Figure 8 illustrates the forecasting outcomes under various enhancement strategies, along 
with the dynamic evolution of RMSE metrics during rolling window evaluations. As depicted in 
Fig. 8(a), both single-channel models exhibit suboptimal forecasting performance with 
significant prediction errors observed across most time points. These errors peak during abrupt 
changes in the load profile. In contrast, the combined dual-channel model demonstrates superior 
feature extraction capability, accurately capturing load curve characteristics while maintaining 
acceptable prediction accuracy even during volatile periods. Figure 8(b) presents the dynamic 
evolution of RMSE metrics across 96 rolling window evaluations. Notably, the combined dual-
channel model maintains RMSE values below 500 throughout the testing period, exhibiting a 
decreasing trend as the sliding window progresses iteratively. These findings confirm the 
practical effectiveness of our proposed model in operational forecasting scenarios, addressing 
critical requirements of industrial load modeling applications.

Fig. 8. (Color online) Predicted results under different improvement strategies.

Table 6
Prediction indicators under different improvement strategies.

Prediction Model Assessment criteria
R2 (%) MSE MAPE (%) RMSE

LSTM 86 245766 3.72 495
Single-channel smooth 87 232661 2.92 482
Single-channel fluctuation 83 234155 3.55 483
Combined dual-channel models 
before data preprocessing 84 658859 5.31 811

Combined dual-channel models after 
data preprocessing 92 162583 2.24 403
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6. Conclusions

 In response to the uncertainty and variability of power load brought about by renewable 
energy integration, we proposed a novel deep learning model with a two-channel LSTM and 
attention mechanism driven by multidimensional information-aware sensor technology. 
Additionally, an improved LCFOA algorithm was proposed to significantly enhance the 
algorithm’s global search capability and convergence performance. The main findings of this 
study are summarized as follows.
 • In this study, we integrated the multidimensional information-aware sensor technology, built 

the sensor ADC acquisition, filter, and amplification circuits, and finally processed the 
information through a microcontroller chip to realize the accurate acquisition and processing 
of temperature, humidity, and wind speed.

 • The LCFOA algorithm showed significant advantages in load forecasting accuracy. In Case 
1, the load forecasting curve obtained by LCFOA closely matched the actual load curve with 
a maximum prediction error of only 1.6%, indicating its competitiveness in load forecasting.

 • The LCFOA-FSD-LSTM-Attention model exhibited notably favorable performance in terms 
of load forecasting error and directional accuracy. In Case 2, the proposed model achieved an 
R2 value exceeding 99.9%, MAPE below 0.3%, and competitive MSE and MAE values. 

 While we have made significant achievements in power load forecasting in this study, there 
are limitations such as the lack of real-time application and validation in actual large-scale 
power systems. At the same time, the fused sensor technologies are also subject to hardware 
sampling errors and sampling real-time effects, making the sampling results subject to inherent 
sensor acquisition errors. Our future research will be focused on addressing these limitations.
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