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 Precision agriculture (PA) is a technology that integrates AI into the agricultural field. One of 
the uses of PA is to increase the productivity of rice plants, which is a staple food in high 
demand. In this study, PA technology based on vision computing will be developed, where the 
multiclass intelligent object detection model will be embedded into edge computing devices. The 
proposed model, which is called YOLO-Rice, is an improved version of You Only Look Once 
version 8 (YOLOv8), in which attention modules including GhostNet and the convolutional 
block attention module (CBAM) are combined to enhance the detection performance and model 
efficiency. There are 12 classes divided into three categories: rice grain, rice leaves, and insect 
pests. The stages of model development are carried out through dataset development, model 
construction, model evaluation and validation, and model deployment. The comparative 
experiment incorporates YOLOv5, YOLOv8, YOLOv8+CBAM, YOLOv8+GhostNet, and 
YOLOv9. The mean average precision value (mAP50) of YOLO-Rice was the most optimal 
compared with other deep learning algorithms, attaining an accuracy percentage of 91.95%. 
Overall, based on the experimental results, YOLO-Rice has outstanding results in terms of 
detection accuracy and model efficiency.
 
1. Introduction

 Agricultural production is one of the essential activities in Taiwan that support domestic and 
export needs. Exports increased in 2022 and 2023, especially for processed vegetables, soybean, 
and tea products.(1) In contrast, domestic production, especially rice crops, which are the staple 
food of the Taiwanese people, was recorded to have decreased from 2019 to 2022.(2) Constraints 
related to the decline in rice crop production include a decrease the number of supporting labor 
and an increase the population of aging farmers, irrigation systems, limited agricultural areas, 
and less-than-optimal growth monitoring processes.(3) In this case, a breakthrough solution that 
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can increase rice crop production, even with limited resources, is needed. The implementation of 
technology related to Industrial Revolution 4.0 has given rise to a new terminology, called 
“precision agriculture (PA)", which is a solution to increasing the rice crop production in terms 
of quality and quantity efficiently, quickly, cheaply, and sustainably.(4) On the other hand, the 
edge computing mechanism has the advantage of more efficient and faster computational 
processing, because the computational process is carried out at the networking node or the edge 
of the crop area. Therefore, data speed and security can be increased, latency and the amount of 
data sent can be reduced, and real-time calculation is possible.
 Several studies related to the implementation of object detection models in rice crop fields 
have been conducted. Du et al. constructed the You Only Look Once-progressive spatial feature 
pyramid (YOLOv7-PSAFP), in which PSAFP implemented in YOLOv7 to perform rice-corn 
pest detection.(5) In addition to calculating the object loss, the authors utilized the two loss 
functions: varifocal loss and loss rank mining. The experimental stage indicates that the 
proposed model has an mean average precision (mAP) of 2.9% and 2.1% higher than that of 
YOLOv7.(5) Jain et al. incorporated YOLOv3-Tiny and YOLOv4-Tiny as assistance frameworks 
in a smartphone application called “E-crop doctor” to detect three common paddy leaf diseases: 
hispa, leaf blast, and brown spot.(6) Deng et al. developed YOLOX to detect tiny objects such as 
weeds in the area of   rice crops. The model improves the backbone network, and at the 
experimental stage, has a better detection task performance than those of several existing 
models, such as YOLOv3, YOLOv4-tiny, YOLOv5s, and single shot detector (SSD).(7) 
Unmanned aerial vehicle (UAV) T-YOLO-Rice has been developed to detect rice leaf disease, 
which is originally the enhancement of YOLOv4-Tiny. Several improvements are integrated into 
the original model, including a convolutional block attention module, spatial pyramid pooling, 
sand clock feature extraction module, and ghost modules.(8) Meanwhile, Li et al. constructed 
TLI-YOLO, that is, transfer layer iRMB-YOLOv8.(9) The purpose of this model is to perform 
rice disease identification using the modified structure of YOLOv8. The model uses an iRMB 
attention module to integrate the inverted residual block and transformer. The experimental 
result shows the TLI-YOLO model having 7.6% higher mAP50 than the original model.(9)

 In this study, we will integrate PA and computer vision through an embedded lightweight 
object detection model, called YOLO-Rice. In addition, an edge computing system will be 
incorporated to perform object detection tasks in practical applications. The proposed model 
was developed by modifying a state-of-the-art YOLOv8 through the incorporation of GhostNet 
architecture in the backbone section, replacing the original backbone CSPDarknet53 
architecture, to create a lightweight network and generate redundant feature maps with the aim 
of accelerating data processing and reducing memory consumption while still maximizing the 
feature extraction process. The attention module will also be implemented in the “neck area” of 
YOLOv8, which employs the convolutional block attention module (CBAM), an integration of 
the channel attention module and spatial attention module. The purpose of CBAM is to improve 
the feature extraction performance of the model to produce more accurate and detailed object 
detection performance in detecting tiny objects. The GhostNet architecture and CBAM 
implemented in YOLOv8 make up the YOLO-Rice model, which, in this study, will be employed 
to detect complex multiple classes such as rice crop pests, conditions indicating whether the rice 
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leaves are normal or have a disease, and conditions indicating whether the rice grains are 
optimal, deflated, or damaged. Therefore, the contributions of this study include the following.
(1)  Development of PA in which an edge computing system and computer vision are integrated 

in a rice field
(2)  Development of a multiclass dataset for the rice crop detection model, which consists of 12 

classes and is defined by three main categories, rice grain, rice leaves, and insect pests
(3)  Enhancement of the model detection performance and model efficiency by integrating 

YOLOv8 and the attention modules GhostNet and CBAM

2. Materials and Methods

2.1 Edge computing technology

 In a modern control system, efficiency, speed, and data connectivity are the main factors in 
data processing, so the emerging technology is edge computing. Edge computing brings the 
computation process close to the location where the data are captured. This allows for a fast 
computational process, efficient data distribution with a decentralized architecture, less memory 
consumption, and reduced latency. With the development of AI, edge computing is not limited to 
only data processing and representing information in real time.(10) However, machine learning 
and deep learning technology can be adopted to provide comprehensive data. In general, there 
are three layers within the edge computing architecture: physical layer, edge layer, and cloud 
layer.(11) The improved architecture depicted in Fig. 1 is adopted in this study. The data analysis 
model is embedded to provide accurate data, an intelligent system, problem-solving complexity, 
and a robust and integrated control system. The challenge is to create a model that has 
outstanding performance even with limited resources such as memory capacity. Thus, re-
engineering and the improvement of data analysis models are also necessary to produce 
lightweight models and robust intelligent edge computing.

Fig. 1. (Color online) Improvement of edge computing.
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2.2 Overview of YOLOv8 model

 Since the YOLO-series object detection models were introduced and especially with the 
emergence of the state-of-the-art YOLOv4 architecture, which is defined as having a backbone, 
neck, and head, the YOLO series has developed significantly, attaining increasingly better 
accuracy, optimal detection performance for tiny objects, and stability.(12) YOLOv8 was 
introduced in 2023 by Ultralytics, who also invented YOLOv5, and is based on the Pytorch 
framework and has faster computing, making it ideal for multi-object detection and tracking; it 
is user-friendly, has better image classification performance, and excellent prediction 
performance.(13) YOLOv8 is highly suitable for deployment in edge computing in terms of the 
memory allocation consumption and high-inference speed, for which all variants of the model 
have outstanding performance results.(14) There are three improvements in YOLOv8 compared 
with the previous version, YOLOv5. The first is in the backbone, as represented by the exchange 
of the C3 module in YOLOv5 to the C2f module so that YOLOv8 is more lightweight. The idea 
of   C2f is based on the ELAN module in YOLOv7, which obtains more gradient flow information 
while ensuring a light weight. The details of the C2f module can be seen in Fig. 2.
 Meanwhile, the spatial pyramid pooling (SPP) module in YOLOv5 is replaced by spatial 
pyramid pooling–fast (SPPF) in YOLOv8. The SPPF module employs a less computationally 
intensive variable-sized pooling window.(15) The improvement can enhance the accuracy of the 
model, as depicted in Fig. 3.
 The second improvement is in neck structure, which comprises the path aggregation network 
(PAN) and the feature pyramid network (FPN). FPN is the feature extraction architecture for the 

Fig. 2. (Color online) Detailed architecture of C2f module.

Fig. 3. (Color online) SPP and SPPF modules.
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object detection task. In the improved YOLOv8, the convolutional layer was deleted before the 
upsampling module, and at the same time, the C3 module was replaced by the C2f module. The 
third is to optimize the head structure by introducing anchorless detection, which predicts the 
center of the object directly, avoiding misclassification, reducing multiple bounding box 
generation, and speeding up the process of nonmaximum suppression (NMS). YOLOv8 also 
employs the varifocal loss (VFL) or zooming loss as the classification loss; meanwhile, the 
regression loss of YOLOv8 is the integration of CIoU and distributed focal loss (DFL). In 
addition, VFL can dynamically scale sample categories of varying difficulty.(16) The weight 
improves the model’s ability to detect difficult-to-classify samples while reducing the difficulty 
of easy-to-classify samples, hence increasing training efficiency and overall model accuracy. A 
new asymmetric loss function that weighs both positive and negative samples is incorporated in 
the VFL loss function. The following formulation represents the VFL loss function.

 ( )
( ) ( ) ( )( )
( )

log 1 log 1     0
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log 1                              0

x y x y x y
VFL x y

x x yγα

− + − − >= 
− − =

 (1)

 The complete intersection over union (CIoU) ensures precise bounding boxes compared with 
conventional methods and is well aligned, whereas DFL focuses on improving regression in 
complex problems. The goal is to enhance the accuracy and efficiency of bounding box 
predictions. YOLOv8 balances accuracy and efficiency by integrating CIoU with DFL, where 
CIoU is expressed as below.
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 α is used to balance the proportion value, and 𝓋 is used to maintain the balance ratio between 
the predicted frame and the actual frame. 𝒷 and 𝒷gt are the center points of the predicted and 
actual frame, respectively. ς indicates the measurement of Euclidean distance between the two 
center points. The diagonal distance of the smallest rectangle containing both the predicted and 
true boxes is represented as 𝕔. The fundamental idea behind DFL is that instead of detecting a 
fixed bounding box, DFL predicts the probability distribution of bounding box coordinates to 
account for the uncertainty of the location. DFL employs the cross-entropy function for 
optimization. The probabilities of left and right placements near label y are based on the 
network’s distribution in the neighborhood of the label value. This enables the model to quickly 
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identify values near the label, as represented by Eq. (5), where ρ represents the actual frame on 
the left side and ρi+1 represents the predicted frame on the right side.

 DFL (S𝑖𝑖 ,S𝑖𝑖+1) = − ((𝜌𝜌𝑖𝑖+1 − 𝜌𝜌) log (S𝑖𝑖) + (𝜌𝜌 − 𝜌𝜌𝑖𝑖) log (S𝑖𝑖+1)) (5)

2.2 Proposed YOLO-Rice model

 Our original YOLO-Rice is a novel YOLOv8 with improvements in the backbone and neck 
sections aimed at achieving efficient computational processes, less memory consumption, and 
high performance in detecting objects, as depicted in Fig. 4. In the backbone structure, the 
original architecture model will be replaced and changed to the GhostNet architecture for the 
purpose of generating redundant feature maps and replacing the convolution with the ghost 
module. In the neck structure, there is an additional attention module of CBAM to enhance the 
performance of feature extraction and improve the accuracy of object detection.
 The ghost module employs a 1 × 1 convolution technique to reduce the channel number and 
generate a part of the actual feature layer. To create the ghost feature map, a depth-separable 
convolution is applied to each channel of the actual feature layer.(17) The final output feature 
layer is generated by merging the real and ghost feature layers. A ghost bottleneck (G-block) is a 
bottleneck structure created by the ghost module and can be separated into two parts. The first 
part is a bottleneck with a step size of one. As depicted in Fig. 5(a), the width and height of the 
input layer are not compressed and are used to deepen the network’s depth. To extract features 
from the input layer, the backbone uses two ghost modules. Finally, the output from the backbone 
section and the remaining edge are combined. The second half is a bottleneck construction with 
a step size of two. In Fig. 5(b), the backbone extracts features using a ghost module and 
compresses the input layer width and height using a depth-separable convolution with a step size 

Fig. 4. (Color online) Proposed YOLO-Rice model.
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of 2. The ghost module is re-employed to extract features, and the results are summed with 
residual edges.
 GhostNet is made of several ghost bottleneck structures that generate the three units called 
Feat1, Feat2, and Feat3, which have the feature map scales of 52 × 52 × 40, 26 × 26 × 112, and 13 
× 13 × 160, respectively. Table 1 shows the network parameters of GhostNet.
 CBAM was first introduced by Woo et al.(18) as an attention module that focuses on network 
learning of the important feature in both the channel dimension and the spatial dimension. 
CBAM has a small dimension but is effective for complicated data because it employs two 
attention modules: channel attention module (CAM) and spatial attention module (SAM). 
Figure 6 depicts the CBAM structure with CAM and SAM. The formulations of CAM and SAM 
are represented by Eqs. (6) and (7), respectively.

 ( )CAM cF A F F= ⊗  (6)

 ( )SAM s CAM CAMF A F F= ⊗  (7)

 CAM employs elementwise summation to combine input characteristics and calculated 
output generated by CAM based on the identification of the most relevant semantic information 
channel, followed by interchannel interaction to increase the number of discriminative 
features.(19) To reconstruct image characteristics into multilayer perceptrons (MLPs) via weight 
(ω), two forms of pooling are used: average pool ( ) c

avgFω
 
and max pool ( )c

maxFω , as denoted in 
Eq. (8). Additionally, a sigmoid function (σ) is used to improve speed.

Fig. 5. (Color online) GhostNet bottleneck structure. (a) Step size of 1. (b) Step size of 2.
(a) (b)
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 ( ) ( )( ) ( )( )( )1 0 1 0
c c

c avg maxA F F Fσ ω ω ω ω= +  (8)

 Simultaneously, SAM processes the feature’s spatial information to determine the 
contribution of each pixel region in one channel to the rebuilt image.(20) The average and max 
pools are used to construct two 2D maps: 1s H W

avgF R × ×∈  and 1s H W
maxF R × ×∈ . A sigmoid function 

(σ) and a 7 × 7 convolutional method are used as denoted below.

 ( ) ( )( )7 7 ;s s
s avg maxA F f F Fσ ×  =    (9)

2.3 Construction of dataset

 The rice image dataset used in the proposed project was obtained from the rice field industry 
in Wufeng District, Taichung City, Taiwan. The data were obtained for the six growth stages: 
tillering, stem elongation, panicle initiation, flowering, milk, and mature, as depicted in Fig. 7. 

Fig. 6. (Color online) Structure of CBAM. 

Table 1
Detailed parameters of GhostNet.
Structure Operation Step Kernel Input Output

Feat1

Conv-BN-ReLU 2 (3, 3) (416, 416, 3) (208, 208, 16)
Ghost-bottleneck 1 1 (3, 3) (208, 208, 16) (208, 208, 16)

Ghost-bottleneck 2 2 (3, 3) (208, 208, 16) (104, 104, 24)
1 (3, 3) (104, 104, 24) (104, 104, 24)

Ghost-bottleneck3 2 (5, 5) (104, 104, 24) (52, 52, 40)
1 (5, 5) (52, 52, 40) (52, 52, 40)

Feat2 Ghost-bottleneck4

2 (3, 3) (52, 52, 40) (26, 26, 80)
2 (3, 3) (26, 26, 80) (26, 26, 80)
1 (3, 3) (26, 26, 80) (26, 26, 80)
1 (3, 3) (26, 26, 80) (26, 26, 80)
1 (3, 3) (26, 26, 80) (26, 26, 112)
1 (3, 3) (26, 26, 112) (26, 26, 112)

Feat3 Ghost-bottleneck5

2 (5, 5) (26, 26, 112) (13, 13, 160)
1 (5, 5) (13, 13, 160) (13, 13, 160)
1 (5, 5) (13, 13, 160) (13, 13, 160)
1 (5, 5) (13, 13, 160) (13, 13, 160)
1 (5, 5) (13, 13, 160) (13, 13, 160)
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This comprehensive data collection was carried out to ensure that the model can be used to 
monitor the condition of the rice plant during the vegetative phase, reproductive phase, and 
ripening phase. Therefore, the model can provide information on anomalies that occur during 
the plant growth process, the quality of the rice grains, whether the rice leaves grow optimally, 
and whether or not there are pests. To capture the images used for data acquisition, a Nikon 
Coolpix full HD 1080p digital camera was used at different angles from 45° to 90° and under 
different light conditions, such as nighttime and daytime.
 For the model to detect the anomaly of insect pests on the rice, images of insect pests are 
collected to define eight types of common insect pest: (1) black bug, (2) zigzag leafhopper, (3) 
rice skipper, (4) rice thrip, (5) rice whorl maggot, (6) mealy bug, (7) mole cricket, and (8) ant. 
Figure 8 shows sample images of the insect pest dataset.
 To increase the number of images to improve the performance of the model in recognizing 
objects, image augmentation through affine transformation techniques, including rotation, shear, 
and scaling, is needed.(21) Furthermore, to process the dataset in the modeling stage, the data is 
divided into training and validation data, and testing data at the percentages of 80 and 20%, 
respectively. The 12 classes of images are labeled or annotated using LabelImg software. 
Annotations make it easier for the model to recognize the context of the target object. In this 
study, annotation is conducted by superposing the bounding box on the target object. The format 
used is the YOLO file format, which will generate the .TXT file that consists of several elements 
such as class id, x-center, y-center, width of the bounding box, and height of the bounding box. 
Table 2 shows the detailed class image dataset.
 The experimental computer environment comprised Intel Core i5-13500 13th Gen 2.50 GHz 
and 32 GB of RAM. The GPU is NVIDIA GeForce RTX 4070 with 12 GB of RAM. The dataset 
consists of the 12 class objects shown in Table 2. The total of 9040 images were divided into (1) 
training and validation data and (2) testing data at a ratio of 8:2, that is, training and validation 
data were obtained from 7200 images and testing data from 1840 images. The detailed dataset is 
shown in Table 3.
 The initial parameters employed in the experiment include the learning rate of 0.001, 150 
training epochs, and 64 batches as the training size in one iteration. In the experiment, several 
parameters were employed, including precision, recall, mean average precision (mAP), giga 
floating point operations per second (GFlops), and number of parameters (Params). Precision 
and recall are used to generate the AP and mAP metrics.(22) Meanwhile, GFlops is employed to 

Fig. 7. (Color online) Six growth stages of rice crop. 
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Table 2
Class image of the dataset.
Classification object Class name Class ID Image size

Rice grain optimal_grain Class 1 2100 × 1800
not_optimal_grain Class 2 2100 × 1800

Rice leaves optimal_leaf Class 3 1970 × 1520
not_optimal_leaf Class 4 1970 × 1520

Insect pest

black_bug Class 5 742 × 669
zigzag_leafhopper Class 6 742 × 669

rice_skipper Class 7 742 × 669
rice_thrip Class 8 742 × 669

rice_whorl_maggot Class 9 742 × 669
mealy_bug Class 10 742 × 669

mole_cricket Class 11 742 × 669
ant Class 12 742 × 669

Table 3
Training, validation, and testing data of YOLO-Rice dataset.
Class name Training and validation data Testing data
optimal_grain 800 160
not_optimal_grain 800 160
optimal_leaf 800 160
not_optimal_leaf 800 160
black_bug 500 150
zigzag_leafhopper 500 150
rice_skipper 500 150
rice_thrip 500 150
rice_whorl_maggot 500 150
mealy_bug 500 150
mole_cricket 500 150
ant 500 150
Total 7200 1840

Fig. 8. (Color online) Insect pest image samples. Row 1 (Left to right: black bug, ant, zigzag leafhopper, rice 
skipper). Row 2 (Left to right: rice whorl maggot, mole cricket, rice thrip, and rice whorl maggot). Row 3 (Left to 
right: rice thrip, mealy bug, mealy bug, mole cricket).
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calculate the computational volume of the model, and the measurement of the model complexity 
is indicated by Params. The detailed metrics expressions are 

 ( )
TPPrecision TP FP= +

, (10)

 ( )
TPRecall TP FN= +

, (11)
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where TP, FP, and FN represent true positive, false positive, and false negative, respectively. N 
indicates the number of values. Precision and recall indicate precision–recall curves. Co is a 
constant order and Ck is the size of the convolution kernel. Channel number and input image size 
are represented by Ch and S, respectively.

3. Results and Discussion

 In this section, we discuss the experiment, including the model performance on the dataset, 
model experiments with different deep learning algorithms, and the implementation of an 
intelligent model on the edge device. In addition, the findings are analyzed in depth to broaden 
the experimental insight. 

3.1 Model performance on dataset
 
 The proposed model training was conducted and the results are presented in Table 4: three 
indicator metrics (precision, recall, and AP50) for 12 classes. For precision, all classes obtained 
percentage values higher than 80%. Three classes have values higher than 90%: 92.61, 91.98, and 
90.56% for “not_optimal_grain”, “mole_cricket”, and “ant”, respectively. For recall, the 
“zigzag_leafhopper” class has a percentage lower than 80%; otherwise, the other classes have 
percentages ranging between 80 and 85%. The parameter AP50 has percentages higher than 
89%, with the lowest being 89.07% for “ant”.
 Figure 9 depicts AP50 for each class, where the top three percentages are 97.64, 95.15, and 
94.27% for “black_bug”, “not_optimal_leaf”, and “optimal_leaf”, respectively. The classes with 
AP50 percentages under 90% are “optimal_grain”, “rice_thrips”, “rice_whorl_maggot”, “mealy_
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bug”, and “ant”. To validate and gain in-depth findings, comparative experiments and 
implementation in practical application should be conducted to evaluate the model objectively.

3.2 Ablation study

 An ablation study was conducted to determine how the model compares with the original 
model, the combination of the single attention module and original model, and the proposed 
module where there are four experiments. The experimental configuration environment was 
Intel Core i5-13500 13th Gen 2.50 GHz and 32 GB of RAM. The GPU is NVIDIA GeForce RTX 
4070 with 12 GB of RAM GDDR6X. The initial parameter consists of a learning rate of 0.001, 
150 training epoch, and 64 batches as the training size in one iteration. The metrics mAP50, 
GFlops, and Params were evaluated. Table 5 shows the results of the ablation study where four 
experiments were conducted. The first experiment employs the original model, namely, 
YOLOv8 with which mAP0.5 was 80.11%, while GFlops and Params had the values of 82.8G and 

Table 4
Model performance on dataset.
Class name Precision (%) Recall (%) AP50 (%)
optimal_grain 89.23 82.43 89.65
not_optimal_grain 92.61 84.45 93.03
optimal_leaf 87.14 82.93 94.27
not_optimal_leaf 87.89 80.36 95.15
black_bug 88.74 83.35 97.64
zigzag_leafhopper 81.28 76.30 91.95
rice_skipper 89.98 84.31 91.55
rice_thrip 86.89 81.24 89.66
rice_whorl_maggot 85.98 82.36 89.23
mealy_bug 89.09 83.62 89.63
mole_cricket 91.98 84.07 92.52
ant 90.56 82.25 89.07

Fig. 9. (Color online) Results for the parameter AP50. 
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64.1M, respectively. However, GFlops and Params in the second experiment were approximately 
91.30 and 82.84% lower than those of the original model. 
 In the third experiment, the accuracy with mAP50 of 85.41% was attained using the original 
model integrated with CBAM. The increase in mAP50 in this experiment is 6.69% compared 
with that in the first experiment, which was conducted with only the original model. In the third 
experiment, GFlops and Params were increased by approximately 1.09 and 2.65% or 83.7G and 
64.1M in number of parameters, respectively. On the basis of the results of this third experiment, 
mAP50 increased, followed by the increase in GFlops and the number of parameters produced by 
the original model integrated with CBAM. In the fourth experiment, where the proposed model 
was used, the highest mAP50 of 91.95% among all experimental models was achieved. This is in 
line with the decrease in GFlops and the number of parameters, which were 7.3G and 12.1M, 
respectively. In this fourth experiment, GFlops and Params were reduced significantly, which 
had an impact on memory efficiency, but mAP50 remained optimal.
 Figure 10 shows the mAP50 results of the ablation experiments. The y-axis represents the 
mAP50 percentage value and x-axis represents the experiment number that has been represented 
in Table 5. Experiment 1, which consists of the original model (YOLOv8), achieved the lowest 
mAP50 percentage compared with other experiments, with the percentage value of 80.11%. The 
combinations of single module, as represented in experiment 2 and 3, obtained the mAP50 
percentages of 87.32% and 85.41%, respectively. Meanwhile, the proposed model (original 
model+GhostNet+CBAM) which is represented in experiment 4, has the highest mAP50 
percentage, with the percentage value of 91.95%. 

3.3	 Comparative	experiments	with	different	deep	learning	algorithms

 Comparative experiments were conducted to validate the proposed model performance in 
terms of both detection performance and model efficiency. The results are shown in Table 6. 
Eight models were used in the comparative experiment: YOLOv5, YOLOv8, YOLOv8+CBAM, 
YOLOv8+GhostNet, YOLOv9, YOLOv9+CBAM, YOLOv10, and YOLO-Rice, the proposed 
model. The model detection performance metrics are precision, recall, mAP50, and mAP50:95. 
Model efficiency is represented by GFlops/G and Params/M. YOLOv5, YOLOv8, and 
YOLOv8+CBAM have precision values under 80%: 68.34, 75.66, and 78.21%, respectively. 
YOLOv8+GhostNet, YOLOv9, YOLOv9+CBAM, YOLOv10, and YOLO-Rice achieved values 
greater than 80%: 80.04, 86.32, 86.47, 85.17, and 88.45%, respectively. The highest recall value 
of 84.26% was obtained with YOLOv10, whereas the YOLO-Rice model had a recall value of 
82.31%. The combinations of the attention module and YOLOv8, such as YOLOv8+CBAM and 
YOLOv8+GhostNet, had recall values of 80.06 and 79.28%, respectively. Figure 11 depicts the 

Table 5
Ablation study experimental results.
Experiment Original model + GhostNet + CBAM mAP50 (%) GFlops/G Params/M
1 ✓ 80.11 82.8 64.1
2 ✓ ✓ 87.32 7.2 11.0
3 ✓ ✓ 85.41 83.7 65.8
4 ✓ ✓ ✓ 91.95 7.3 12.1
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Fig. 10. (Color online) mAP50 results of ablation experiments.

Table 6
Comparative experiment results.
Deep learning 
algorithm Precision (%) Recall (%) mAP50 (%) mAP50:95 (%) GFlops/G Params/M

YOLOv5 68.34 70.24 75.35 55.24 84.1 70.2
YOLOv8 75.66 74.64 80.11 60.72 82.8 64.1
YOLOv8+CBAM 78.21 80.06 85.41 64.34 83.7 65.8
YOLOv8+GhostNet 80.04 79.28 87.32 70.04 7.2 11.0
YOLOv9 86.32 83.15 89.12 71.15 56.4 32.7
YOLOv9+CBAM 86.47 83.96 90.02 72.33 72.33 57.8
YOLOv10 85.17 84.26 89.44 70.24 70.24 52.7
YOLO-Rice 88.45 82.31 91.95 77.53 7.3 12.1

Fig. 11. (Color online) Precision and recall values with each different deep learning algorithm.
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overall precision and recall values of each model with different deep learnings in the comparative 
experiments. 
 The number of parameters (Params) represents the computational complexity of the 
model. The greater the complexity of the model, the higher the computational cost. 
However, we must also consider the model detection performance metrics such as mAP50 
and mAP50:95. Overall, the top three highest numbers of parameters in this comparative 
experiment were obtained with YOLOv5, YOLOv8+CBAM, and YOLOv8, the parameter 
values   being 70.2, 65.8, and 64.1 million parameters (M), respectively. YOLOv5 has a 
mAP50 value under 80%, whereas YOLOv8 has mAP50 of 4.76% higher than that of 
YOLOv5. The YOLOv8, YOLOv8+CBAM, YOLOv8+GhostNet, YOLOv9, and YOLOv10 
models have mAP50 values between 80 and 89%. YOLOv9+CBAM and YOLO-Rice have 
mAP50 values of more than 90%: 90.02 and 91.95%, respectively. YOLOv5 has the lowest 
mAP50:95 value of 55.24%. YOLOv8 and YOLOv8+CBAM have mAP50:95 values of 60.72 
and 64.34%, respectively. YOLO-Rice achieved the highest mAP50:95 value of 77.53%.
 Figure 12 shows the plot of mAP50 on the y-axis and number of parameters (Params/M) 
on the x-axis. The ideal condition is at the top-left position where the model has the 
highest value of mAP50 but a small value of Params/M. Params/M is the smallest value of 
11.0M for the combination of YOLOv8+GhostNet. YOLO-Rice has a Params/M value of 
12.1 M. However, the detection performance of YOLO-Rice is outstanding compared with 
those of the other models, exhibiting mAP50 of 91.95%, whereas YOLOv8+GhostNet has 
mAP50 of 87.32%. In the context of model efficiency, YOLO-Rice and YOLOv8+GhostNet 
show no significant gaps or difference in value. Meanwhile, in terms of detection 
per for mance represented by mAP50 and mAP50:95,  YOLO -R ice out per for ms 
YOLOv8+GhostNet. Therefore, the comparative experiment results indicate that YOLO-
Rice achieved the best performance in terms of both model performance and model 
efficiency.

Fig. 12. (Color online) Model detection performance and model efficiency.
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3.4 System deployment

 The proposed model is deployed to use real-world data with the model embedded into an edge 
computing device. In this experiment, the hardware employed for the edge computing system is 
the NVIDIA Jetson Nano B01 version depicted in Fig. 13. Jetson Nano B01 enables several AI 
applications such as object identification, deep learning, and neural network applications. The 
advantages of this edge computing system are compact processing, low power consumption, and 
economical single-board computing solutions. It is compatible with several operating systems, 
including Linux, Ubuntu, and JetPack SDK. Jetson Nano is supported by the GPU of NVIDIA 
Maxwell architecture with the 128 NVIDIA CUDA® and CPU Quad-core ARM Cortex-A57 
MPCore processor, with 4 GB of LPDDR4 64-bit, 1600 MHz 25.6 GB/s memory.
 Figure 14 shows the configuration of system deployment where the input image, which is the 
current condition of the rice plant, is captured by camera vision sensing. The detected image is 
then transferred to the edge computing device, Jetson Nano B01, to be processed by the proposed 
model embedded into the edge device. Image processing and the object-detecting task are 

Fig. 13. (Color online) Jetson Nano B01. 

Fig. 14. (Color online) System deployment configuration.
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conducted to determine the target object referring to the multiclassification image. The model 
performs prediction tasks through two aspects, classification and regression. The classification 
task is performed to determine the target object based on its context class, while the regression 
task is performed to generate and localize the bounding box onto the target object. To facilitate 
communication between the user and the system, mobile and web-based user interfaces are 
developed.
 The results of practical application are depicted in Fig. 15, where two models were 
incorporated in practical application experiments: the baseline model (YOLOv8) and the 
proposed model (YOLO-Rice). The experiment was conducted using images of diseased rice 
plants, where rice grains have class labels “optimal” and “not optimal.” Both models can detect 
optimal and not optimal grain conditions. However, YOLOv8 has misclassified data indicated by 
a yellow circle; the label should be the not-optimal condition. Meanwhile, the proposed YOLO-
Rice accurately indicates the grain conditions. The inference times of YOLOv8 and YOLO-Rice 
are 84 and 45 ms, respectively, showing that YOLO-Rice requires less inference time than 
YOLOv8.

4. Conclusions

 In this study, the multiclass intelligent object detection model called YOLO-Rice, aimed at 
detecting the current condition of rice plants, was developed. Experiments were carried out to 
validate the model performance, including the model performance on a dataset, ablation study, 
and comparative experiments. The proposed model exhibited the best performance in terms of 
model detection accuracy and model efficiency. The number of parameters obtained by YOLO-
Rice indicated an efficiency 9% higher than that of the original model, YOLOv8. The mAP0.5 
values of YOLOv8 and YOLO-Rice were 80.11 and 91.95%, respectively, which indicates that 
the proposed model has outstanding detection performance. In this study, we implemented 
multiple classes consisting of the conditions of the rice leaves, grains, and the existence of insect 
pests, giving rise to the possibility of causing an imbalanced dataset. To address this issue, an 
image augmentation technique based on varying conditions such as light condition, object size, 

Fig. 15. (Color online) Practical application: (a) proposed model versus (b) baseline (YOLOv8).

(a) (b)
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or angle of position is needed to produce a dataset that supports the model’s robustness and 
increases the model detection accuracy. In future studies, datasets can be developed by 
enhancing classes such as the crop type class. In addition, other attention modules can be 
integrated to provide a powerful lightweight intelligent model for PA purposes.
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