
3073Sensors and Materials, Vol. 37, No. 7 (2025) 3073–3089
MYU Tokyo

S & M 4104

*Corresponding author: e-mail: leeki@kmou.ac.kr
†These authors contributed equally to this work and should be considered co-first authors.
https://doi.org/10.18494/SAM5643

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

LA-RCS: LLM-agent-based Robot Control System

Taek-Hyun Park,1† Young-Jun Choi,1† Seung-Hoon Shin,1†

 Chang-Eun Lee,2 and Kwangil Lee1,3*

1Department of Artificial Intelligence Engineering, National Korea Maritime & Ocean University, Busan, Korea
2Depense & Safety ICT Research Department, ETRI, Daejeon, Korea

3Department of Artificial Intelligence Research, DMASTA, Busan, Korea

(Received December 24, 2024; accepted June 27, 2025)

Keywords:	 LLM agent, robot task planning, AI

	 The large language model (LLM)-agent-based robot control system (LA-RCS) is a
sophisticated robot control system designed to autonomously plan, work, and analyze the
external environment on the basis of user requirements by utilizing LLM agents. Utilizing a
dual-agent framework, LA-RCS generates plans on the basis of user requests, observes the
external environment, executes the plans, and modifies the plans as needed to adapt to changes
in external conditions. Additionally, LA-RCS interprets natural language commands by the user
and converts them into commands compatible with the robot interface so that the robot can
execute tasks and meet user requests properly. During this process, the system autonomously
evaluates observation results, provides feedback on the tasks, and executes commands on the
basis of real-time environmental monitoring, significantly reducing the need for user intervention
in fulfilling requests. We categorized the scenarios that LA-RCS is designed to handle into four
distinct types and subsequently conducted a quantitative evaluation of its performance across
each scenario. The results showed an average success rate of 90%, demonstrating the system’s
capability to fulfill user requests satisfactorily. For more extensive results, readers can visit our
project website: https://la-rcs.github.io.

1.	 Introduction

	 The emergence of large language models (LLMs) has shown their potential in the fields of
complex problem solving, multi-stage inference, and natural language processing, especially
with regard to generalization performance outcomes in various tasks(1–4) and ensuring excellent
performance in natural language processing tasks such as understanding, generating, and
translating text.(5–9) As the size of models increases, LLMs evolve to become closer to human
thinking, executing instructions more accurately and consistently in response to user requests.(10)

	 Along with the expansion of LLMs, there has been research on visual LLMs (VLMs).(11–14)
VLMs simultaneously learn the correlation between image and text data through a combination
of vision models and language models, providing enhanced multimodality in response to user
requests through their proficient processing capabilities for text and image data.(12,15,16)

mailto:leeki@kmou.ac.kr
https://doi.org/10.18494/SAM5643
https://myukk.org/
https://la-rcs.github.io

3074	 Sensors and Materials, Vol. 37, No. 7 (2025)

Multimodal VLMs observe the user interface or graphical user interface (GUI) on the basis of
image interpretation capabilities and efficiently perform tasks related to complex user requests
and undertake repetitive tasks expressed in natural language using visual information through
user interactions.(17)
	 Advancements in multimodal VLMs and related technologies have led to the emergence of
LLM-based agents capable of providing problem-solving capabilities across a diverse range of
environments.(18,19) LLM agents possess the ability to make intelligent decisions, enabling them
to plan and reason effectively in response to natural-language-based requests.(20–23) These
technological advances facilitate and provide an important foundation for the evolution of LLMs
into large action models (LAMs). LAMs control other systems through communication with
users and interact with the real world through pthe hysical behavior of the systems to meet user
requests.
	 Previous research in the field of robot control required a large amount of learning data to
operate robot systems according to user requests.(24) In addition, there are limitations (e.g.,
complexity and human intervention errors) when attempting to have robot systems make
arbitrarily automated judgments to fulfill user requests with versatile environments,(25,26)
although there have been endeavors to resolve these limitations.(27–29) To fulfill user requests,
establishing and executing an appropriate plan, akin to human decision-making, is a challenging
task, especially in situations characterized by diverse external environments and control objects,
as opposed to a single, limited, and specific context. The decision-making process involves
multiple steps, including reasoning and planning, before an action is executed, making it a
particularly demanding challenge.
	 On the basis of these challenges, we propose an LLM-agent-based robot control system (LA-
RCS) that minimizes human intervention and considers complex user requests, taking into
account the surrounding environment of the dynamic object (CAROBO). To minimize human
intervention and undertake appropriate actions to satisfy user requests, the proposed robot
control system LA-RCS performs several repetitive functional procedures, specifically
monitoring, observation, planning, and feedback processes based on dual agents to observe the
external environment, feeding back its own actions until the user request is completely fulfilled
and then constructing control commands appropriate for the user request. In addition, to execute
commands more appropriately according to CAROBO’s external environment on the basis of
user request, we used the LLM agent with several shot-prompting methods. Through the system
configuration, LA-RCS ultimately shows strong performance, enhanced autonomy, continuous
performance, and appropriate command inference processes for the given intricate user requests
based on the external environment of CAROBO.
	 To evaluate the performance rate of LA-RCS on the basis of the robot’s (CAROBO) external
information in the form of user requests and the efficiency of its autonomous ability when using
two different LLM agents (GPT-4-Turbo and GPT-4o), we considered various user request
situations during the testing process. These situations are constructed from four cases, and
evaluations are conducted with five queries per case with different LLM agents. The result of the
evaluation with various testing situations involved quantitative figures, emphasizing the
versatility, autonomy, and expandability of robot control systems in terms of their ability to
perform intricate user requests successfully.

Sensors and Materials, Vol. 37, No. 7 (2025)	 3075

	 The proposed LA-RCS is a sophisticated automation system capable of producing optimized
results and considering the robot’s external circumstances based on intricate user requests and
considering the robot’s circumstances while also minimizing human intervention during the
control decision process. The designed system is also appropriate for versatile situations that
require automation and can be used in many applications in other research areas. We anticipate
that this study can serve as a valuable resource for the robotics research community and can
stimulate further advancements in this field.

2.	 Related Work

2.1	 LLM agents

	 LLM-based autonomous agents have demonstrated remarkable capabilities in reasoning,
utilizing tools, and adapting to new observations across various real-world tasks.(30–32) These
agents enable LLMs to perform more complex operations compared with traditional LLMs by
leveraging human-like decision-making systems. AutoGPT,(33) a pioneering agent, processes
user requests by decomposing the actions of LLMs into thoughts, reasoning, and critiques.
TaskWeaver(34) is a code-centric agent framework that converts user requests into executable
subtasks through the Python code. LangChain,(35) another LLM agent framework, assists LLMs
in utilizing a variety of custom tools, such as retrieval-augmented generation and chain-of-
thought reasoning. Utilizing these tools, agents can solve a wide range of problems, including
the manipulation of objects, control of GUIs, and the calling of APIs. Multi-agent LLMs, which
facilitate multi-agent conversations, have emerged as frameworks capable of solving more
powerful and complex problems. This architecture effectively assigns tasks to individual agents
with specific strengths and enables collaboration or competition among agents to handle
complex tasks efficiently. AutoGen(36) is a framework that customizes each agent and utilizes
conversations between agents to leverage their specific strengths, thereby enabling a multi-agent
system to address user requests effectively. Similarly, frameworks such as CrewAI,(37)
MetaGPT,(38) LangGraph,(39) and AutoAgent(40) build systems in which multiple agents, each
with unique roles, can seamlessly perform complex tasks. UFO(18) employs a dual-agent
framework to meticulously observe and analyze the GUI and to control the information of
Windows applications, further highlighting the diverse applications of multi-agent LLM
frameworks in real-world scenarios.

2.2	 LLM agents for robot task planning

	 The application of multimodal LLMs for robot task planning has been gaining significant
traction recently.(41–44) Previous studies often utilized few-shot or zero-shot methods to establish
task plans for robots.(45) Various techniques have emerged when employing LLMs in robot task
planning.
	 For instance, Text2Motion(46) and Do As I Can, Not As I Say(43) have demonstrated the use of
value functions to enable LLMs to perform task planning for robots. Approaches such as RT-2,

3076	 Sensors and Materials, Vol. 37, No. 7 (2025)

ChatGPT for Robotics,(47) and ProgPrompt(48) have shown that robot task planning can be
successfully achieved through few-shot prompting and chain-of-thought reasoning,(49) and with
the ReAct framework.
	 Multi-agent LLM systems have also been applied to robot task planning, showing substantial
performance improvements. SMART-LLM, for example, converts high-level task instructions
into multi-robot task plans, allowing multiple robots to execute complex tasks collaboratively.
Each step in SMART-LLM(50) utilizes LLM prompts to decompose tasks, form teams, and
allocate tasks for execution efficiently.	 However, existing approaches have primarily focused
on task decomposition and interactions among tasks within the task planning domain, without
addressing the interpretation of high-level commands, situational analysis, and without
controlling robots through feedback mechanisms.
	 Our system utilizes a dual-agent framework inspired by UFO(18) to decompose high-level
task commands for robot interfaces. This framework emphasizes the hierarchy of commands
performed by each agent, enhancing their ability to interpret and execute commands through
communication. The proposed method enables task planning to adapt in real time to changing
environments, allowing robots to analyze the environment while remaining focused on user
commands.

3.	 Architecture of LA-RCS

	 LA-RCS is an innovative multimodal agent designed for interaction between CAROBO and
the external environment. LA-RCS interprets user requests expressed in natural language and
decomposes the requests into step-by-step subtasks. The agent observes the external
environment and manipulates CAROBO to achieve the overall goal. Through these capabilities,
it can effectively accomplish complex tasks. Section 3.1 provides a general overview of the LA-
RCS design, followed by a detailed discussion of each core component.

3.1	 LA-RCS

	 Figure 1 illustrates the overall structure of LA-RCS, which operates on a dual-agent
framework consisting of the following two key components:
	 •	 �Host Agent: This agent is responsible for constructing a Global Plan to execute the user

request.
	 •	� App Agent: This agent receives the Global Plan from the Host Agent and iteratively performs

tasks to fulfill the user request on the basis of the plan.
	 Both agents utilize a large multimodal model to comprehend observations and execute user
requests. They control CAROBO through self-determined actions using Control Functions
(commands).
	 Figure 2 shows the workflow algorithm for the LA-RCS system. Upon receiving a User
Request, the Host Agent initially analyzes the request. CAROBO provides the Host Agent with
observations and sensor data to facilitate the Host Agent’s understanding of its current state. On
the basis of this information, the Host Agent constructs a Global Plan, which is then transmitted
to the App Agent.

Sensors and Materials, Vol. 37, No. 7 (2025)	 3077

	 Once the Global Plan is established, the App Agent begins to execute it. The App Agent’s
decision-making process is informed not only by the received Global Plan but also by the
observations and sensor data. After each command is executed, the App Agent receives feedback
from the external environment, allowing it to adjust subsequent commands as needed. The App
Agent selects appropriate Control Functions (Commands) to manipulate CAROBO and transmits
these to the system. This process, carried out by the App Agent, is repeated until it is determined
that the User Request has been successfully completed.

3.2	 Host Agent

	 The Host Agent constructs a comprehensive global plan to orchestrate the entire task,
utilizing memory, which includes past task records, information about the external environment,
and data collected by CAROBO from its surroundings. The Host Agent takes the following
information as input:

Fig. 1.	 (Color online) Overall architecture of LA-RCS.

Algorithm 1: Workflow Algorithm for the LA-RCS System
Input: User Request U
S ← CAROBO.get_sensor_data()
Global Plan ← HostAgent(U, S)
do
	 M ← Memory.get_memory()
	 S ← CAROBO. get_sensor_data()
	 Command ← AppAgent(M, S, Global Plan)
	 Action ← CAROBO(Command)
	 Memory.update_memory(Command)
while Command[“STATUS”] ≠ “FINISH”
end

Fig. 2.	 LA-RCS workflow algorithm.

3078	 Sensors and Materials, Vol. 37, No. 7 (2025)

	 •	� User Request: The robotic action requested by the user.
	 •	� Sensor Data: Data from CAROBO’s sensors (camera, ultrasonic sensors).
	 Through Vision Data and Sensor Data, the Host Agent comprehends the current state and can
constrain the selection of Control Functions for robot movement. This diverse input framework
enhances the Host Agent’s capability to fulfill user requests.
	 Utilizing all input information, the Host Agent employs an LLM to generate the following
outputs:
	 •	� Global Plan: Action plan to fulfill the user’s request.
	 •	 �Observation: Detailed description of Vision Data.
	 •	 �Thoughts: Logical next steps required to complete the given task.
	 •	� Comment: Progress status and information to be provided.
	 Prompting the Host Agent to provide its observations and thoughts encourages it to analyze
the status, enhancing logical consistency and interpretability while assessing the task progress.
During this process, the Host Agent generates outputs designed to ensure a clear analysis of the
current situation when constructing the Global Plan, provides the underlying process and logic
behind the decisions, and explains the progress to the user or responds to their inquiries.

3.3	 App Agent

	 The App Agent functions as a downstream entity following the Host Agent for executing
CAROBO’s actions to fulfill the user requests. The App Agent accepts the following as inputs:
	 •	 �User Request: The robotic action requested by the user.
	 •	� Global Plan: Action plan to fulfill the user’s request.
	 •	� Memory: Previous thoughts, comments, actions, and execution results.
	 •	� Sensor Data: Data used to determine action initiation or termination based on the interaction

between CAROBO and objects (camera, ultrasonic sensors).
	 As previously explained, the App Agent determines CAROBO’s actions on the basis of the
Global Plan to fulfill the User Request. Memory provides CAROBO’s past actions, allowing the
App Agent to analyze and reduce the probability of repeating inefficient or meaningless actions.
On the basis of these inputs, the App Agent analyzes the information and produces the following
outputs:
	 •	�Comment: Progress status and information to be provided.
	 •	�Control Function (Command): Action to be performed by CAROBO.
	 •	�Observation: Analyzed Vision Data.
	 •	�Status: Task status, “CONTINUE” if additional action is needed and “FINISH” if the

action is completed.
	 The App Agent determines the next step on the basis of these output states. It repeatedly
undertakes observations through Vision Data and CAROBO control until the action is
completed, i.e., until the Status reaches the FINISH state. These outputs are continuously stored
in Memory, contributing to the App Agent’s correct decision-making outcome in fulfilling user
requests.

Sensors and Materials, Vol. 37, No. 7 (2025)	 3079

3.4	 CAROBO

	 We made use of CAROBO as a robot platform to implement LA-RCS. CAROBO is a car-type
robot built using the Raspbot from Yahboom. To provide Vision Data to LA-RCS, CAROBO
includes a camera. For Sensor Data, it includes ultrasonic sensors and infrared obstacle detection
sensors. Additionally, we integrated motors for robot actions, a servo motor for camera
adjustments, and a buzzer to enable sound functionality. The communication between CAROBO
and LA-RCS was configured to utilize socket communication.
	 The control functions received by the robot are predefined in CAROBO. The following
functions exist in CAROBO:
	 •	� Car forward: Command for the robot to move forward. It has a feature of turning right

whenever it is too close to an object in front.
	 •	� Car back: Command for the robot to move backward.
	 •	� Car left: Command for the robot to turn left.
	 •	� Car right: Command for the robot to turn right.
	 •	� Camera move: Command to adjust the angle of the robot’s camera.
	 •	 �Buzzer: Command to activate the robot’s buzzer.
	 The App Agent assesses the situation and selects one of these Control Functions (Commands)
to execute robot control. After executing a command, CAROBO saves the following output to
the memory:
	 •	� Action: The robot performs the action according to the command.
	 •	� Vision Data: Vision data for confirming the robot’s next action or action termination.
	 •	 �Sensor Data: Sensor data for confirming action or action termination based on the distance

between the robot and the objects.

4.	 Evaluation

	 In this section, we evaluate LA-RCS’s performance in completing user requests. The
evaluation is conducted through a quantitative analysis and case studies.

4.1	 Benchmark and metrics

	 To assess the performance of LA-RCS comprehensively, we developed a benchmark
consisting of 20 user requests. These requests were designed across four domains: object
detection, command execution, obstacle navigation, and situational awareness. This approach
ensures diversity and comprehensiveness in the evaluation. Five user requests were designed for
each domain, resulting in a total of 20 requests.
	 Given that no pre-existing agent effectively replicates the role of the proposed LA-RCS, we
selected the GPT-4-Turbo and GPT-4 models as control baselines for comparison. Unlike LA-
RCS, these models lack the inherent capability to interact directly with CAROBO, a limitation
that impacts their operation dynamics in completing user requests. Therefore, to facilitate this
interaction, we directed the models to provide step-by-step guidance, enabling them to simulate
the completion of tasks.

3080	 Sensors and Materials, Vol. 37, No. 7 (2025)

	 A human operator subsequently executed the steps outlined by these models, acting as a
surrogate for the direct control that LA-RCS provides autonomously. This approach allowed us
to assess the practical effectiveness of these baseline models in terms of task fulfillment and user
interaction when contrasted with the autonomous functionalities embedded within LA-RCS.
	 We evaluated each User Request from two perspectives: success and step count. Success
indicates that LA-RCS successfully completed the User Request. Failure is determined when
LA-RCS incorrectly judges a request as completed when it has not been, or when it exhibits
repetitive, meaningless movements for a certain number of steps. A step represents an action
taken by LA-RCS to complete the request.
	 Given the potential instability of GPT-4o, which may generate different outputs each time,
we conducted three tests for each request and selected the one with the highest completion rate.
This approach is consistent for the other baselines as well.

4.2	 Performance evaluation

	 We conducted a quantitative comparison of LA-RCS using our proprietary dataset, as
illustrated in Table 1. When using GPT-4o as the backend LLM for LA-RCS, the success rate
was 90%, twice that of GPT-4o (Human Surrogate), which showed a success rate of 45%. This
result demonstrates the considerable effectiveness of LA-RCS in the domain of robot planning.
Additionally, the fewer the steps required for command execution, the significantly greater the
accuracy and speedthat LA-RCS can perform tasks.
	 Furthermore, as shown in Fig. 3, the capabilities across each domain improved when the LA-
RCS framework was applied. The shortcomings of the Human Surrogate (GPT) compared with
those of LA-RCS can be attributed to its inability to interact with the external environment
directly. This limitation reduces its accuracy owing to a lack of adaptability to changes in the
environment and responsive adjustments.
	 Tables 2–5 present detailed success and failure rates for user requests in the four domains,
namely, object detection, command execution, obstacle navigation, and situational awareness,
respectively.
	 User requests for the object detection domain are presented in Table 2. In this domain, the
Agent composed of GPT-4-Turbo successfully completed four out of five tasks, demonstrating
an 80% success rate, whereas the Agent composed of GPT-4o achieved a 100% success rate, that
is, completing all five tasks.

Table 1
Performance comparison achieved by LA-RCS.
Model Average step count Success rate (%)
LA-RCS (GPT-4 Turbo) 7.9 60
LA-RCS (GPT-4o) 6.9 90
GPT-4o (Human Surrogate) 11.2 30
GPT-4 Turbo (Human Surrogate) 9.5 45

Sensors and Materials, Vol. 37, No. 7 (2025)	 3081

Fig. 3.	 (Color online) Success rate by domain.

Table 2
Object detection results.
Request GPT-4-Turbo GPT-4o
Move around and search for the location of the refrigerator Success 6 Success 9
Look for any people in the immediate vicinity Success 8 Success 4
Move around and search for any people in the surrounding area Failure 20 Success 11
If a rectangular object is seen, move towards it and activate the
buzzer Success 4 Success 2

Find yellow obstacles and tell me what is written on them Success 0 Success 0

Table 3
Command execution results.
Request GPT-4-Turbo GPT-4o
Rotate in a 0.6 m2 shape Failure 5 Success 9
Lift your head, identify a human face, and describe it Success 3 Success 3
Rotate twice on the spot Success 1 Success 8
Move into a zigzag pattern at a 30 deg angle for 2 m Success 5 Success 10
Move backwards 0.4 m and sound the buzzer, repeat this 5 times Success 12 Success 12

Table 4
Obstacle navigation results.
Request GPT-4-Turbo GPT-4o
Move forward avoiding obstacles Failure 16 Success 7
Move forward for a total of 2 m, turning right and activating the
buzzer when obstacles appear Success 8 Success 5

Move to find a Bosch box while avoiding obstacles Failure 15 Success 8
Rotate once while observing the surroundings, then move 1 m in a
direction without obstacles Failure 5 Failure 15

After observing obstacles in front, move behind the observed object,
stop, and activate the buzzer Failure 3 Failure 5

3082	 Sensors and Materials, Vol. 37, No. 7 (2025)

	 User requests for the command execution domain are presented in Table 3. In this domain,
the Agent composed of GPT-4-Turbo successfully completed four out of five tasks,
demonstrating an 80% success rate, while the Agent composed of GPT-4o achieved a 100%
success rate, that is, completing all five tasks.
	 User requests for the obstacle navigation domain are presented in Table 4. In this domain, the
Agent composed of GPT-4-Turbo successfully completed one out of five tasks, demonstrating a
20% success rate, while the Agent composed of GPT-4o successfully completed four out of five
tasks, demonstrating a 60% success rate.
	 The primary reason for failure was the insufficient data to accurately assess the external
environment on the basis of the camera and sensor input. Owing to this limitation, the agent
exhibited repetitive behavior without meaningful progress, ultimately exceeding the allowed
step count and terminating the task prematurely or failing to complete the external exploration.
This indicates that the current system has difficulty in adjusting its behavior when real-time
environmental data is incomplete or ambiguous, indicating the necessity for enhanced sensor
fusion and environmental perception capabilities.
	 User requests for the situation awareness domain are presented in Table 5. In this domain, the
Agent composed of GPT-4-Turbo successfully completed three out of five tasks, demonstrating a
60% success rate, while the Agent composed of GPT-4o achieved a 100% success rate by
completing all five tasks.
	 In conclusion, the overall evaluation results indicate that the proposed LA-RCS system, when
utilizing GPT-4o, exhibited significantly enhanced performance compared with GPT-4 Turbo
and human-surrogate-based approaches. GPT-4o demonstrated superior generalization
capabilities, enabling more precise reasoning and decision-making in response to complex user
requests. Specifically, LA-RCS with GPT-4o achieved a 90% success rate, surpassing the
performance of GPT-4 Turbo and human surrogate models, which demonstrated lower success
rates and required a greater step count to complete tasks.
	 Nevertheless, failure cases were primarily observed when LA-RCS with GPT-4o encountered
constraints in receiving external environmental data or limitations in the camera’s field of view.
Under such circumstances, the system was unable to accurately assess the surrounding
environment, resulting in repetitive actions and ultimately leading to termination because the
allowed step count was exceeded. These findings suggest that enhancing sensor fusion and

Table 5
Situation awareness results.
Request GPT-4-Turbo GPT-4o
Describe the features of the object in front. Success 0 Success 0
Detect the surroundings and describe only navy-colored objects in
Korean Success 6 Success 7

Move forward 0.5 m, observe the surroundings, and tell me the name
of the box Success 3 Success 7

After moving 2 m, if there is a piece of paper in front, print out what
is written on it Failure 3 Success 10

From the paper observed in front, tell me the contact information of
the Ministry of Science, ICT, and Future Planning Failure 4 Success 0

Sensors and Materials, Vol. 37, No. 7 (2025)	 3083

improving real-time environmental perception would be beneficial in further increasing the
system’s robustness and adaptability in dynamic environments.

4.3	 Case study

4.3.1	 Exploration and object detection in the surrounding environment

	 In Fig. 4, we tasked LA-RCS with the following request: “Find the box that says Bosch.” This
scenario involves placing various objects in the surrounding environment. For LA-RCS to
execute a request, it must continuously assess the current space, constantly search for the given
objects, and upon discovering the specified target, complete the challenging request.
	 To navigate such a situation, LA-RCS autonomously determines the need to execute the Car
back function to secure its view. On the basis of the acquired visual information, it analyzes
where to move next and proceeds forward. Subsequently, when identifying an object that is

Fig. 4.	 (Color online) Detailed example of completing user request: “Find the box that says Bosch”.

3084	 Sensors and Materials, Vol. 37, No. 7 (2025)

predicted to be the “Bosch Box”, it raises its head to confirm the match and completes the
request.

4.3.2	 Object passage

	 In Fig. 5, we tasked LA-RCS with the following request: “Move forward avoiding obstacles.”
This scenario involves navigating around various obstacles. To execute a request, LA-RCS must
continuously assess the current space and determine how to move autonomously, making it a
challenging task. To handle such a situation, LA-RCS observes the external environment and
calculates its actions to move forward.
	 These two outcomes demonstrate that LA-RCS can analyze how to fulfill the user’s request,
plan accordingly, move CAROBO, and continuously control its movements while observing the
external environment.

Fig. 5.	 (Color online) Detailed example of completing user request: “Move forward avoiding obstacles”.

Sensors and Materials, Vol. 37, No. 7 (2025)	 3085

5.	 Conclusion and Future Work

	 In our research, we explored the LLM Agent system, where CAROBO autonomously
performs given tasks through observation and feedback. The LA-RCS system is based on a dual-
agent framework, separating a macro-level task planning agent and an agent that physically
executes the tasks, engaging in conversation to accomplish the given tasks. This approach
enables the agent to resolve unfamiliar situations independently, decompose complex tasks into
manageable parts, and provide feedback to handle unexpected anomalies. The refinement of this
method suggests the potential for developing a system capable of executing tasks with minimal
human intervention in various scenarios.
	 However, our study revealed certain limitations that need to be addressed to improve system
performance. First, the system exhibited delays in response time, particularly when handling
dynamic environments that require real-time adjustments. The delays in generating and
executing commands affected the system’s overall responsiveness and efficiency. Second, high
computational costs associated with complex decision-making processes and repeated prompt
inferences imposed a burden on system efficiency, limiting real-time performance and
scalability. Additionally, the limited command execution capabilities of the robot restricted the
completion of certain tasks. Addressing these issues by optimizing the decision-making pipeline,
improving communication efficiency between agents, and reducing computational overhead can
further enhance system performance in time-sensitive and computationally demanding
scenarios.
	 In our future work, we plan to enhance the system’s responsiveness and adaptability by
improving the efficiency of the decision-making process and expanding the range of supported
commands. Additionally, we will evaluate the efficacy of the proposed system in more
sophisticated environments beyond the current setup, which primarily involves vision camera
position control and vehicle speed control strategies.

Acknowledgments

	 This work was supported by a grant from the Korea Institute for Advancement of Technology
(KIAT) funded by the Korean Government (MOTIE) [P0024163, Development of Regional
Innovation Cluster (RIC)]. This work also was supported by the Korea Research Institute for
Defense Technology Planning and Advancement (KRIT) funded by the Defense Acquisition
Program Administration (DAPA) (KRIT-CT-23-021).

References

	 1	 J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou, D. Metzler,
E. H. Chi, T. Hashimoto, O. Vinyals, P. Liang, J. Dean, and W. Fedus: arXiv preprint (2022). arXiv:2206.07682

	 2	 H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman, N. Akhtar, N. Barnes, and A. Mian: arXiv
preprint (2023). arXiv:2307.06435

	 3	 S. Hamza Cherif, L. F. K. Tani, and N. Settouti: Adv. Technol. Innovation 9 (2024) 129. https://doi.
org/10.46604/aiti.2024.13523

	 4	 A. Pimpalkar and J. R. Raj: Adv. Technol. Innovation 8 (2023) 254. https://doi.org/10.46604/aiti.2023.11743

https://doi.org/10.46604/aiti.2024.13523
https://doi.org/10.46604/aiti.2024.13523
https://doi.org/10.46604/aiti.2023.11743

3086	 Sensors and Materials, Vol. 37, No. 7 (2025)

	 5	 T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa: arXiv preprint (2022). arXiv:2205.11916
	 6	 L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A.

Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, and
R. Lowe: arXiv preprint (2022). arXiv:2203.02155

	 7	 T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A.
Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C.
Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A.
Radford, I. Sutskever, and D. Amodei: arXiv preprint (2020). arXiv:2005.14165

	 8	 OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt, S.
Altman, S. Anadkat, R. Avila, I. Babuschkin, S. Balaji, V. Balcom, P. Baltescu, H. Bao, M. Bavarian, J.
Belgum, I. Bello, J. Berdine, G. Bernadett-Shapiro, C. Berner, L. Bogdonoff, O. Boiko, M. Boyd, A.-L.
Brakman, G. Brockman, T. Brooks, M. Brundage, K. Button, T. Cai, R. Campbell, A. Cann, B. Carey, C.
Carlson, R. Carmichael, B. Chan, C. Chang, F. Chantzis, D. Chen, S. Chen, R. Chen, J. Chen, M. Chen, B.
Chess, C. Cho, C. Chu, H. W. Chung, D. Cummings, J. Currier, Y. Dai, C. Decareaux, T. Degry, N. Deutsch, D.
Deville, A. Dhar, D. Dohan, S. Dowling, S. Dunning, A. Ecoffet, A. Eleti, T. Eloundou, D. Farhi, L. Fedus, N.
Felix, S. P. Fishman, J. Forte, I. Fulford, L. Gao, E. Georges, C. Gibson, V. Goel, T. Gogineni, G. Goh, R.
Gontijo-Lopes, J. Gordon, M. Grafstein, S. Gray, R. Greene, J. Gross, S. S. Gu, Y. Guo, C. Hallacy, J. Han, J.
Harris, Y. He, M. Heaton, J. Heidecke, C. Hesse, A. Hickey, W. Hickey, P. Hoeschele, B. Houghton, K. Hsu, S.
Hu, X. Hu, J. Huizinga, S. Jain, S. Jain, and 181 additional authors not shown: arXiv preprint (2023).
arXiv:2303.08774

	 9	 H. Sun, Y. Zhuang, L. Kong, B. Dai, and C. Zhang: arXiv preprint (2023). arXiv:2305.16653
	10	 X. Chen, X. Song, L. Jing, S. Li, L. Hu, and L. Nie: arXiv preprint (2022). arXiv:2207.07934
	11	 J. Yang, H. Zhang, F. Li, X. Zou, C. Li, and J. Gao: arXiv preprint (2023). arXiv:2310.11441
	12	 J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican, M. Reynolds,

R. Ring, E. Rutherford, S. Cabi, T. Han, Z. Gong, S. Samangooei, M. Monteiro, J. Menick, S. Borgeaud, A.
Brock, A. Nematzadeh, S. Sharifzadeh, M. Binkowski, R. Barreira, O. Vinyals, A. Zisserman, and K.
Simonyan: Flamingo: arXiv preprint (2022). arXiv:2204.14198

	13	 Y.-C. Chen, L. Li, L. Yu, A. El Kholy, F. Ahmed, Z. Gan, Y. Cheng, and J. Liu: arXiv preprint (2019).
arXiv:1909.11740

	14	 Z. Yang, L. Li, K. Lin, J. Wang, C.-C. Lin, Z. Liu, and L. Wang: arXiv preprint (2023). arXiv:2309.17421
	15	 X. Zhang, Y. Lu, W. Wang, A. Yan, J. Yan, L. Qin, H. Wang, X. Yan, W. Y. Wang, and L. R. Petzold: arXiv

preprint (2023). arXiv:2311.01361
	16	 B. Zheng, B. Gou, J. Kil, H. Sun, and Y. Su: arXiv preprint (2024). arXiv:2401.01614
	17	 C. Zhang, L. Li, S. He, X. Zhang, B. Qiao, S. Qin, M. Ma, Y. Kang, Q. Lin, S. Rajmohan, D. Zhang, and Q.

Zhang: arXiv preprint (2024). arXiv:2402.07939
	18	 T. Schick, J. Dwivedi-Yu, R. Dessì, R. Raileanu, M. Lomeli, L. Zettlemoyer, N. Cancedda, and T. Scialom:

arXiv preprint (2023). arXiv:2302.04761
	19	 J. Zhang, K. Wang, R. Xu, G. Zhou, Y. Hong, X. Fang, Q. Wu, Z. Zhang, and H. Wang: arXiv preprint (2024).

arXiv:2412.06224
	20	 K. Mei, Z. Li, S. Xu, R. Ye, Y. Ge, and Y. Zhang: arXiv preprint (2024). arXiv:2403.16971
	21	 N. Shinn, F. Cassano, E. Berman, A. Gopinath, K. Narasimhan, and S. Yao: arXiv preprint (2023).

arXiv:2303.11366
	22	 X. Deng, Y. Gu, B. Zheng, S. Chen, S. Stevens, B. Wang, H. Sun, and Y. Su: arXiv preprint (2023).

arXiv:2306.06070
	23	 T. Guo, X. Chen, Y. Wang, R. Chang, S. Pei, N. V. Chawla, O. Wiest, and X. Zhang: arXiv preprint (2024).

arXiv:2402.01680
	24	 J. Zhang, K. Wang, R. Xu, G. Zhou, Y. Hong, X. Fang, Q. Wu, Z. Zhang, and H. Wang: arXiv preprint (2024).

arXiv:2402.15852
	25	 S. Patil, V. Vasu, and K. V. S. Srinadh: Discover Mech. Eng. 2 (2023) 13. https://doi.org/10.1007/s44245-023-

00021-8
	26	 N. Wake, A. Kanehira, K. Sasabuchi, J. Takamatsu, and K. Ikeuchi: IEEE Rob. Autom. Lett. 9 (2024) 10567.

https://doi.org/10.48550/arXiv.2311.12015
	27	 J. Wang, Z. Wu, Y. Li, H. Jiang, P. Shu, E. Shi, H. Hu, C. Ma, Y. Liu, X. Wang, Y. Yao, X. Liu, H. Zhao, Z. Liu,

H. Dai, L. Zhao, B. Ge, X. Li, T. Liu, and S. Zhang: arXiv preprint (2024). arXiv:2401.04334
	28	 H. Liu, Y. Zhu, K. Kato, A. Tsukahara, I. Kondo, T. Aoyama, and Y. Hasegawa: IEEE Rob. Autom. Lett. 9

(2024) 6904. https://doi.org/10.1109/LRA.2024.3415931
	29	 H. Liu, Y. Zhu, K. Kato, I. Kondo, T. Aoyama, and Y. Hasegawa: arXiv preprint (2023). arXiv:2308.14972

https://doi.org/10.1007/s44245-023-00021-8
https://doi.org/10.1007/s44245-023-00021-8
https://doi.org/10.48550/arXiv.2311.12015
https://doi.org/10.1109/LRA.2024.3415931

Sensors and Materials, Vol. 37, No. 7 (2025)	 3087

	30	 S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao: 2023 Int. Conf. Learning Representations
(ICLR,2023).

	31	 Z. Xi, W. Chen, X. Guo, W. He, Y. Ding, B. Hong, M. Zhang, J. Wang, S. Jin, E. Zhou, R. Zheng, X. Fan, X.
Wang, L. Xiong, Y. Zhou, W. Wang, C. Jiang, Y. Zou, X. Liu, Z. Yin, S. Dou, R. Weng, W. Qin, Y. Zheng, X.
Qiu, X. Huang, Q. Zhang, and T. Gui: Sci. China Inf. Sci. 68 (2025) 121101. https://doi.org/10.1007/s11432-024-
4222-0

	32	 L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen, J. Tang, X. Chen, Y. Lin, W. X. Zhao, Z. Wei,
and J. Wen: Front. Comput. Sci. 18 (2024) 186345. https://doi.org/10.1007/s11704-024-40231-1

	33	 AutoGPT: https://github.com/Significant-Gravitas/AutoGPT (accessed April 2024).
	34	 B. Qiao, L. Li, X. Zhang, S. He, Y. Kang, C. Zhang, F. Yang, H. Dong, J. Zhang, L. Wang, M. Ma, P. Zhao, S.

Qin, X. Qin, C. Du, Y. Xu, Q. Lin, S. Rajmohan, and D. Zhang: arXiv preprint (2023). arXiv:2311.17541.
	35	 LangChain: https://github.com/langchain-ai/langchain (accessed April 2024).
	36	 Q. Wu, G. Bansal, J. Zhang, Y. Wu, S. Zhang, E. Zhu, B. Li, L. Jiang, X. Zhang, and C. Wang: arXiv preprint

(2023). arXiv:2308.08155
	37	 crewAIInc: https://github.com/crewAIInc/crewAI (accessed April 2024).
	38	 S. Hong, X. Zheng, J. Chen, Y. Cheng, J. Wang, C. Zhang, Z. Wang, S. K. S. Yau, Z. Lin, L. Zhou, C. Ran, L.

Xiao, C. Wu, and J. Schmidhuber: arXiv preprint (2023). arXiv:2308.00352
	39	 Langchain-ai: https://github.com/langchain-ai/langgraph (accessed April 2024).
	40	 G. Chen, S. Dong, Y. Shu, G. Zhang, J. Sesay, B. F. Karlsson, J. Fu, and Y. Shi: arXiv preprint (2023).

arXiv:2309.17288
	41	 C. E. Mower, Y. Wan, H. Yu, A. Grosnit, J. Gonzalez Billandon, M. Zimmer, J. Wang, X. Zhang, Y. Zhao, A.

Zhai, P. Liu, D. Palenicek, D. Tateo, C. Cadena, M. Hutter, J. Peters, G. Tian, Y. Zhuang, K. Shao, X. Quan, J.
Hao, J. Wang, and H. Bou Ammar: arXiv preprint (2024). arXiv:2406.19741

	42	 T. Kwon, N. Di Palo, and E. Johns: IEEE Rob. Autom. Lett. 9 (2024) 6728. https://doi.org/10.1109/
LRA.2024.3410155

	43	 M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakrishnan, K.
Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey, S. Jesmonth,
N. J. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J.
Quiambao, K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F.
Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and A. Zeng: arXiv preprint (2022). arXiv:2204.01691

	44	 A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess, A. Dubey, C.
Finn, P. Florence, C. Fu, M. González Arenas, K. Gopalakrishnan, K. Han, K. Hausman, A. Herzog, J. Hsu, B.
Ichter, A. Irpan, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, I. Leal, L. Lee, T.-W. E. Lee, S. Levine, Y. Lu,
H. Michalewski, I. Mordatch, K. Pertsch, K. Rao, K. Reymann, M. Ryoo, G. Salazar, P. Sanketi, P. Sermanet, J.
Singh, A. Singh, R. Soricut, H. Tran, V. Vanhoucke, Q. Vuong, A. Wahid, S. Welker, P. Wohlhart, J. Wu, F.
Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and B. Zitkovich: arXiv preprint (2023). arXiv:2307.15818

	45	 T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A.
Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C.
Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A.
Radford, I. Sutskever, and D. Amodei: Language Models are Few-shot Learners. Advances in neural
information processing systems (2020).

	46	 K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg: Auton. Rob. 47 (2023) 1345. https://doi.org/10.1007/
s10514-023-10131-7

	47	 S. H. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor: IEEE Access 12 (2024) 55682. https://doi.org/10.48550/
arXiv.2306.17582

	48	 I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and A. Garg: Proc.
2023 IEEE Int. Conf. Robotics and Automation (ICRA, 2023) 11523–11530. https://doi.org/10.1109/
ICRA48891.2023.10161317

	49	 J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. V. Le, and D. Zhou: Adv. Neural Inf.
Process. Syst. 35 (2022) 24824.

	50	 S. S. Kannan, V. L. N. Venkatesh, and B. C. Min: Proc. 2024 IEEE/RSJ Int. Conf. Intelligent Robots and
Systems (IROS, 2024) 12140–12147. https://doi.org/10.1109/IROS58592.2024.10802322

https://doi.org/10.1007/s11432-024-4222-0
https://doi.org/10.1007/s11432-024-4222-0
https://doi.org/10.1007/s11704-024-40231-1
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/langchain-ai/langchain
https://github.com/crewAIInc/crewAI
https://github.com/langchain-ai/langgraph
https://doi.org/10.1109/LRA.2024.3410155
https://doi.org/10.1109/LRA.2024.3410155
https://doi.org/10.1007/s10514-023-10131-7
https://doi.org/10.1007/s10514-023-10131-7
https://doi.org/10.48550/arXiv.2306.17582
https://doi.org/10.48550/arXiv.2306.17582
https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.1109/ICRA48891.2023.10161317
https://doi.org/10.1109/IROS58592.2024.10802322

3088	 Sensors and Materials, Vol. 37, No. 7 (2025)

About the Authors

	 Taek-Hyun Park received his B.S. degree from National Korea Maritime &
Ocean University, Korea, in 2025. and is currently pursuing his M.S. degree at
the Graduate School of Data Science, Pusan National University, Korea. His
research interests are in time series forecasting, deep learning, novel
architecture, and intelligent control methods.

	 Young-Jun Choi received his B.S. degree from National Korea Maritime &
Ocean University, Korea, in 2025. His research interests are in deep learning,
novel architecture, and intelligence control methods.

	 Seung-Hoon Shin received his B.S. degree from National Korea Maritime &
Ocean University, Korea, in 2023. Since 2023, he has been a navy officer at
the Naval Intelligence Information System Group. His research interests are in
autonomous mobility, intelligent control methods, and deep learning.

	 Chang-Eun Lee received his B.S. and M.S. degrees in electronics engineering
from Hanyang University, Republic of Korea, in 1996 and 1998, respectively,
and his Ph.D. degree in information and communication engineering from
Chungnam National University, Republic of Korea, in 2017. From 1998 to
2000, he was a researcher at LG Industry System, Republic of Korea, where he
worked on intelligent building automation systems. Since 2001, he has been
with the Electronics and Telecommunications Research Institute (ETRI),
Republic of Korea, where he has conducted research in the fields of intelligent
robot systems and military artificial intelligence. His primary research
interests are artificial intelligence, robot software frameworks, and distributed
and cooperative unmanned systems.

Sensors and Materials, Vol. 37, No. 7 (2025)	 3089

	 Kwangil Lee received his B.S., M.S., and Ph.D. degrees from the Department
of Computer Science at Chungnam National University in 1993, 1996, and
2001, respectively. From 2000 to 2002, he worked as a guest researcher at the
National Institute of Standards and Technology (NIST) in the USA. Then, he
worked as a research associate at the University of Maryland (2002–2004) and
later at the University of Texas (2005) in the USA. He participated in the first
of Korea’s smart ship projects in 2007. Since then, he has participated in many
smart and digitalization maritime research projects, such as E-navigation and
MASS. His research interests are in autonomous ships, smart ships,
e-navigation, common maritime data structures, cyber security and safety,
situational awareness, generative AI, and mobile/wireless networks.

