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	 Arteriovenous fistula (AVF) occlusion is a problem faced by all hemodialysis patients. 
However, current clinical methods for assessing the degree of AVF occlusion primarily rely on 
auscultation and palpation, which are subjective and relatively inaccurate methods. In this study, 
we developed a portable, noninvasive audio recording device for collecting vascular blood flow 
sounds and collected data from three patients who underwent two or more percutaneous 
transluminal angioplasty (PTA) procedures within 8 months. The data collection period was 4 
months. By short-time Fourier transform, we extracted 25 signal features and 6 acoustic features 
from the recorded blood flow sounds. Moreover, we developed the time-adaptive ensemble 
learning algorithm (TAELA) to create an AI-based regression model for estimating the degree of 
AVF occlusion. This model can assist physicians in predicting the optimal timing for PTA 
procedures. Experimental results indicated that the TAELA outperformed adaptive and gradient 
boosting regression algorithms in terms of the coefficient of determination (R2) and that the 
TAELA model did not exhibit overfitting. The developed audio recording device and TAELA 
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enabled the effective and accurate identification of the degree of AVF occlusion in three 
hemodialysis patients. The overall system can serve as a portable, noninvasive, and user-friendly 
clinical diagnostic tool for assisting physicians in optimizing the interval between PTA 
procedures, thereby reducing surgical frequency for hemodialysis patients while ensuring that 
they do not experience complications associated with delayed dialysis.

1.	 Introduction

	 More than 90% of patients with end-stage renal disease require dialysis to sustain life, with 
hemodialysis being the predominant treatment modality. Before a patient undergoes 
hemodialysis, vascular access must be established, and this is commonly achieved by creating an 
arteriovenous fistula (AVF). However, dialysis treatment lasts a long time, and blood vessels 
often narrow over time, either from repeated needle punctures(1) or turbulent blood flow caused 
by high-velocity circulation.(2) The area around the AVF connection is thus prone to occlusion, 
necessitating the regular monitoring of the fistula’s status. Currently, percutaneous transluminal 
angioplasty (PTA) is the main clinical intervention for AVF occlusion. This procedure involves 
inserting a catheter into the affected blood vessel, advancing a balloon to the site of the blockage, 
and inflating the balloon to dilate the narrowed region.(3)

	 Despite its effectiveness, PTA is an invasive procedure. Frequent PTA interventions can lead 
to the failure of the AVF, rendering it unusable. If the AVF becomes nonfunctional, the patient 
must undergo surgery to create a new fistula or rely on temporary vascular access for 
hemodialysis. However, delaying PTA procedures increases the risk of complications, such as 
acute arrhythmias, heart failure, and ischemic neuropathy,(4) posing severe threats to the patient’s 
health and life. Therefore, a suitable clinical method for accurately predicting the degree of AVF 
occlusion should be developed. Such a method would help identify the optimal timing for PTA 
intervention, balancing the need to minimize surgical frequency while avoiding life-threatening 
complications.
	 Currently, the clinical assessment of AVF occlusion primarily relies on physical examination 
methods such as auscultation and palpation, which must be performed by healthcare 
professionals. These methods focus on evaluating the smoothness of blood flow vibration, 
assessing vascular pulsations, and detecting an elevated pulse rate.(5) However, such assessments 
are heavily dependent on the experience and expertise of medical staff. Accurately determining 
the degree of AVF occlusion by using the aforementioned empirical approaches is highly 
challenging, and the diagnostic accuracy is often low.
	 To determine the degree of AVF occlusion more accurately, advanced diagnostic methods—
such as X-ray angiography, Doppler ultrasound, intravascular ultrasound imaging, and 
phonoangiography—are often required.(6,7) However, these methods require costly equipment 
and healthcare professionals trained to operate such equipment. Consequently, the 
aforementioned precise diagnostic techniques are unsuitable for the routine and real-time 
monitoring of AVF occlusion in hemodialysis patients.
	 Many researchers have explored the use of fistula blood flow sounds combined with machine 
learning for assessing the degree of AVF occlusion.(8,9) For instance, Wang(10) employed an 
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electronic stethoscope to collect blood flow sounds, after which sound features were extracted 
and input to k-nearest neighbors and support vector machine (SVM) machine learning models, 
which then evaluated occlusion levels. These models achieved accuracies of 90.9 and 85.7%, 
respectively. Similarly, Higashi et al.(9) used features such as the frequency power ratio, mel-
frequency cepstrum, and normalized cross-correlation coefficient in an SVM model for 
classifying fistula stenosis. They used the resistance index values obtained from ultrasound 
equipment as class labels and achieved a classification accuracy of 82.6%. Vesquez et al.(11) 
proposed the use of wavelet transform coefficients from different frequency bands as input 
features in the classification of blood flow sounds. Their results indicated that SVM exhibited 
excellent classification performance. The aforementioned studies have classified fistula 
occlusion levels; however, in clinical settings, predicting the percentage of occlusion, which is a 
continuous value, is more crucial. Classification models cannot complete this task; therefore, a 
suitable and robust regression model must be developed.
	 In response to the aforementioned requirement, we developed a handheld, noninvasive 
acoustic device for collecting blood flow sounds from hemodialysis patients and investigated the 
roles of acoustic features in assessing the degree of AVF occlusion. Moreover, a time-adaptive 
ensemble learning algorithm (TAELA) was designed to create an AI-based regression model for 
predicting the degree of AVF occlusion. Given the clinical understanding that AVF occlusion 
gradually worsens over time, in this study, we assumed a linear increase in the degree of AVF 
occlusion over time. The experimental results of this study indicated that the created model 
accurately predicted the degree of AVF occlusion. Thus, this model can assist healthcare 
professionals in making more informed decisions regarding the interval between PTA 
procedures.

2.	 Materials and Methods

	 We conducted the long-term monitoring of three hemodialysis patients prone to AVF 
occlusion. During the period from post-PTA surgery to complete occlusion, weekly blood flow 
sound recordings were collected prior to each dialysis session to assess the level of AVF 
occlusion for each patient.(9) According to Sato et al., the optimal recording site for blood flow 
sounds is the arteriovenous anastomosis, which is also the most common site of AVF 
occlusion.(12) AVF occlusion is generally understood to progress gradually over time; therefore, 
we assumed a linear progression of occlusion. The blood flow sounds recorded immediately 
after PTA surgery were labeled as 0% occlusion, whereas those recorded immediately before 
PTA surgery were labeled as 100% occlusion. Intermediate recordings were assigned occlusion 
percentages linearly between these two values. A total of 9, 11, and 13 recordings were collected 
for Patients A, B, and C, respectively. This study was approved by the Institutional Review 
Board of Kaohsiung Medical University Hospital (IRB number: KMUHIRB-E(I)-20200423).
	 We developed a recording device for collecting blood flow sounds. This device consisted of a 
mobile power supply, a high-sensitivity contact microphone, a Raspberry Pi module (model: 
Pi4d+), and headphones (Fig. 1). The contact microphone had a sound sensitivity of −70 dB, 
allowing it to capture faint sounds that are inaudible to the human ear. Data collection began 
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after the recording device was applied to a patient’s skin at the designated recording site, and the 
recording status was confirmed through the headphones. Once the recording was complete, the 
device transmitted the collected sound data to a computer through Wi-Fi for storage. 
Subsequently, sound features were extracted, with the recorded sounds converted into acoustic 
signal features that served as input for machine learning models. The operational process of the 
developed recording device is depicted in Fig. 2.
	 Araya‐Salas and Smith‐Vidaurre(13) identified 25 acoustic signal features that can be 
extracted from sound. These features are listed as follows.
1.	 Mean frequency: average signal frequency
2.	 Standard deviation of frequency: variability in frequency
3.	 Median frequency: middle value of the frequency distribution
4.	 First frequency quartile: 25th percentile of frequency values
5.	 Third frequency quartile: 75th percentile of frequency values
6.	 Interquartile frequency range: range between the first and third frequency quartiles
7.	 Median time: time corresponding to the median frequency
8.	 First quartile time: time corresponding to the first frequency quartile
9.	 Third quartile time: time corresponding to the third frequency quartile
10.	Interquartile time range: range between the first and third quartile times
11.	Skewness: asymmetry of the frequency distribution
12.	Kurtosis: sharpness of the peak of the frequency distribution
13.	Spectral entropy: measure of the disorder or randomness in the frequency spectrum
14.	Temporary entropy: entropy calculated over temporal window
15.	Entropy: overall randomness of the acoustic signal
16.	Spectral flatness: measure indicating the extent to which the spectrum resembles noise
17.	Average dominant frequency across the spectrogram: mean of dominant frequencies

Fig. 1.	 (Color online) Image of the developed recording device.
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18.	Minimum dominant frequency across the spectrogram: lowest dominant frequency
19.	Maximum dominant frequency across the spectrogram: highest dominant frequency
20.	Range of dominant frequencies across the acoustic signal: difference between the maximum 

and minimum dominant frequencies
21.	Modulation index: amplitude variation of the signal
22.	Dominant frequency at the start of the signal: dominant frequency at the beginning of the 

signal (measured on the spectrogram)
23.	Dominant frequency at the end of the signal: dominant frequency at the termination of the 

signal (measured on the spectrogram)
24.	Slope of change in dominant frequency over time: rate of change in dominant frequency over 

time
25.	Mean peak frequency: average peak frequency of the signal
	 The aforementioned features are essential for characterizing and analyzing acoustic signals 
in various applications, including biomedical signal analysis and machine learning.
	 In this study, we developed a TAELA-based regression model that predicts the degree of AVF 
occlusion and can thus assist physicians in determining the optimal time for patients to undergo 
PTA. Adaptive boosting (AdaBoost) regression(14) and gradient boosting regression(15) 
algorithms exhibit good fitting performance; thus, these algorithms were combined to develop 
the TAELA. The TAELA operates as follows. The AdaBoost and gradient boosting regression 
algorithms are used to process the first and second parts of the recorded audio, respectively, to 
assess the degrees of AVF occlusion corresponding to these parts. Thus, the developed TAELA 
leverages the strengths of the AdaBoost and gradient boosting regression algorithms at different 
time intervals to enhance its prediction accuracy.

Fig. 2.	 (Color online) Operational process of the developed recording device.



3048	 Sensors and Materials, Vol. 37, No. 7 (2025)

3.	 Results and Discussion

	 Four evaluation metrics were employed to assess the performance of the developed regression 
model: the mean square error (MSE),(16,17) mean absolute error (MAE),(18,19) root mean square 
error (RMSE),(18,19) and coefficient of determination (R2).(20–23) The R2 value of a model should 
be as high as possible, whereas its MSE, MAE, and RMSE values should be as low as possible. A 
total of 80% and 20% of the collected acoustic feature dataset were used for training and testing, 
respectively. This dataset contained data on 25 features extracted from the audio recordings of 
the three patients involved in this research. Python (version 3.9.12) was the primary programming 
language used in this study.
	 The evaluation results of the developed TAELA for the three patients are presented in Table 1 
and shown in Fig. 3. The experimental results indicated that the R2 values of the TAELA for 

Algorithm: Time-adaptive ensemble learning algorithm
Input: Recorded acoustic signal features
Output: Degree of AVF occlusion
1. sound(t): Signal features recorded at week i
2. t: Number of weeks after PTA
3. adaboost: AdaBoost regression model
4. gradientboost: Gradient boosting regression model
if (t ≥ 0.5) then  
    adaboost(sound(t))  
    return adaboost(sound(t))  
else  
    gradientboost(sound(t))  
    return gradientboost(sound(t))  
end if  

Fig. 3.	 (Color online) Predictions of TAELA for Patients A (R2 = 0.82), B (R2 = 0.88), and C (R2 = 0.91).

Table 1
Evaluation results of different regression models for Patients A, B, and C.
Patient Regression model MSE RMSE MAE R2

A AdaBoost 0.05 0.21 0.18 0.59
Gradient Boost 0.05 0.22 0.16 0.56
TAELA 0.02 0.14 0.08 0.82

B AdaBoost 0.05 0.23 0.19 0.40
Gradient Boost 0.05 0.23 0.17 0.42
TAELA 0.01 0.11 0.06 0.88

C AdaBoost 0.02 0.15 0.09 0.79
Gradient Boost 0.02 0.13 0.08 0.85
TAELA 0.01 0.10 0.05 0.91
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Patients A, B, and C were 0.82, 0.88, and 0.91, respectively. These values were higher than those 
achieved using the AdaBoost regression algorithm alone (R2 values of 0.59, 0.40, and 0.79 for 
Patients A–C, respectively) and the gradient boosting regression algorithm alone (R2 values of 
0.56, 0.42, and 0.85 for Patients A–C, respectively). Moreover, the developed algorithm did not 
exhibit overfitting. The aforementioned results indicated that the TAELA accurately determined 
the degree of AVF occlusion from the blood flow sounds recorded by the developed device. 
Thus, the combination of the developed device and TAELA serves as a practical clinical system 
for the accurate estimation of the degree of AVF occlusion in hemodialysis patients.

4.	 Conclusions

	 In this study, we developed a device for recording blood flow sounds in AVFs in hemodialysis 
patients. This device was used to record blood flow sounds from three hemodialysis patients 
before and after PTA. Subsequently, the TAELA was developed and used to process the data 
recorded by the developed device to predict the degree of AVF occlusion. The results of this 
study indicated that the R2 values of the TAELA exceeded those of the AdaBoost and gradient 
boosting regression algorithms. Thus, the proposed TAELA can accurately predict the level of 
AVF occlusion at the time of recording blood flow sounds. The combination of the developed 
device and TAELA enables the portable, noninvasive, and accurate determination of the level of 
AVF occlusion. Clinicians can use the determined AVF occlusion to identify suitable timings of 
PTA interventions for hemodialysis patients, thereby minimizing surgical frequency for these 
patients while ensuring that they avoid the complications associated with delayed dialysis 
treatment.
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