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	 In recent years, robotic arms have become increasingly common in green converter stations. 
In this paper, we introduce a time-optimal trajectory planning method based on the arithmetic 
optimization algorithm (AOA). The method utilizes sensor data as constraints and generates 
trajectories using 3-5-3 polynomial interpolation. To enhance the performance of the AOA, we 
propose an improved version, the improved AOA, which incorporates the Latin hypercube 
sampling and Gaussian variation. Simulation results demonstrate that the proposed algorithm 
effectively plans trajectories for industrial robotic arms, offering improved efficiency and 
accuracy in motion planning.

1.	 Introduction

	 In recent years, the operation and maintenance of green converter stations have increasingly 
shifted towards automation and intelligent systems. A converter station is a key facility used for 
voltage conversion and DC transmission within power systems. During the daily operation and 
maintenance of these stations, operators must perform tasks such as equipment inspection, 
maintenance, and troubleshooting. Effective trajectory planning in these operations is crucial for 
improving efficiency, reducing operation time, and minimizing safety risks.
	 In green converter stations, the use of mobile robots equipped with robotic arms has become 
an essential component of automation.(1) These robots are designed to operate in environments 
that are hazardous to human workers, such as high-voltage areas and confined spaces. A typical 
application involves the autonomous navigation of the robot through the control rooms and other 
sections of the converter station, where it performs routine inspections of electrical equipment, 
such as circuit breakers, transformers, and switchgears. The mobile robot is equipped with a 
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robotic arm that can manipulate or adjust components, carry out preventive maintenance tasks 
such as cleaning or replacing parts, and troubleshoot issues by performing diagnostic tasks. The 
arm can be used to open and close circuit breakers, check the condition of electrical components, 
and even make minor repairs, such as tightening bolts or replacing fuses.
	 Trajectory planning is a constrained optimization problem that requires the simultaneous 
consideration of the robotic arm’s kinematic constraints, collision avoidance, and singularity 
issues.(2,3) For the problem of time-optimal trajectory planning, scholars have proposed various 
intelligent optimization algorithms,(4,5) mathematical models,(6,7) and interdisciplinary 
solutions.(8) Among these, the arithmetic optimization algorithm (AOA) has attracted attention 
in recent years owing to its powerful global search capability and high convergence speed.(9) It 
has been widely applied to global optimization problems,(10) practical engineering,(11,12) 
parametric analysis,(13,14) and other fields. This algorithm has proven particularly valuable in the 
operation of converter stations.
	 In this paper, we propose an improved AOA (IAOA) combined with robotic arm trajectory 
optimization. By optimizing the operation path, the algorithm reduces operation time, lowers 
safety risks, and enhances operation quality. In conclusion, time-optimal trajectory planning is 
essential for improving the efficiency of industrial robots, particularly in converter station 
operations.

2.	 Mathematical Model

2.1	 Establishment and analysis of Denavit–Hartenberg (D–H) models for industrial 
six-degrees-of-freedom (6-DOF) robotic arm

	 In this paper, we examine a 6-DOF robotic arm, capable of reaching any position and 
orientation in 3D space. It uses the D–H method to establish kinematic models for trajectory 
planning and motion control. The D–H convention is applied to define the relationship between 
the coordinate systems of each joint. The z-axis aligns with the joint axis and the x-axis points 
along the normal between neighboring joint axes. The transformation matrices are derived from 
four D–H parameters: link length, twist, angle, and offset. Figure 1 shows the D–H frames for 
the robotic arm, with {0} as the base and {6} as the end-effector. Table 1 lists the D–H 
parameters for each link. These parameters enable the calculation of the end-effector pose 
(forward kinematics) and the determination of joint motions for a given trajectory (inverse 
kinematics), which are essential for the robot’s trajectory planning.
	 Unlike standard robotic arms used in industrial applications, which are typically designed for 
tasks such as assembly or material handling, the robotic arm used in green converter stations 
must meet specific operational and safety requirements because of the high-voltage environment 
in such stations. These specialized robotic arms have enhanced insulation to prevent electrical 
shocks, as well as features to reduce electromagnetic interference that can affect the arm’s 
precision and operation in a high-voltage environment. Furthermore, these robotic arms are 
designed for high precision and reliability in performing critical tasks such as switching 
electrical components, inspecting transformers, and performing maintenance on circuit breakers, 
all of which require a higher degree of control and accuracy compared with more common 
industrial robotic arms.
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2.2	 Analysis of forward kinematics and inverse kinematics

	 The forward kinematics analysis of a robotic manipulator is aimed at determining the 
position and orientation of the end-effector frame relative to the base frame, given the values of 
the joint variables. For this 6-DOF robotic arm, the D–H convention is utilized to establish 
coordinated frames along the links and joints. On the basis of the D–H parameters, the 
relationship between two adjacent coordinate frames can be derived in the form of a 
homogeneous transform matrix. By multiplying these elementary transform matrices along the 
kinematic chain from the base to the end-effector, the forward kinematics can be formulated. 
This establishes the pose of the end-effector frame relative to the base frame. The complete 
forward kinematics mapping can be expressed as the multiplication of each transform matrix 
from the base to the end-effector. Therefore, given the joint angle values, the position and 
orientation of the end-effector can be solved. This establishes the relationship between the joint 
space and the Cartesian workspace, which is fundamental for the motion planning and control of 
the robotic arm. Its sub-transformation matrix between adjacent coordinate systems can be 
derived on the basis of the improved D–H parameters as follows:

Fig. 1.	 (Color online) Robotic arm linkage coordinate system.

Table 1
D–H parameters of the industrial 6-DOF robot arm.
Joint i Link twist αi Link length αi−1 Joint offset di Joint angle θi
1 0 0 d1 θ1
2 π/2 0 d2 θ2 − π/2
3 0 −α2 −d3 θ3
4 0 −α3 d4 θ4 − π/2
5 π/2 0 d5 θ5
6 −π/2 0 d6 θ6
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	 The inverse kinematics for a 6-DOF robotic arm is about finding joint angles [θ1, θ2, ..., θ6] to 
achieve a desired end-effector pose from Cartesian coordinates. It is more complex than forward 
kinematics, often having multiple solutions. With the D–H parameters, the problem can be 
formulated as nonlinear equations linking end-effector variables to joint angles. Various 
methods exist to solve these equations efficiently. Solving inverse kinematics is key for trajectory 
planning and control, creating a workspace-to-joint space mapping. The 6-DOF design’s 
redundancy also aids in positioning the end-effector to navigate around obstacles.
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2.3	 Application of polynomials to trajectory planning

	 When planning a robotic arm’s trajectory, choosing the right interpolation method is key. 
High-order polynomials can cause issues such as poor smoothness and high computation costs. 
Using them to generate joint angles might lead to unsmooth trajectories and instability during 
movement. Thus, lower-order polynomials such as the 3rd or 5th degree are often preferred for 
trajectory planning owing to their balance of continuity, smoothness, and computational 
efficiency. In this case, a 3-5-3 segmented polynomial approach is used: 3rd order at the 
endpoints for position, velocity, and acceleration continuity, and 5th order in the middle for 
trajectory optimization. This method offers good performance without excessive computational 
complexity.
	 The general formula for segmented polynomials is
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In the equation, θi1(t) is the 3rd interpolation polynomial of the 1st segment of the i-th joint, θi2(t) 
is the 5th interpolation polynomial of the 2nd segment of the i-th joint, and θi3(t) is the 3rd 
interpolation polynomial of the 3rd segment of the i-th joint. The 1st, 2nd, and 3rd segments 
correspond to the periods of t0 ~ t1, t1 ~ t2, and t2 ~ t3, respectively. The coefficients ai1j, ai2j, and 
ai3j are the first coefficients of the polynomials of the 1st, 2nd, and 3rd segments of the trajectory 
of the i-th joint, respectively. Among coefficients, i = 1,2,3, ..., n denotes the i-th joint.
	 The equations of the starting and ending trajectory functions of the 3rd polynomial in the 
segmented polynomial are as follows:
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In the equation, θf are the joint angles at the start and end points. (0)θ  and fθ  are the joint 
velocities at the start and end points, respectively. fθ  are the joint accelerations at the start and 
end points, and t0 and te are the start and end times, respectively.
	 Considering the equation of the trajectory function of Eq. (2) and the constraints of 
displacement, angle, angular velocity, and angular acceleration of the robot arm, the equation of 
the trajectory function of the starting and ending points of the 5th polynomial is solved as 
follows.
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	 The coefficients of the 3rd- and 5th-degree polynomials are solved as
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	 The optimization objective function and constraints for the i-th joint are 

	 3
1( ) min ,iif t t

=
= ∑ 	 (9)

	 { }max .i imaxθ θ≤  	 (10)

	 In the equation, iθ  is the velocity corresponding to the polynomial interpolation of each 
segment in the i-th joint, and imaxθ  is the maximum velocity allowed for the i-th joint.

3.	 Algorithm Description

	 The AOA is a novel population intelligence optimization algorithm based on four regular 
mixed operations proposed by Abualigah and Diabat in 2023.(9) The algorithm performs global 
exploration through arithmetic multiplication and division operations and local exploitation 
using addition and subtraction operations.

3.1	 AOA

	 In AOA, the initial candidate solution set X is randomly generated; we obtained the initial 
population from the following equation.
	
	 , ( )i jX rand ub lb lb= × − + 	 (11)

The upper and lower population individual limits are set to ub and lb, respectively.
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3.2	 Math optimizer accelerated (MOA)

	 MOA is an iteration parameter in the algorithm whose value changes continuously with 
iterations and is calculated as shown in Eq. (12). AOA selects the search phase using the value of 
MOA.

	
max minMOA min t

T
− = + ×  

 
	 (12)

Here, t denotes the current number of iterations and T denotes the maximum number of 
iterations; max and min denote the upper and lower bounds of MOA, which are usually taken as 1 
and 0.2, respectively.

3.3	 Global exploration phase

	 When the random number r1 > MOA (r1 ∈ [0,1]), the algorithm enters the global search phase. 
AOA implements the global search through multiplication (M) and division (D), and the process 
is shown in Eq. (13).
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Here, r2 is a random number between 0 and 1; Xpbest is the current global optimal individual 
position; μ is the control parameter, generally taken to be μ = 0.499; ε is defined as a very small 
integer; and MOP is the math optimizer probability, which is calculated as

	 1 ,tMOP
T

α
 = −  
 

	 (14)

where α is the iterative sensitivity factor, which affects the development accuracy of the 
exploration phase and is generally taken to be α = 5.

3.4	 Partial development phase

	 The algorithm enters the local development phase when the random number r1 < MOA. AOA 
achieves local development through addition (A) and subtraction (S); the process is shown in Eq. 
(15).

	 ,
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Here, r3 is a random number between [0,1].
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3.5	 Latin hypercube sampling

	 The traditional AOA generates the initial population randomly, which makes it difficult to 
ensure the uniformity of the initial individual distribution and easily affects the convergence 
speed and solution accuracy of the algorithm. Therefore, in this paper, we introduce the Latin 
hypercube sampling to generate the initial candidate solutions of the algorithm, by which the 
initial population can be effectively ensured to be uniformly filled and non-overlapping in the 
solution space. The specific steps of the population initialization strategy based on the Latin 
hypercube are as follows.
1)	 Set the algorithm population size N, the individual dimension D, and the upper and lower 

bounds ub and lb, respectively.
2)	 Divide the solution space [ub, lb] of the algorithm into N equally spaced subspaces.
3)	 Randomly draw a point of dimension D in each subspace as an individual in the initial 

population.
4)	 Combine all the extracted points to form the initial population of AOA for subsequent 

iterations of the optimization search.

3.6	 Nonlinear factor

	 AOA balances the algorithm’s global optimization-seeking ability and local exploitation 
ability using the MOA. In the traditional AOA, MOA increases linearly from 0.2 to 1 with the 
number of iterations t. However, the optimization of the algorithm is nonlinear; thus, in this 
paper, we introduce a nonlinear factor to improve the calculation formula of MOA, as shown in 
Eq. (16), to make it more suitable for the actual optimization process and further improve the 
solving ability of the algorithm.

	 ( ) cos( / 2 / ) 0.9MOA max min t T= − − × π × + 	 (16)

max and min are still taken as 1 and 0.2, respectively. The comparison graph of MOA before and 
after the improvement is shown in Fig. 2, which shows that the improved MOA grows slowly in 
the early iterations to ensure that the algorithm can fully explore the optimal solution globally, 
while in the late iterations, the MOA grows rapidly to a larger value, which increases the 
probability of the local exploitation of the algorithm and improves the optimization-seeking 
accuracy of the algorithm. 

3.7	 Gaussian variation mechanism

	 To address the shortcomings of AOA, such as early maturity in late iterations and the 
tendency to fall into a local optimum, the Gaussian variation operator is introduced to improve 
its update strategy. When the algorithm enters the late iteration, i.e., when t > T/2 is considered, 
Gaussian variation is applied to each individual before the end of each iteration, and the 
individuals before and after the variation are retained on a merit basis in accordance with the 
fitness. The process is represented as
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	 , , [1 (0,1)],i j i jX X Gauss= ×′ + 	 (17)
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Equation (17) denotes an individual after Gaussian variation, Gauss(0,1) denotes a random 
variable satisfying a Gaussian distribution, and fit() denotes the fitness function.
	 In summary, the flow chart of the IAOA based on the Latin hypercube, nonlinear factor, and 
Gaussian variance is shown in Fig. 3.

4.	 Experimental Results and Analysis

	 In this study, the algorithm programming tool is MATLAB R2021a, the operating system is 
Windows 10, the computer memory is 16 GB, and the CPU is Intel i5-1135G7.
	 In this study, the proposed robotic arm system for green converter stations incorporates 
multiple sensors that enhance the precision and safety of operation during tasks such as 
equipment inspection, maintenance, and troubleshooting. These sensors not only enable the 
robotic arm to perform with high accuracy but also allow for real-time adjustments during 
trajectory planning, which is crucial in environments with high risks such as green converter 
stations.
	 To optimize trajectory planning and ensure precise motion control, angle sensors are installed 
at critical joints, such as the shoulder, elbow, and wrist, of the robotic arm. These sensors 
measure the rotational angles of each joint, allowing the control system to adjust the arm’s 

Fig. 2.	 (Color online) MOA before and after improvement.
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position and orientation precisely. The data from these sensors are essential for trajectory 
optimization, particularly in tasks that require high accuracy, such as inspecting electrical 
components or manipulating sensitive devices. By using the angle data, the robot’s trajectory can 
be optimized in real time, ensuring the arm follows the most efficient and safe path to its target.
	 Another important sensor integrated into the robotic arm is the laser rangefinder, mounted at 
the end-effector. This sensor continuously measures the distance between the robotic arm and its 
target, which is critical for tasks such as cleaning or adjusting electrical components in a 
converter station. The distance data from the laser rangefinder allow the system to avoid 
potential collisions by adjusting the arm’s position or stopping movement when an obstacle is 
detected. These measurements are fed directly into the trajectory optimization algorithm, which 
uses them to modify the planned path, ensuring that the arm operates with high accuracy and 
safety.
	 Additionally, force sensors are installed at key joints, such as the elbow and wrist, to monitor 
the forces applied during operations. These sensors provide feedback on the torque and force at 
the joints, which is particularly important for tasks that require delicate handling, such as 
tightening components or applying specific amounts of pressure. The force sensor data are used 
to adjust the trajectory and speed in real time, ensuring that the robot’s movements do not exceed 
the physical limits of the arm or the objects being manipulated. This feedback helps optimize the 
trajectory planning by ensuring that forces are applied within safe and efficient limits.

Fig. 3.	 Flow chart of the IAOA.
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	 The integration of these sensors plays a critical role in the optimization of the robotic arm’s 
trajectory. By continuously providing real-time data about the arm’s position, distance to the 
target, and applied forces, the sensors enable the trajectory optimization algorithm to adjust the 
planned path dynamically. This approach not only enhances the efficiency of the robotic arm but 
also reduces the risk of errors and ensures precise and safe operation in the high-risk environment 
of a green converter station.

4.1	 Parameter setting 

	 In IAOA, the maximum value of MOA is MOP_Max = 1 and the minimum value is 
MOP_Min = 0.2. In particle swarm optimization (PSO), the particle learning rate is c1 = c2 = 1.5, 
the maximum particle velocity is vmax = 1, the minimum velocity is vmin = −1, the population size 
is N = 100, and the maximum number of iterations is T = 1000. The joint vmax is [127, 127, 104, 
177, 155, 187] and the joint amax is [127, 127, 104, 177, 155, 187].

4.2	 Simulation results

	 The IAOA was compared with the popular particle swarm algorithm, and the adaptive 
convergence plots for the six joints are shown in Fig. 4. The position, velocity, and acceleration 
curves of the six joints are shown in Fig. 5.
	 The objective function values for IAOA and PSO runs at each joint are shown in Table 2. The 
average objective function values for IAOA runs at each joint are better than those for AOA and 
PSO: 7.35% and 4.81%, respectively. These percentage improvements (7.35% over AOA and 

(a) (b)

Fig. 4.	 (Color online) Adaptive convergence diagram for (a) joints 1 and 2, (b) 3 and 4, and (c) 5 and 6.
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Fig. 4.	 (Color online) (Continued) Adaptive convergence diagram for (a) joints 1 and 2, (b) 3 and 4, and (c) 5 and 6.

Fig. 5.	 (Color online) (a) Position, (b) velocity, and (c) acceleration curves of the six joints.

(c)

(a) (b)

(c)
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4.81% over PSO) were derived by first calculating the average objective function value across all 
six joints for each algorithm. The IAOA’s joint-wide average was then compared with those of 
AOA and PSO, with the percentage reductions computed on the basis of the relative difference 
between IAOA’s lower average value and the higher averages of the two benchmark algorithms.

5.	 Conclusions

	 In this paper, we introduced a time-optimal trajectory planning model for a 6-DOF robotic 
arm, utilizing the 3-5-3 polynomial interpolation method. An IAOA was developed to address 
the nonlinear optimization challenges, incorporating methods such as Latin hypercube sampling 
and Gaussian variation to enhance global search capabilities. The results from the simulations 
demonstrate that the IAOA achieves faster convergence and superior solution quality compared 
with traditional algorithms, confirming its potential for optimizing the robotic arm’s motion in 
real time.
	 Although the presented results are based on simulations, they offer valuable insights into how 
trajectory optimization can significantly improve the operation and efficiency of robotic arms 
used in green converter stations. By applying the optimized trajectory planning model, green 
converter stations can achieve precise and efficient robotic arm movements, reducing operation 
times and enhancing the safety of maintenance tasks. Specifically, the optimized paths derived 
from the simulation results ensure that the robotic arm performs tasks such as equipment 
inspection, maintenance, and troubleshooting with minimal risk of error or damage to sensitive 
components.
	 In practice, the improvements in trajectory planning and real-time optimization derived from 
this research will help enhance the automation of green converter stations. The results can be 
used to program robotic arms that can autonomously perform critical operations, thereby 
reducing human intervention in hazardous environments, improving operational efficiency, and 
ensuring higher safety standards. Furthermore, the simulation results serve as a foundation for 
future real-world implementation, providing a roadmap for the further development and 
optimization of robotic arm control systems in industrial applications.
(1)	A time-optimal trajectory planning model for a 6-DOF robot arm was developed on the basis 

of the 3-5-3 polynomial interpolation method.
(2)	An IAOA was proposed for solving highly nonlinear-constrained optimization problems.

Table 2 
Comparison of the objective function values run at each joint.
Objective function value IAOA AOA PSO
Joint 1 3.72947 4.14534 4.08042
Joint 2 4.84050 4.90173 4.84067
Joint 3 3.54643 4.02099 3.81075
Joint 4 1.46194 1.66809 1.46455
Joint 5 3.13866 3.37097 3.41597
Joint 6 2.74323 2.79253 2.88849
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(3)	The IAOA improved the global search capability by Latin hypercube sampling, nonlinear 
modulation, and Gaussian variation.  

(4)	The model and algorithm were applied to the simulation of a 6-DOF robot arm, and the 
effectiveness of IAOA was verified.

	 In the trajectory planning of a robotic arm, in addition to avoiding collisions and reaching the 
target position, other constraints can be considered, such as avoiding singularities, maintaining 
specific forces and torques, and following specific speed and acceleration constraints. These 
constraints can be incorporated into the algorithm by modifying the optimization objective 
function or adding additional constraints.
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