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 Distribution network systems usually contain static and dynamic volt-ampere-reactive (VAR) 
sources such as photovoltaics (PVs) and static VAR compensators (SVCs). It is therefore 
necessary to optimize the reactive power while considering the flow and voltage constraints in a 
distribution network. In this study, we aim to minimize the reactive power appearing in the 
distribution network due to integrated PVs, encompassing devices such as SVCs and capacitors. 
On the basis of this principle, first, the restriction of switching times of the capacitor bank under 
the constraint condition is converted into the adjustment cost of the capacitor bank in the 
objective function. The coupling variables of the capacitor bank can therefore be decoupled. 
Second, a multi-objective improved Salp Swarm Algorithm (ISSA) for static and dynamic 
reactive powers is introduced with the involvement of quasi-reverse learning, chaotic mapping, 
dynamic inertia weight, and a differential mutation operator. The performance fitness function 
is then established to determine the best solution for minimizing reactive power. The 
performance results show that the total network loss of static reactive power due to optimization 
decreases by 23.25% and the maximum network loss decreases by 20.21%. We also verified that 
the voltage per unit (pu) values meet the criterion of 0.95 pu with a maximum voltage rise of 
3.23%. Dynamic reactive power with optimization presents similar network loss and voltage 
levels, while reducing the number of operations for each capacitor bank by 75%.

1. Introduction

 Generally, volt-ampere-reactive (VAR) sources can be produced by generators and equipment 
such as capacitor banks, static VAR compensators (SVCs), and smart inverters located on a 
distribution system or at customer facilities.(1) Dynamic VAR sources, such as photovoltaics 
(PVs) power devices and SVCs, show a short response time, whereas static VAR sources, such as 
mechanically switched capacitors, have a relatively long response time. On the other hand, 
dynamic VAR devices can continuously control reactive power output instead. In a power 
system, reactive power usually appears along with a mix of static and dynamic VAR sources.(2) 
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Accordingly, constructing large-scale facilities for centralized PV systems is becoming an 
increasingly challenging problem in power distribution networks.(3,4) For example, dynamic 
reactive power arises frequently in a distribution network where the PV power supply output 
continually fluctuates throughout the day.(5,6) To improve the performance of the Salp Swarm 
Algorithm (SSA), Tawhid and Ibrahim(7) proposed the Chaotic SSA (CSSA) in which SSA was 
integrated with chaos theory in solving nonlinear systems and unconstrained optimization 
problems. Fathi et al.(8) introduced a differential operator to improve SSA, achieving optimal 
positions and power factors in PV panels and wind turbines under different scenarios.
 In the traditional reactive power optimization, initial solutions are randomly generated and 
iteratively updated until a predefined maximum number of iterations is reached.(9) Although 
some methods, such as branch and bound, Newton–Raphson, and linear programming for 
reactive power optimization, are available, they may be easily trapped in local optimal solutions. 
Other related methods include capacitor switching, reactive power compensation, and 
transformer ratio adjustment.(10) Among them, adding reactive power compensation devices and 
parallel capacitors to optimize the reactive power of the distribution network is currently the 
most popular method.(11) 
 Alternatively, artificial intelligence methodologies such as the particle swarm, ant colony, bee 
colony, and simulated annealing are being used in reactive power optimization.(12–14) In addition 
to these algorithms, SSA has been extensively utilized across various domains. However, its 
inherent limitations—weak exploitation, weak convergence, and unstable exploitation and 
exploration—may affect its efficiency in resolving reactive power optimization problems. 
 A previous study on high PV penetration addressed voltage imbalance and power loss in 
distributed grids.(15) It demonstrated that the integration of PV systems proved effective in 
mitigating transmission line loss. Eid et al.(16) introduced an improved marine predator algorithm 
to minimize the distribution network loss by optimizing the allocation of distributed generation 
and shunt capacitors. However, the proposed optimization algorithm excessively prioritized loss 
reduction while overlooking the effect of capacitor switching frequency, potentially causing 
significant capacitor aging. Gush et al.(17) reported the Slime Mold Algorithm to enhance the 
power flow distribution in power distribution networks. In their study, they did not take into 
account reactive power compensation devices such as capacitor banks. Therefore, the regulatory 
capabilities exhibited relative inadequacy in scenarios involving substantial reactive power gaps. 
Ma et al.(18) developed a voltage regulation model for active distribution networks, especially 
mitigating real-time nodal voltage variations by adjusting the active and reactive powers of each 
PV plant. 
 Recent advancements in sensor technologies have made it feasible to acquire real-time 
operational data, such as voltage and current levels, which are integral for the effective 
functioning of reactive power compensation systems in distribution networks. In this study, we 
utilized sensor-based data acquisition to enable real-time monitoring and reactive power 
optimization in PV distribution networks. On the basis of sensor-collected data, a mathematical 
model is formulated for reactive power optimization in distribution networks by integrating PVs 
for real-time control and encompassing both discrete and continuous optimization devices such 
as SVCs and capacitors.
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2. Power Distribution Network with PV

2.1 Impact of distribution network under high proportion of PV access

 When a large number of PV systems are connected to the distribution network, their output 
will affect not only the line flow from the upper-level substation to the load side but also the 
current distribution, voltage distribution, and network loss of the distribution network. Moreover, 
the impact of PV systems on the distribution network will change as their capacity and output 
change. Harmonic pollution can be mitigated by adopting advanced inverter designs with 
harmonic suppression and filtering functions. This approach can effectively reduce the injection 
of high-order harmonics into the distribution network, thereby improving power quality and 
ensuring the stable and reliable operation of the power grid. For this reason, we analyze in this 
section the impact of grid-tied PV systems on the distribution network in terms of flow 
distribution, voltage distribution, line current, and network loss.

2.1.1.	 Power	flow	distribution

 First, let us assume that there are only two main feed lines in the distribution network, where 
feed line 1 has a total load of P1 + jQ1 and feed line 2 has a total load of P2 + jQ2. The PV power 
source is connected to feed line 2 at node p. For clarity, we only analyze the impact of PV grid 
connection on active power flow in the distribution network, assuming that the power factor of 
the PV module is 1 and the PV power source only outputs active power with a value of Ppv. This 
means that the reactive power jQpv is 0. The load at node p is depicted as Pf + jQf, where the total 
active power load of the nodes before the grid-connected node p on feed line 2 is P21, and the 
total active power load of the nodes after the grid-connected node p is P22. Figure 1 shows a 
double-fed distribution network with PV input.

Fig. 1. Double-fed power distribution network with PV input.
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 By continuously improving the output power of PVs, we can analyze the flow of the double-
fed distribution network as follows:
(1) When Ppv < Pf, the load at node p can fully absorb the input of the PV power source and 

complete consumption. This means that the load at node p and the active load of line 2 
decreas, but the direction of the active power flow in the distribution network remains 
unchanged.

(2) When Ppv < Pf < P2, line 2 can fully absorb the output of the PV power source, but the load at 
node p cannot fully absorb the input of the PV power source. When Ppv < P12, the active load 
of line 2 decreases, but the direction of the overall active power flow in the distribution 
network remains unchanged. When Ppv > P12, the bus is still delivering active power to line 
2, and at the same time, node p is delivering active power to the end and beginning of line 2. 
The flow between the bus and node p is reversed, and there is a power-splitting point before 
the PV integration node p, where the active power is provided jointly by the bus and PVs.

(3) When P2 < Ppv < P1 + P2, line 2 cannot fully absorb the output of the PV power source, and 
the unabsorbed portion is absorbed by line 1. The distribution network provides active power 
to line 1 through the bus, and the PV power source also sends active power to line 1 through 
line 2. The flow between line 2 and node p is reversed.

(4) When P1 + P2 < Ppv, the active load of both lines cannot fully absorb the output of the PV 
power source, and the output may be wasted.

2.1.2 Voltage distribution

 Figure 2 shows a simplified schematic of a grid-connected node within the power radiation 
distribution network, which consists of n nodes. Each node i has a load represented by Pfi + jQfi, 
and the impedance of the line connecting node i − 1 to node i is Pi + jQi. Node 0 serves as the 
balanced node with a constant voltage amplitude, while the voltage amplitude at the i-th node is 
Vi. The PV power generation system connects to PQ node p, delivering an output power of 
Ppv + jQpv.
(1) Voltage distribution before PV integration into distribution network
 Prior to PV integration into the distribution network, voltage is distributed from the bus to the 
load side of each node. This voltage distribution can be calculated using the voltage drop 
principle at each node.

Fig. 2. (Color online) Simplified diagram of interconnected nodes.
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Here, ΔVk and δVk represent the active and reactive components of voltage drop, respectively. 
Since the reactive component is mainly affected by the voltage phase, the component is mainly 
affected by the voltage amplitude. If the voltage phase difference between nodes is small relative 
to the amplitude difference, the effect of reactive power on voltage drop can be ignored.
 The voltage difference between nodes is calculated on the basis of the load of each node.
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 In a standard distribution network, the loads of nodes consume different amounts of active 
and reactive powers. When the voltage of the line from the bus to the end of the feed continuously 
decreases, the voltage of node k can be calculated as
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(2) Voltage distribution after PV integration into distribution network
 When the distribution network is integrated with PVs, the voltage drop patterns before and 
after the integration point will change. For ease of analysis, the line is divided into two parts: one 
is the line between the PV source integration point p and the bus, and the other is the line 
between the PV source integration point p and the end of the feed line.
 For any node k (0 < k < p) on the line between the PV source integration point p and the bus, 
the voltage difference between nodes can be expressed as
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 The given equation indicates that when Pfi < Ppv, ΔVk > 0, signifying a higher voltage at node 
k-1 than at node k. Conversely, when Pfi > Ppv, ΔVk < 0, implying a lower voltage at node k-1 than 
at node k.
 The voltage at node k can be expressed as
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 The voltage at the PV integration point p can be obtained as
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 The comparison of Eqs. (4) and (6) shows that if the capacity of the PV source integrated into 
the grid is small, the voltage on the line between the integration point and the bus will increase 
after integration. However, as the capacity of the PV source integration increases, the voltage at 
the PV integration point may exceed the limit, which will damage the safe operation of the 
distribution network. 

2.1.3 Line currents

 The current between nodes k-1 and k before the PV grid connection is
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 The current between nodes k-1 and k after the PV grid connection is
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 As shown by the above formulas, connecting PV to the grid with a small capacity reduces the 
line current. However, increasing the PV capacity may result in reverse current in the line after 
PV grid connection, with the current magnitude exceeding that before the PV grid connection.
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2.2 Description of static reactive power optimization 

 The objective function of reactive power optimization is expressed as

 P G V V VVloss j
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where Ploss is the active power loss, N is the total number of network branches, Gij is the 
conductance on branch i-j, Vi and Vj are the voltages at nodes i and j, respectively, and θij is the 
voltage phase angle difference between nodes i and j.
(1) Equality constraints:
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Here, PGi is the injected active power at node i, PDi is the active power load at node i, Vi is the 
voltage at node i, θij is the voltage phase angle between nodes i and j, Gij is the conductance 
between nodes i and j, Bij is the susceptance between nodes i and j, Ni is the number of nodes 
connected to node i, QGi is the injected reactive power at node i, and QDi is the reactive power 
load at node i.
(2) Inequality constraints: 
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Here, Vimax and Vimin represent the upper and lower voltage amplitude limits at node i, and Qimax 
and Qimin represent the upper and lower reactive power compensation capacity limits at node i, 
respectively.
 For grid-tied inverters of PV systems, the maximum compensation capacity Qmax is 
determined by their installed capacity and the active power output at time t, as expressed in

 Q S Pmax max t� �2 2 , (12)

where Smax is the installed capacity of the grid-tied inverter of the PV system and Pt is the active 
power output of the PV system at time t. In this study, we assume that the reactive power output 
of the PV system is fully compensated for in the case of internal consumption so that it is, 
therefore, entirely active power.
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2.3 Description of dynamic reactive power optimization 

 In this study, we introduce a dynamic reactive power optimization approach to avoid 
constraints encountered on the allowable number of capacitor bank actions in the static reactive 
power optimization. We consider the maximum allowable actions for the reactive power 
compensation capacitor bank while ensuring that voltage limits are not breached and the total 
network loss over the 24 periods is minimized. The mathematical model for this optimization is 
presented as
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where 
tCB
 
is the reactive power compensation capacity of each capacitor bank in period t, Bt is 

the reactive power compensation capacity of each SVC and grid-connected inverter for PV 
power in period t, Vt is the voltage of each node in period t, Ploss(Bct, Bt) represents the total 
network active power loss in period t, the first constraint h(Bct, Bt) = 0 is the flow equation 
constraint, and Sc is the maximum allowable number of actions of each reactive power 
compensation capacitor bank within 24 h.
 Considering the maximum switching limits of transformers and capacitor banks in the 
distribution network, the problem of limiting the number of operations in capacitor banks can be 
converted into the problem of cost adjustment of capacitor banks. To minimize the operational 
cost of the distribution network,

 min f P C ND
t

loss A C� �
�
��� �
0

23

, (14)

where fD is the operating cost of the distribution network, β is the price of electric energy, τ is the 
optimization time interval, set to 1 h in this study, cA is the adjustment cost of the reactive 
compensation capacitor bank, and NC is the number of operations in the reactive compensation 
capacitor bank. 
 The last constraint term in Eq. (19) is no longer necessary. The decoupled dynamic reactive 
power optimization constraint is given by
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This mathematical model eliminates constraints on variable changes, making each period’s 
optimization independent and reducing computational complexity. Additionally, the adjustment 
cost prevents excessive control device changes solely for network loss reduction.

3. Improved SSA 

3.1 Fundamentals of SSA

 SSA mimics the foraging behavior of colonial tunicates, featuring two types of search agent 
in a salp swarm: a leader and some followers.(19) In the entire population’s trajectory, i.e., a 
chain-link group, the leader is heading at the front, influencing only the immediate followers, 
while the rest move on the basis of the groups ahead. However, its inherent limitations—weak 
exploitation, weak convergence, and unstable exploration—may affect the efficiency for solving 
reactive power optimization problems. To address these shortcomings, we improved the standard 
SSA by introducing adaptive coefficients and dynamic weights in its update mechanisms. This 
enhancement helps balance convergence speed with population diversity, thereby yielding more 
robust and accurate optimization results. The specific operational process of SSA is as follows:
(1) Initialize the population
 Let the population size be n and the dimension be d. The colonial salp population matrix is 
initialized as
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 The initialization formula is

 S lb rand n b ub lb� � � �( , ) ( ) , (17)

where ub is the upper limit of the search space, lb is the lower limit of the search space, and 
rand(n, d) generates a random matrix of n rows and d columns with values ranging from 0 to 1.
(2) Population fitness evaluation and leader selection
 Evaluate the initial colonial tunicate population’s fitness using the designated fitness function 
and subsequently arrange them in ascending order on the basis of their fitness scores. The 
individual with the highest fitness score is designated as the primary food source. 
(3) Update the position of the colonial tunicate leader
 The leader’s position is updated using the following formula:
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where it is the current number of iterations, Sl itd
n
( )  is the position of the n-th salp leader in the 

d-th dimension at the it-th iteration, and Fd is the position of the food source in the d-th 
dimension. ubd and lbd represent the upper and lower bounds of the search space in the d-th 
dimension, and are random numbers between 0 and 1 that affect the step size and direction of the 
leader’s update, respectively, and dynamically change with the number of iterations according to 
the following formula:
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where M_it is the maximum number of iterations for the algorithm. As the number of iterations 
increases, c1 gradually decreases, and the step size of the leader’s position update also decreases.
(4) Position update for salp followers
 The position update rule for salp followers is based on Newton’s laws of motion:
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where t is the time interval, Sfd
n  is the updated position of the n-th salp follower in the d-th 

dimension at the it-th iteration, v is the initial velocity, and n is the number of iterations during 
the algorithm. Since the initial velocity is 0, S itd

n
( ) can be expressed as
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where it is the current number of iterations and n ≥ 2.
 After updating the position of the salp individuals, boundary handling is performed to ensure 
that the search space remains unchanged. 



Sensors and Materials, Vol. 37, No. 7 (2025) 3035

3.2 Establishment of improved SSA

3.2.1 Strategy for initial population

 There are two key steps involved in the proposed approach. First, a chaotic map, specifically 
the Tent map described in Eq. (26), is employed to generate half of the population. Following 
this, the remaining half is generated using the quasi-inverse learning strategy.
 Chaotic motion is characterized by its nonlinear, random, regular, and nonrepetitive nature. 
Owing to the integration of chaotic sequences into the initialization process, this method 
promotes improved spatial distribution, mitigates local optima traps, accelerates algorithm 
convergence, and enhances global search capabilities.(20)
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Here, Sn is the n-th individual generated during initialization.
 The quasi-inverse learning strategy generates individuals opposing the current population 
during algorithm initialization, enhancing accuracy and convergence speed without risk of local 
optima. The formula using this strategy is as follows:
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where Sd is the individual salp in the d-th dimension after initialization, Sd
QOBL  is the quasi-

opposite individual of Sd, and ubd and lbd are the upper and lower bounds of the search space in 
the d-th dimension, respectively.

3.2.2 Strategy for individual position updating

 In the early SSA iterations, the optimal salp often starts far from the global optimum. To 
solve this problem, a cumulative effect generated from the swift global exploration can make 
salps converge towards global optimization as iterations advance. 
 The improved formula for the leader position updating is as follows:

 Sl it Sl it w F it Sl it randd
n

d
n

d d
n

( ) ( ) ( ( ) ( ))� � � � � � � �1 1 1 , (24)

where it is the current number of iterations, Sl itd
n
( )  is the position of the nth leader salp in the 

d-th dimension in the i-th iteration, and Fd is the position of the food source in the d-th 
dimension.
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 Furthermore, the expression for the inertia weight (ω) is
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where M_it is the maximum number of iterations of the algorithm. The variation in inertia 
weight over iterations is illustrated in Fig. 3.

3.2.3 Strategy for population diversity

 The differential mutation is used to update the dimension value for the individual. It is 
expressed as

 1 '
1 2( ) ( )n n n n

d d d d d dS r F S r S S S+ = × − + × − + ,  (26)

where Sd
n+1  is the position of the nth follower in the d-th dimension at the i-th iteration, Fd is the 

location of the food source in the d-th dimension, '
dS  is the position of a random individual in the 

d-th dimension of the population, and r1 and r2 are random numbers between 0 and 1. Here, the 
best and worst individuals in the population after each iteration are selected for one-dimensional 
differential mutation.(21)

4. Performance Results and Analysis

4.1 Static reactive power optimization

 The distribution network undergoes daily static reactive power optimization, which is divided 
into 24 time periods to account for temporal load variations. In this study, we used the IEEE-33 

Fig. 3. Variation in inertia weight (ω) over iterations.
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node system(22) with two 5 MW PV power sources connected to nodes 16 and 30, where their 
inverters regulate reactive power. Node 6 features a 1 MVA SVC, whereas nodes 25 and 27 are 
installed with 20 sets of 50 kVA capacitor banks. The topology diagram of the IEEE-33 node is 
shown in Fig. 4.
 The PV output curve during a typical day in summer is shown in Fig. 5. The curve of 
distribution network loss with and without improved Salp Swarm Algorithm (ISSA) optimization 
is shown in Fig. 6. Clearly, the power loss in the network is relatively lower during 10:00–13:00 
than during 19:00–21:00, regardless of whether the optimization is carried out. This implies that 
the integration of PV sources into the distribution network effectively improves the network loss. 
However, the reactive power compensation using ISSA optimization achieves a better outcome 
in reducing the network loss at any period.
 The statistics of network loss during 24 h are summarized in Table 1, which reveals that the 
total distribution network loss without optimization is 3.76 MW, with a peak loss of 0.287 MW. 
On the other hand, ISSA optimization reduces the network loss up to 2.886 MW, down by 
23.25%, and the maximum network loss, i.e., 0.229 MW, by 20.21%.

Fig. 5. Typical PV output curve in a day.

Fig. 4. (Color online) Topology diagram of IEEE-33 node.
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 After optimization, all node voltages exceed 0.95 pu. Here, a notable increase in voltage 
standard value occurs at nodes 6–18 and 26–33. However, at nodes 1–3 and 18–24, the 
optimization process does not have a significant effect on the voltage standard value owing to 
inherent conditions. 

4.2 Dynamic reactive power optimization

 In this study, we used the IEEE-33 node system with a maximum of five operations for 
capacitors. The ISSA optimization algorithm achieves the dynamic reactive power optimization 
process, as shown in Fig. 7. After the initial optimization, capacitor bank 1 switched 13 times 
and capacitor bank 2 switched 10 times. To address cost minimization with the number of 
operations reduced, K-means clustering optimizes switching times. 
 The PV cell’s output power facilitates active power output, enabling power flow calculations 
and network loss determination for each time interval, as shown in Fig. 8.
 Through a comprehensive analysis of the test results, the following conclusions can be 
obtained:
(1) Within static reactive power optimization, the distribution network’s total loss post-

optimization constitutes 76.76% of its pre-optimization total loss, with the maximum loss 
reaching 79.79%. During the peak PV output, the voltage standard experiences a maximum 
unit value increase of 3.23%.

(2) Within dynamic reactive power optimization, the distribution network’s total loss post-
optimization is 76.62% of the pre-optimization total loss and the maximum loss reaches 

Table 1
Statistics of distribution network loss.
Item Not optimized ISSA optimized
Total loss (MW) 3.760 2.886
Maximum loss (MW) 0.287 0.229

Fig. 6. (Color online) Curve of distribution network loss during 24 periods.
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81.18%. During the period of maximum PV output, the voltage standard sees a maximum 
unit value increase of 3.53%. The dynamic optimization of static optimization is superior in 
terms of network loss and voltage quality, significantly reducing the number of capacitor 
bank operations by 75% compared with static optimization. 

 When a large number of PV power sources are connected to the distribution network, their 
output is random and intermittent, which will affect both the technical and economic indicators 

Fig. 7. (Color online) Flowchart of dynamic reactive power optimization.

Fig. 8. (Color online) Curves of network loss during 24 periods of time.



3040 Sensors and Materials, Vol. 37, No. 7 (2025)

of the distribution network. To address this, we propose adding energy storage systems and 
employing predictive control strategies to smooth power fluctuations, thereby reducing network 
losses and improving both technical performance and economic benefits. In summary, in this 
study, we delved into pivotal optimization factors encompassing the reactive compensation 
capacity of capacitors, grid-connected PV inverters, and SVCs. The optimization procedure 
meticulously considers operational constraints inherent to capacitor groups. Dynamically, the 
process integrates the K-means clustering algorithm to ascertain the optimal operation of 
capacitor groups. The resultant model is a dynamic reactive power optimization framework 
designed to significantly curtail losses in the distribution network.

5. Conclusions

 In this study, we formulated a mathematical model for reactive power optimization in 
distribution networks with integrated PVs, encompassing both discrete and continuous 
optimization devices such as SVCs and capacitors. Moreover, the reactive power optimization in 
PV distribution networks, encompassing both static and dynamic reactive powers, was 
successfully implemented and evaluated through extensive case studies, demonstrating its 
practicality and robustness in improving voltage profiles and reducing network losses. ISSA 
incorporates chaotic mapping, quasi-inverse learning strategies, novel position update strategies, 
and dimension difference mutation strategies. Compared with other common algorithms, ISSA’s 
various test standards show excellent performance in most test functions. Performance results 
showed that reactive power optimization leads to enhanced network loss reduction and improved 
node voltage in the distribution network. With the growing prevalence of controllable resources 
such as electric vehicles, future studies on reactive power optimization may benefit from 
exploring its integration with other controllable resources. The islanding effect may compromise 
the safety and stability of the distribution network when a grid outage occurs, causing distributed 
generators to continue energizing the grid. For future work, several strategies, such as employing 
anti-islanding detection methods (active, passive, or communication-assisted), are suggested to 
enable the timely disconnection of distributed generation. Alternatively, grid-forming controls 
are added to aid microgrid formation while retaining power to critical loads. Furthermore, 
adaptive protection schemes can be used to distinguish between normal operations and islanding 
events, thereby strengthening the robustness and resiliency of the distribution network under the 
high penetration of PV systems.
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