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	 Sea ice should be detected accurately to mitigate risks to marine industries, protect coastal 
infrastructure, and understand the dynamic interactions between sea ice and the marine 
environment. In this study, we developed and validated a sea ice detection algorithm based on a 
multilayer perceptron (MLP) for the Bohai Sea using Geostationary Ocean Color Imager-II 
(GOCI-II) and Sentinel-2 data. High-resolution Sentinel-2 imagery generates the sea ice truth 
data, which are then resampled to align with the GOCI-II grid. Rayleigh-corrected reflectance 
data from GOCI-II are used as input variables for the MLP algorithm. Multiscale Window 
Analysis enhances detection accuracy and reduces the false detections inherent in pixel-based 
approaches. The performance of the detection algorithm is evaluated using different window 
sizes (1 × 1, 3 × 3, 5 × 5, 7 × 7, and 9 × 9 pixels). The results demonstrate that increasing the 
window size enhances performance metrics, underscoring the importance of incorporating the 
surrounding reflectance variations in sea ice detection. Additionally, the developed algorithm 
was applied to hourly GOCI-II images for further analysis. A qualitative evaluation confirmed 
that sea ice was successfully detected, and the algorithm effectively identified the temporal 
movement of sea ice.

1.	 Introduction

	 Sea ice plays a critical role in climate systems and marine environments by modifying 
surface reflectivity, which impacts regional weather patterns and energy balance.(1–3) Beyond its 
environmental impact, sea ice exerts economic influence. Floating sea ice disrupts aquaculture 
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and fisheries, obstructs maritime transportation, and damages offshore infrastructure (such as 
oil platforms), leading to considerable financial losses.(4–6) Consequently, sea ice distribution 
and movement should be monitored and detected accurately to protect marine ecosystems and 
minimize economic risks.
	 Satellite remote sensing is indispensable for large-scale sea ice monitoring. Previous studies 
have demonstrated the utility of various satellite technologies for detecting and analyzing sea ice 
in the Bohai Sea. Several researchers used synthetic aperture radar to detect sea ice.(4,7,8) Others 
utilized polar-orbiting satellites, such as the Moderate-Resolution Imaging Spectroradiometer 
and the Advanced Very-High-Resolution Radiometer, for their broad spatial coverage.(2,9–12) 
Moreover, geostationary satellites, such as the Geostationary Ocean Color Imager-II (GOCI-II), 
provide high temporal resolutions, enabling the effective observation of sea ice dynamics.(13–16)

	 The sea ice in the Bohai and Yellow seas is characterized by rapid spatial and temporal 
variations, with thin ice layers and complex optical properties. High turbidity in seawater 
complicates detection.(17) These challenges can be overcome using monitoring strategies that 
integrate datasets with high spatial and temporal resolutions. Although polar-orbiting satellites 
offer broad coverage, their low temporal resolution limits their effectiveness for real-time 
monitoring. By contrast, geostationary satellites provide high temporal resolutions and are better 
suited for tracking dynamic phenomena, such as sea ice in the Bohai Sea.(13)

	 GOCI-II is particularly advantageous for sea ice monitoring, providing hourly observations 
over a wide spatial range. This enables the effective tracking of the dynamic changes in the sea 
ice distribution in the Bohai and Yellow seas.(14,15) Sentinel-2 offers a high spatial resolution of 
10 m, allowing detailed analyses of the regional features of sea ice. Combining the temporal 
resolution of GOCI-II with the spatial accuracy of Sentinel-2 can lead to the development of 
more robust and precise sea ice detection methodologies. Multiscale window analysis (MWA) 
can further enhance detection accuracy by incorporating surrounding spatial information. 
Integrating MWA into a sea ice detection algorithm can improve the reliability of sea ice 
monitoring. This approach may significantly enhance the efficiency of sea ice monitoring and 
provide valuable insights for environmental management and maritime safety in these regions.

2.	 Study Area and Materials

	 The Bohai Sea, a semi-enclosed area in the northern Yellow Sea, has an average depth of only 
18 m and is the world’s southernmost region where sea ice forms.(15) This region is economically 
significant owing to its proximity to Beijing, the capital of China, high maritime traffic, and 
abundant oil and natural gas resources. Thus, the sea ice in the Bohai Sea considerably affects 
marine transportation, fisheries, port facilities, and oil and gas exploration.(14,15)

	 Within the Bohai Sea, sea ice formation occurs the earliest and lasts the longest in Liaodong 
Bay (Fig. 1), where it typically persists from December to the following March. High temporal 
resolutions in ice monitoring are essential to minimize damage risks to port and offshore 
facilities, such as oil platforms. In particular, the spatial distribution and thickness of sea ice 
should be monitored to maintain environmental stability and minimize economic losses in this 
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region. Because a large amount of sea ice in the Bohai Sea is floating, tracking drift ice is also 
essential, as demonstrated by a previous study(13) that validated the utility of GOCI hourly 
imagery for monitoring sea ice movement in this area.
	 In this study, we used data from GOCI-II, the next-generation GOCI, and Sentinel-2 satellite 
imagery to detect and validate sea ice in the Liaodong Bay. GOCI-II observes the Northeast 
Asian region, including the Korean Peninsula, Japan, China, and other nearby areas (Fig. 1), at a 
spatial resolution of approximately 300 m (Table 1). The sensor conducts observations 10 times a 
day at 1 h intervals, from 8 AM to 5 PM (local time), providing the advantage of monitoring the 
short-term variability of ocean phenomena within the observation area. Sentinel-2 provides 
high-resolution imagery suited for observing detailed ice features. A convergence study using 
these satellites will enhance the efficiency of real-time sea ice monitoring and detection.
	 In this study, we used images from the 2021 sea ice season, the only period when GOCI and 
GOCI-II were observing simultaneously. Sentinel-2 level-2A data were acquired from the 
Copernicus browser (https://browser.dataspace.copernicus.eu), whereas GOCI-II level-2 data 
corresponding as closely as possible to the Sentinel-2 observation times were obtained from the 
National Ocean Satellite Center (https://www.nosc.go.kr/main.do).

3.	 Methods

3.1	 Multilayer perceptron (MLP)

	 An MLP is a widely used artificial neural network model that extends the capabilities of a 
single-layer perceptron, first proposed by Frank Rosenblatt in 1957.(18,19) Although single-layer 
perceptrons can solve simple linear classification problems, their lack of hidden layers prevents 
them from addressing more complex, nonlinear tasks, such as the exclusive OR problem. An 
MLP overcomes these limitations using one or more hidden layers incorporated between its 
input and output layers, enabling it to model nonlinear relationships and predict continuous 

Fig. 1.	 Study area. The black and red solid box outlines indicate the GOCI-II observation and study areas, 
respectively.

https://browser.dataspace.copernicus.eu
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functions.(20,21) This makes MLPs suitable for applications such as pattern classification, 
prediction, and regression.
	 In this study, an MLP model was developed to predict the presence of sea ice using Rayleigh-
corrected reflectance (RRC) data from 12 GOCI-II bands. The designed MLP architecture 
includes four fully connected hidden layers, with 256, 128, 64, and 32 neurons in the first to 
fourth layers, respectively (Fig. 2).(22) A rectified linear unit activation function was applied per 
layer, and a softmax activation function was used in the output layer to generate probability 
distributions, enabling the classification of the presence of sea ice. A categorical cross-entropy 
loss function was used to measure the difference between the predicted and actual probability 
distributions. Then, an Adam optimizer was used to minimize the value of the loss function 
during training.
	 To further improve the detection accuracy, we enhanced the model to account for surrounding 
pixels in addition to the target pixel. Instead of using only the 12 RRC values for a single pixel, 
this method considers the RRC values of neighboring pixels (additional details in Sect. 3.2). This 
approach leverages the spatial context to refine predictions, addressing potential errors caused 
by local variations in reflectance and improving the robustness of sea ice detection.

3.2	 Data processing

	 Sea ice ground truth data are essential for sea ice detection using MLPs. In this study, high-
spatial-resolution Sentinel-2 imagery was visually analyzed to create the ground truth data, 
categorizing the study area into sea ice, nonsea ice, and ambiguous regions (Fig. 3). Ambiguous 
regions refer to areas where sea ice coverage is small or the ice is thin, making it difficult to 
definitively classify them as either sea ice or nonsea ice. These regions predominantly occur 
along sea ice boundaries. Since the MWA method is used, adjacent water areas surrounding the 
sea ice were also included in the ambiguous region category to account for spatial variability. In 
the subsequent analysis, only the sea ice and nonsea ice areas were utilized, and the Sentinel-2-
based ground truth data were reprojected to match the GOCI-II ground truth data.
	 For sea ice detection, we used RRC data from 12 bands of GOCI-II. The mean and standard 
deviation for each band within the study area were calculated, and outliers (values beyond two 
standard deviations from the mean) were removed. Then, the data per area were normalized by 
dividing them by the minimum value within that area. The numbers of sea ice and nonsea ice 
data used in the MLP were balanced by conducting random sampling from the larger dataset 
(nonsea ice dataset). The final dataset was divided into training and validation data in a 3:1 ratio.

Table 1
GOCI-II and Sentinel-2 specifications.
Sensor GOCI-II Sentinel-2
Temporal resolution 1 h 10 days (each single satellite)
Revisit period 10 times/day, 8 AM–5 PM (KST) 5 days (combined constellation)
Spatial resolution 300 m/pixel 10 to 60 m, depending on band
Bands 12 visible and NIR bands, 1 wideband 10 visible and NIR bands, 3 SWIR bands
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	 The use of a 3 × 3 standard deviation filter can enhance the separation of sea ice from 
seawater.(15) In this study, MWA was used to examine the accuracy of sea ice detection based on 
the window size.

4.	 Results

4.1	 Validation

	 In the performance validation of the MLP model, the ground truth data derived from 
Sentinel-2 on January 1, 2021 were resampled to match the GOCI-II grid. The dataset was used 

Fig. 2.	 (Color online) Structure of the MLP used in this study.

Fig. 3.	 (Color online) (a) Sentinel-2 RGB image and (b) ground truth data (January 1, 2021).

(a) (b)
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for training and validating the MLP-based sea ice detection approach. For each window size (1, 
3, 5, 7, and 9), 10 independent MLP models were trained, resulting in a total of 50 models. Each 
trained model was then validated using a separate test dataset. During training, any window 
containing invalid pixel values (e.g., missing or erroneous data) was excluded to maintain high 
data quality. As the window size increased, the numbers of valid pixels for the sea ice and nonsea 
ice classes decreased owing to the higher probability of encountering invalid pixels within larger 
windows (Table 2).
	 Table 2 presents the results of applying the 50 models to the validation dataset. With an 
increase in window size, certain model performance metrics consistently improved, such as 
accuracy, precision, and F1-score. The F1-score had a minimum value of 0.9600 at the window 
size of 1 and peaked at 0.9807 at the window size of 7. However, the F1-score slightly declined at 
the window size of 9, suggesting potential limitations in performance improvement at overly 
large window sizes. Therefore, utilizing a broader spatial context through larger window sizes 
enhances the model’s ability to distinguish between sea ice and nonsea ice regions, and 
excessively large windows may lead to saturation, limiting further improvements.

4.2	 Test

	 The performance of the developed sea ice detection models (Sect. 4.1) was tested. The 
Sentinel-2 imagery acquired on February 17, 2021 was selected for testing owing to its favorable 
air quality, extensive sea ice coverage, and wide nonsea ice area. The results, summarized in 
Table 3, indicate that the performance metrics increased with the window size, consistent with 
the validation phase. The recall metric peaked at the window size of 7, as in the validation 

Table 2
Validation results (averaged results from 10 models).

Window 
size

No. of 
nonsea 
ice data

No. of 
sea ice 
data

True 
positive 

(TP)

False 
negative 

(FN)

False 
positive 

(FP)

True 
negative 

(TN)
Accuracy Precision Recall F1-score

1 178865 50264 12068 498 508 12058 0.9600 0.9596 0.9604 0.9600
3 172974 50084 12221 300 276 12245 0.9770 0.9779 0.9761 0.9770
5 167275 49873 12156 312 145 12323 0.9817 0.9882 0.9749 0.9815
7 162433 49618 12146 258 220 12184 0.9807 0.9822 0.9792 0.9807
9 158337 49335 11981 353 218 12116 0.9768 0.9822 0.9714 0.9767

Table 3
Test results obtained using GOCI-II data on February 17, 2021.

Window 
size

No. of 
nonsea 
ice data

No. of 
sea ice 
data

TP FN FP TN Accuracy Precision Recall F1-score

1 5464 42216 35297 6919 5182 282 0.7462 0.8715 0.8361 0.8524
3 3905 36158 34291 1867 3375 530 0.8692 0.9104 0.9484 0.9285
5 2824 30648 29210 1438 2063 761 0.8954 0.9345 0.9531 0.9433
7 2007 26047 25610 437 1311 697 0.9377 0.9513 0.9832 0.9670
9 1458 22358 21906 453 592 866 0.9561 0.9740 0.9798 0.9767
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results, whereas the other metrics achieved their highest values at the window size of 9. Although 
the test results were slightly lower than the validation results, they still demonstrated excellent 
performance. Specifically, the F1-score increased from 0.8524 at the window size of 1 to 0.9767 
at the window size of 9.
	 Figure 4 illustrates the spatial distribution of false negatives (FNs) and false positives (FPs) 
for each window size. The color bar represents the frequencies of FN and FP occurrences 
throughout 10 model runs. The results indicate that areas with dense sea ice exhibited minimal 
false detections, whereas FNs and FPs were predominantly observed near the edges of sea ice 
and in nonsea ice regions.
	 The MLP-based sea ice detection algorithm developed in this study, utilizing 9 × 9 window 
analysis, was applied to GOCI-II imagery for further analysis. Since small solar zenith angles in 
the early morning and late afternoon during winter can affect image quality, only the data 
acquired between 10 AM and 2 PM (local time) were utilized. Images from 9 AM were excluded 
from the analysis owing to the absence of observations in the study area caused by the wheel 
offloading of the satellite. Figure 5 presents the results of sea ice detection using GOCI-II 
imagery. The left panels display RGB images at 1 h intervals, while the right panels overlay the 
detected sea ice regions on the corresponding RGB images. The detection results were 
determined on the basis of predictions from 10 different models, where a given area was 

Fig. 4.	 (Color online) (a) RGB image and (b)–(f)  FN and FP locations according to window size (from 1 to 9) on 
February 17, 2021.

(b)(a) (c)

(d) (e) (f)
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Fig. 5.	 (Color online) RGB images (left) and sea ice detection results overlaid on RGB images (right) from 10 AM 
to 2 PM (local time) on February 17, 2021.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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classified as sea ice if at least five models identified it as such. Since ground truth data were not 
available for each image, a quantitative accuracy assessment was not conducted. However, the 
results indicate that the algorithm successfully detected sea ice in areas where it was expected to 
be present. Notably, nearly all models consistently classified sea ice regions as sea ice (refer to 
the color bar for details of the areas shown in white). Furthermore, as time progressed, sea ice 
drifted southwestward away from the coastline owing to tidal currents. However, from 11 AM 
onward, an increasing number of false detections along the southern coastline [shown by the red 
elliptical region in Fig. 5(f)] of the study area were observed. The underlying cause of this 
phenomenon requires further investigation in future studies. 

5.	 Conclusions and Discussion

	 In this study, we developed and evaluated MLP-based sea ice detection algorithms for the 
Bohai Sea using GOCI-II and Sentinel-2 data. The sea ice ground truth data, derived from high-
resolution Sentinel-2 imagery, were resampled to align with the GOCI-II grid. RRC data from 
GOCI-II were then used as input variables for the MLP algorithm. MWA was adopted to 
overcome the limitations of pixel-based detection methods and enhance detection accuracy, and 
the performance of the sea ice detection algorithm was assessed at various window sizes (1 × 1, 
3 × 3, 5 × 5, 7 × 7, and 9 × 9). The results indicate that larger window sizes improved the 
performance metrics, highlighting the importance of considering surrounding reflectance 
variations to enhance sea ice detection accuracy. Furthermore, the developed algorithm was 
applied to hourly GOCI-II imagery to evaluate sea ice detection performance. A qualitative 
evaluation confirmed that the algorithm successfully detected sea ice in the expected regions, 
and the results effectively captured the temporal movement of sea ice. In particular, as time 
progressed, the detected sea ice regions exhibited a southwestward drift due to tidal currents.
	 Future research will focus on developing a sea ice detection algorithm utilizing only the eight 
bands of GOCI. By integrating both GOCI and GOCI-II, it will be possible to conduct long-term 
sea ice detection, enabling the analysis of the relationship between climate change and sea ice 

Fig. 5.	 (Continued) (Color online) RGB images (left) and sea ice detection results overlaid on RGB images (right) 
from 10 AM to 2 PM (local time) on February 17, 2021.

(i) (j)
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variations based on long-term time series data. This approach is expected to not only contribute 
to understanding long-term sea ice variation patterns but also provide a crucial foundation for 
investigating the impact of marine environmental changes on sea ice dynamics.
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