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 The synergistic integration of renewable energy generation with an integrated energy system 
(IES) can potentially reduce carbon emission and thus improve energy efficiency. On the basis 
of this principle, an electric-hydrogen-coupled integrated energy system (EHC-IES) is proposed, 
integrating renewable energy generation, an electric-hydrogen conversion device, multi-energy 
storage, and an intelligent sensing system. A multi-dimensional sensing network is erected to 
collect real-time wind and solar power generation, energy storage status, and load fluctuation 
data. It can dynamically adjust the energy supply strategy and realize the adaptive synergistic 
matching of energy supply and demand sides. An optimization model is established considering 
the cost of superior-level energy dispatch and the cost of renewable energy disposal penalty, and 
the enhanced whale optimization algorithm is designed for dispatch optimization. Comparative 
analysis using multiple scenarios verifies that the electric-hydrogen coupling mechanism can 
reduce the system operating cost by 25.8 and 17.02% compared with those of the conventional 
integrated energy system and power-to-gas IES (P2G-IES), respectively, confirming significant 
economic benefit.

1. Introduction

 China has put forward the strategic goals of carbon peaking in 2030 and carbon neutrality in 
2060 against the background of accelerated green and low-carbon transformation of the global 
energy structure.(1) Under this strategic direction, promoting the in-depth cross-border 
integration of energy technology and information technology and constructing an integrated 
energy system (IES) with multi-energy flow synergies and distributed adaptive capabilities have 
become the core paths to drive energy system change.(2) On the basis of this, the coupled system 
integrating hydrogen production from electricity, hydrogen power generation, and thermal 
energy gradient utilization effectively breaks the technical bottleneck of renewable energy 
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consumption by breaking the traditional energy barriers. It provides a dynamic balancing 
mechanism for a high proportion of renewable energy to be connected to the grid.(3)

 New energy supply systems, represented by wind and photovoltaic power, have been deeply 
integrated into comprehensive energy systems with the continuous breakthrough of renewable 
energy technologies.(4) However, owing to the stochastic nature of power output caused by 
meteorological dependence, power fluctuation and time-period imbalance between supply and 
demand still cause significant bottlenecks in renewable energy consumption.(5) Schrotenboer et 
al.(6) constructed a Markov decision model for a wind energy-hydrogen storage coupled system, 
innovatively quantifying the multi-scenario synergistic optimization strategy of green hydrogen 
in power peaking, industrial energy supply, and fuel supply, which provides a dynamic decision-
making framework for highly volatile renewable energy consumption. Lu et al.(7) proposed a 
stochastic optimization framework for a coupled system based on the probabilistic prediction of 
photovoltaic output, establishing the dynamic coupling mechanism of electricity-heat-hydrogen 
with the multi-scenario co-scheduling model. Mao et al.(8) established a mixed-integer planning 
model and a multi-objective decision-making mechanism for the coupled electricity-gas-heat 
system, providing an economic-environmental two-dimensional optimization path for renewable 
energy consumption. Tipan-Salazar et al.(9) proposed a mixed integer nonlinear programming 
synergistic optimization model for renewable energy-pumped storage-electrolysis hydrogen 
production to maximize the system’s profit while meeting the weekly green hydrogen demand.
 Many scholars use meta-heuristic algorithms to optimize IES. For example, Kumar et al.(10) 
constructed a climate adaptive model by optimizing feature selection through the dragonfly-
firefly algorithm to achieve the accurate multi-scenario prediction of power generation. Liu et 
al.(11) proposed a comprehensive district energy system integrating electrolytic hydrogen 
production carbon capture and waste heat recovery, which is solved by a non-dominated 
sequential genetic algorithm to improve the efficiency of comprehensive energy utilization 
significantly. Cao et al.(12) broke through the bottleneck of traditional heat network models in 
high-dimensional nonlinear parameter identification through a multi-objective genetic 
optimization algorithm. Li et al.(13) proposed a forbidden search augmented hybrid crow 
algorithm to resolve time-varying tariff-charging queuing coupling constraints, breaking 
through the paradigm of independent optimization research on cold chain and electric paths. 
Gao et al.(14) developed a power storage-heat storage cooperative control strategy using an 
improved multi-objective particle swarm algorithm to effectively solve the fluctuation adaptation 
problem in a multi-energy flow coupled system.
 In this study, we propose an electric-hydrogen-coupled integrated energy system (EHC-IES) 
to construct a temporally and spatially decoupled multi-energy flow network through the closed-
loop architecture of wind power generation, electrolysis hydrogen production, and hydrogen 
storage and peaking. The rest of this study is structured as follows. Section 2 presents the system 
structure and optimization model of EHC-IES. The strategy of the enhanced whale optimization 
algorithm (EWOA) algorithm is described in Sect. 3. As discussed in Sect. 4, we conducted a 
scenario analysis to validate the effectiveness of the EHC-IES and EWOA algorithms. 
Conclusions and perspectives are summarized in Sect. 5.
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2. System Model

2.1 System structure

 The EHC-IES architecture proposed in this study is shown in Fig. 1. The wind turbine (WT) 
and photovoltaic (PV) complementary generation architecture is used on the generation side. At 
the energy conversion layer, the electric-hydrogen coupling mechanism is adopted. The electric 
hydrogen plant (EHP) has a multi-physics sensor array to monitor key parameters such as 
electrolysis current, voltage, hydrogen yield, and plant temperature to convert surplus electrical 
energy into hydrogen energy. Some hydrogen and carbon dioxide are synthesized into natural 
gas in the methane reactor (MR). The pressure sensor deployed in MR continuously collects the 
CO₂/H₂ gas mixture ratio data to realize the efficient preparation of natural gas. The generated 
natural gas is supplied to the combined heat and power plant (CHP) and gas boiler (GB) to form 
a carbon-closed loop. The hydrogen fuel cell (HFC) directly converts the remaining hydrogen to 
realize the short-chain conversion of “electricity-hydrogen-electricity/heat”. The short-chain 
conversion reduces energy loss compared with the traditional long-chain path of “electricity-

Fig. 1. (Color online) EHC-IES architecture.
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hydrogen-methane-electricity/heat”. The energy storage system adopts a multi-configuration 
model, with the electric energy storage device (ESD) and thermal energy storage device (TSD) 
constituting the electric-thermal buffer layer and the hydrogen energy storage device (HSD) and 
gas energy storage device (GSD) realizing the staggered adjustment of gas fuel. The intelligent 
sensing system captures the fluctuation characteristics of thermal and electrical loads in real 
time through temperature and electrical energy sensors.

2.2 Optimization model

2.2.1 Objective function

 We constructed the total operating cost target C by considering the cost of the superior-level 
energy dispatch and the cost of the renewable energy disposal penalty of EHC-IES.

 ( )min grid wasteC c c= +   (1)
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Here, grid
er  and grid

gr  are the prices of electricity and natural gas from the superior energy source 
in time period t, ( )grid

eE t  and ( )grid
gE t  are the electricity and natural gas power dispatched from 

the superior energy source in time period t, αWT and αPV are the penalty cost coefficients per unit 
of discarded power of WT and PV, and ( )WT

wasteE t  and ( )PV
wasteE t  are the WT discarded power and 

PV discarded power in time period t, respectively.

2.2.2 Constraints

 During operation, EHC-IES must reach a dynamic equilibrium constraint on the multi-
energy complementarity of electricity, heat, hydrogen, and natural gas.
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Here, ( )HFC
eE t  and ( )HFC

hE t  are the electrical and thermal outputs of HFC in time period t, 
respectively. ( )CHP

eE t  and ( )CHP
hE t  are the electrical and thermal outputs of CHP in time period t, 

respectively. ( )e
EHPE t  is the electrical consumption of EHP in time period t, ( )GB

hE t  is the thermal 
output of GB in time period t, and 

2
( )EHP

HE t  is the hydrogen output of EHP in time period t. 
( )ESD

eE t , ( )TSD
hE t , 

2
( )HSD

HE t , and ( )GSD
gE t  are the energy outputs of the electrical, thermal, 

hydrogen, and natural gas storage devices in time period t. ( )e
loadE t  and ( )h

loadE t  are the electrical 
and thermal loads in time period t, respectively. 2 ( )H

HFCE t  is the hydrogen consumption of HFC in 
time period t, ( )MR

gE t  is the natural gas output of MR in time period t, and ( )g
CHPE t  and ( )g

GBE t  
are the natural gas consumption of CHP and GB in time period t, respectively.

3. Optimization Method

 The optimal scheduling of EHC-IES is a multi-coupled constrained optimization problem, 
and the meta-heuristic algorithm based on the global-local balanced search mechanism 
demonstrates significant advantages in solving such optimization problems. Although the whale 
optimization algorithm (WOA) inspired by the hunting behavior of the whale group exhibits 
good spatial exploration characteristics, it is prone to the premature convergence phenomenon in 
the dynamic optimization search process.(15) On the basis of this principle, the strategy of EWOA 
is proposed in this study as follows. 

3.1 Convergence regulation factor

 A convergence regulation factor v  is introduced to better utilize the nonlinear property in the 
global search and local exploitation capabilities.

 2 2sin( )
iter

tv
max

ζ ψ= − π+   (8)

Here, maxiter is the maximum number of iterations, t is the current number of iterations, and ζ 
and ψ are the relevant parameters (ζ = 0.5, ψ = 0).

3.2 Dynamic balance weighting strategy and multidirectional perturbation evolutionary 
strategy

 Dynamically balanced weighting and multidirectional perturbation evolution strategies are 
established. They can overcome the problems of insufficient development capability and 
degradation of solution quality in the deep optimization phase of WOA.



2994 Sensors and Materials, Vol. 37, No. 7 (2025)

 The dynamic balance weighting function is expressed as

 11
1

iter

t
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e

κ −
= −

−
,  (9)

 ( 1) ( )xP t P tκ+ = .  (10)

Here, κ is the dynamic balance weighting factor and Px(t) is the current optimal solution.
 The multidirectional perturbation evolutionary strategy is as follows:

 1 2( 1) ( ( ) ( )) ( ( ) ( ))xP t k P t P t k P t P t′+ = − + − .  (11)

Here, k1 and k2 are random numbers in [0, 1]; P'(t) is a random individual in the population.
 The individual evolutionary path is divided into three stages: focused exploitation, spatial 
expansion, and random sampling. A dynamically balanced weight strategy updates the position 
when an individual carries out focused development or spatial expansion. Then, the individual 
updates the position through a multi-way perturbation evolutionary strategy. The historical 
optimal position is selected by integrating the optimal solution information before and after 
updating. The synergy of the dual strategies significantly improves convergence efficiency and 
suppresses the premature convergence phenomenon, which enhances the algorithm’s global 
exploration ability.
 The flowchart of EWOA is shown in Fig. 2.

4. Case Analysis

4.1 Basic data

 The effectiveness of the proposed economic dispatch optimization model using EWOA is 
analyzed by setting up an experimental example using a daily operation scenario. The superior 
energy price signals,(16) the operating parameters of each unit, and the configuration parameters 
of each storage device are shown in Tables 1–3, respectively.(17)

 Table 1 shows that EHC-IES is affected by the time-sharing tariff mechanism, with 
significant differences in electricity prices during peak and valley hours, while the natural gas 
market price exhibits smooth fluctuation throughout the day. Table 2 shows that all types of 
energy device are configured with 20% power creep constraints, which not only constrains the 
instantaneous power regulation capability of the devices but also effectively avoids the problem 
of frequent start-stop during operation. Table 3 shows that the energy storage system adopts a 
dual safety strategy, setting 10–90% operation constraints in the capacity dimension to reserve 
safety margins while simultaneously imposing a 20% ramp rate constraint in the power 
dimension, which guarantees the system’s dynamic regulating capability and realizes the safety 
of the equipment.
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Fig. 2. (Color online) Flowchart of EWOA.

Table 1
Market electricity and natural gas price signals.
Items Time interval Price

Electricity price
1:00–4:00, 21:00–24:00 0.43
5:00–8:00, 17:00–20:00 0.90

9:00–16:00 1.15
Natural gas price 1:00–24:00 0.35

Table 2
Unit equipment operating parameters.
Items EHP MR HFC CHP GB
Capacity (kW) 850 450 380 380 800
Energy conversion efficiency (%) 90 95 90 92 95
Climbing constraint (%) 20 20 20 20 20

Table 3
Energy storage equipment operating parameters.
Items ESD TSD HSD GSD
Capacity (kW) 500 350 450 400
Capacity upper bound (%) 90 90 90 90
Capacity lower bound (%) 10 10 10 10
Climbing constraint (%) 20 20 20 20
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4.2 Performance test and analysis

 The F11–F16 test functions in the CEC test set are selected for evaluation in this study. The 
population size is Npop = 80, and the corresponding function convergence trajectories and 
solution space distributions are shown in Fig. 3. Here, the polar lights optimization algorithm 
(PLO),(18) crown porcupine optimization algorithm (CPO),(19) and WOA were selected for 
comparison in this study. The number of algorithm evolutions is set to 4000, the population size 
is the same as that of EWOA, and each algorithm is repeated 70 times. The performance results 
are shown in Tables 4 and 5.

Fig. 3. EWOA test under F11–F16.
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Table 4
Mean value (standard deviation) of test results under different algorithms.
Function EWOA WOA PLO CPO
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Runtime of test results under different algorithms.
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 As shown in Fig. 3, the EWOA algorithm exhibits convergence robustness on the 10 
benchmark functions containing unimodal, composite, and fixed multimodal modes. Table 4 
shows that the algorithm significantly outperforms the control algorithm in terms of global 
optimal solution search accuracy for 60% of the tested functions in 80 independent experiments. 
Moreover, by comparison in Table 5, it can be seen that EOWA exhibits outstanding processing 
power in terms of computational time consumption.

4.3 Case results and analysis

 The optimized output state of each equipment used in the proposed algorithm is shown in 
Figs. 4–9. As shown in Fig. 4, EHC-IES generates redundant power at night when the wind 
power output peaks and in the daytime when the wind-solar hybrid generation meets the electric 
load demand, and the excess power needs to be consumed in multiple ways. In this process, 
EHC-IES prioritizes delivering surplus power to EHP for hydrogen production and 
simultaneously realizes inter-time regulation through the storage device. As shown in Figs. 5 and 
6, EHC-IES delivers the primary hydrogen resources to HFC for cogeneration; part of hydrogen 
resources is diverted to MR for natural gas synthesis, and the remaining part is stored in HSD as 
hydrogen for intertemporal regulation. HFC maintains a full-generation state owing to its high 
energy-efficiency conversion. At the same time, the MR pathway is converted by GB and CHP, 

Fig. 4. (Color online) Electric power balance.
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Fig. 5. (Color online) Hydrogen power balance.

Fig. 6. (Color online) Natural gas power balance.
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Fig. 7. (Color online) Thermal power balance.

Fig. 8. (Color online) WT balance.
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which involves a multi-stage energy attenuation of hydrogen-methane-heat/electricity. Therefore, 
EHC-IES adopts the optimization strategy of “HFC priority direct supply, MR graded 
conversion, and hydrogen storage to cut peaks and fill valleys.” As shown in Fig. 7, during the 
peak heat demand period, HFC dominates the thermal energy supply by its zero-carbon emission 
advantage, and the CHP unit enhances the energy efficiency margin of the system through the 
synergy of heat and power, while the GB unit makes up for the shortfall. Figures 8 and 9 show 
that EHC-IES realizes the full WT and PV power consumption. From the above analysis, it can 
be seen that the EHC-IES constructed in this study can significantly increase the penetration 
rate of renewable energy and the economic benefits of EHC-IES.
 To evaluate the effectiveness of the electric-hydrogen coupling mechanism on IES, four 
scenarios were set up for the configuration in cost as follows.
Case 1: IES without electric-hydrogen coupling mechanism.
Case 2: IES with traditional P2G mechanism.
Case 3: IES with electric-hydrogen coupling mechanism (i.e., EHC-IES).
Case 4: EHC-IES with WT and PV disturbances.
 The optimized scheduling results for the above scenarios are shown in Table 6.
 It can be seen that Case 1 without the electric-hydrogen coupling mechanism exhibits an 
evident energy abandonment phenomenon, i.e., ¥307.70 in energy disposal cost. Case 2 adopts 
P2G technology to prepare natural gas from redundant electric energy, matching power demand 
but reducing the expenditure on purchased energy. Case 3 with EHC-IES promises that surplus 

Fig. 9. (Color online) PV balance.
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electric power is made from hydrogen by electrolysis to generate electricity and heat, creating a 
multistage energy optimization path. Therefore, the operating cost of Case 3 is reduced by 
¥2106.85 and ¥1241.36 compared with Cases 1 and 2, respectively. This shows that the 
electricity-hydrogen coupling mechanism enhances the operating economy and renewable 
energy consumption capacity through energy gradient conversion. 
 Case 4 introduces WT and PV perturbations that lead to a dynamic imbalance between 
power supply and demand, making it difficult for EHC-IES to match volatile power inputs in 
real time. Although EHP can produce hydrogen, its regulation rate and capacity may not be able 
to absorb the sudden increase in WT and PV power. Therefore, HSD must frequently switch the 
hydrogen charging and discharging state under fluctuating scenarios, leading to decreased 
efficiency. To smooth WT and PV perturbations, EHC-IES is forced to call for high-cost natural 
gas backup, weakening the advantage of the electric-hydrogen coupling mechanism in peak 
shaving and valley filling.

5. Conclusions

 The EHC-IES proposed in this study constructs a dynamic transmission optimization model 
for the hydrogen energy medium by deploying a multi-physics sensor array to monitor key 
parameters such as wind and light outputs, storage equipment pressure, and load fluctuations in 
real time. On the basis of the multi-source data flow collected by the sensors, the electricity-
hydrogen conversion priority is dynamically adjusted to reduce cascade losses. Thus, the 
penetration rate of renewable energy is significantly increased. Multi-dimensional benchmark 
tests validate the proposed EWOA and have significant advantages in convergence speed and 
optimization accuracy. Through a comparative study, EHC-IES reduces the operating cost by 
25.8 and 17.02% through electric-hydrogen coupling and energy gradient regulation, respectively, 
compared with the other two schemes. Subsequent studies can be explored by introducing IES 
into the multi-energy market for auxiliary service revenue channels. In addition, further study 
can be focused on the electricity, heat, and natural gas load demand response to break through 
the existing single flexibility constraint on the equipment side.
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Table 6
Benefit comparison in cost.
Items Case 1 Case 2 Case 3 Case 4
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Renewable energy disposal cost (¥) 307.70 0 0 792.16
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