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	 In this study, we use the type-2 fuzzy neural controller (T2FNC) based on the improved 
mantis search algorithm (IMSA) for navigation and obstacle avoidance applications of unmanned 
ground vehicles (UGVs) with differential wheels in unknown environments. In unknown 
environments, a light detection and ranging sensor is used to capture distance information 
between UGVs and the surrounding environment. The T2FNC has a five-layer architecture. The 
first to fifth layers are the input, fuzzified, rule, order reduction process, and output layers, 
respectively. In the T2FNC, we use the IMSA to adjust the parameters in the network. In 
addition, the simulated annealing reciprocal local search algorithm is proposed to prevent the 
traditional MSA from falling into the local optimal solution. Experimental results indicate that 
the fitness value of the proposed IMSA is 0.983452. Compared with the traditional MSA 
algorithm, the movement distance and movement time of the proposed T2FNC with IMSA are 
shortened by 4.5 and 4.14%, respectively. In addition, the experimental results show that the 
proposed method can have excellent obstacle avoidance and navigation capabilities in unknown 
environments.

1.	 Introduction

	 Recently, unmanned ground vehicles (UGVs) have been widely used in various fields, such as 
military reconnaissance, logistics, and environmental monitoring. Wang et al.(1) combined 
UGVs with geographic information systems to realize the autonomous navigation of UGVs in an 
urban traffic environment. Mammarella et al.(2) proposed a multistage method and coordinated 
multiple UGVs to perform agricultural tasks in a vineyard. Appelqvist et al.(3) demonstrated the 
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UGV technology plan, which includes the design of vehicle platform instrumentation, software 
architecture, communication connections, and a human–machine interface. Wang et al.(4) 
developed an autonomous collaborative exploration system that utilizes UGVs for exploration 
operations. Rodríguez et al.(5) proposed a collaborative task allocation algorithm for multiple 
UGVs and a cooperative process for performing search and rescue missions in a mountainous 
environment.
	 The navigation performance of the UGV is related to the various environmental sensors it is 
equipped with. These sensors are responsible for collecting environmental information and 
transmitting it to the main control computer for processing. Liu et al.(6) pointed out that there are 
some limitations in the performance of different sensors in different application scenarios. 
Radar(7) detects objects using radio waves. Although it has stable performance under severe 
weather conditions, it cannot provide the precise contour information of objects. Ultrasonic 
sensors(8) are often used for close-range detection and obstacle avoidance because of their small 
size, low cost, and being unaffected by weather. However, owing to the short detection range of 
ultrasonic sensors, they are difficult to apply in large-scale environmental monitoring. The 
camera(9) can capture images in the environment, but it lacks depth information. A stereo 
camera(10) provides depth information but it is affected by lighting conditions and requires high 
computing resources. Compared with the above-mentioned sensors, light detection and ranging 
(LiDAR)(11) can operate under various climatic conditions and provide high-resolution 
environmental depth information. It has long-range detection and a wide field of view, enabling 
UGVs to conduct precise navigation.
	 For UGV control, a proportional-integral-derivative controller(12) or sliding mode 
controller(13,14) is often used. These controllers maintain system stability by adjusting the 
parameters. However, parameter values are usually determined by empirical methods, which 
limits flexibility. Therefore, adaptive controllers(15–17) that can automatically adjust parameters 
in accordance with system changes have emerged. However, as the requirements for system 
stability and flexibility increase, researchers are gradually turning to fuzzy controllers.(18) Fuzzy 
controllers are divided into type-1 and type-2 fuzzy controllers. Castillo et al.(19) pointed out that 
the type-2 fuzzy controller can handle more uncertain input and is better than the type-1 fuzzy 
controller.
	 In machine learning techniques, the backpropagation (BP)(20) algorithm is often used to 
adjust the parameters of the controller. However, the BP algorithm has a local optimal solution 
problem. To overcome this problem, heuristic algorithms in machine learning techniques have 
become the main method for controller parameter optimization. In the development process of 
heuristic algorithms, researchers have designed a variety of algorithms inspired by biological 
evolution, natural physical laws, group animal behavior, and human social behavior. For 
example, the genetic algorithm (GA)(21) simulates natural selection and genetic mechanisms. The 
simulated annealing algorithm(22) is a random search based on the metal annealing process. 
Particle swarm optimization (PSO)(23,24) imitates the search behavior of group animals, and the 
ant colony optimization algorithm(25) simulates the food search process of an ant colony. Because 
of the randomness and nondeterminism of these heuristic algorithms, it is easy to fall into the 
local optimal solution during the global search process. In addition, when these algorithms face 
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highly complex multidimensional optimization problems, their convergence is slow. To 
overcome these problems, Abdel-Basset et al.(26) proposed the mantis search algorithm (MSA) to 
simulate the hunting process of mantises. Compared with other heuristic algorithms, MSA 
shows significant advantages in performance indicators and exhibits excellent performance on 
specific engineering problems.(27–29)

	 In this study, we use the type-2 fuzzy neural controller (T2FNC) based on the improved 
mantis search algorithm (IMSA) for navigation and obstacle avoidance applications of UGVs 
with differential wheels in unknown environments. The major contributions of this study are as 
follows.
•	� In unknown environments, a LiDAR sensor is used to capture distance information between 

UGVs and the surrounding environment. 
•	� The proposed T2FNC has a five-layer architecture. The first to fifth layers are the input, 

fuzzified, rule, order reduction process, and output layers, respectively. 
•	� The IMSA is proposed to adjust the parameters in the T2FNC. In addition, the simulated 

annealing reciprocal local search algorithm (SARLSA) is also proposed to prevent the 
traditional MSA from falling into the local optimal solution. This concept of the proposed 
IMSA is developed for the first time.

	 The rest of this article is organized as follows. In Sect. 2, we introduce the structure of the 
T2FNC and the related learning algorithms IMSA and SARLSA. In Sect. 3, we explain the 
simulation experimental results of navigation control and compare them with the results of other 
methods. Finally, the results are summarized in Sect. 5 and suggestions for future research are 
given.

2.	 Navigation Control of UGV Based on the T2FNC

	 In this section, we introduce the navigation control of UGV using the T2FNC, as shown in 
Fig. 1. The NVIDIA Jetson AGX Orin is used to receive information from LiDAR and to 
determine the T2FNC-based navigation control of the UGV. First, we will explain the structure 
of the T2FNC. Next, the IMSA learning algorithm with optimized global search capabilities is 
introduced. Finally, we will explain the design of the navigation fitness functions and evaluate 
the navigation performance of unmanned vehicles.

2.1	 T2FNC

	 The architecture of the proposed T2FNC is a five-layer architecture comprising the input 
layer, fuzzy layer, firing layer, output processing layer, and output layer, as shown in Fig. 2. The 
jth IF~THEN~ fuzzy rule is expressed as follows.
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Here, 1 2, , , nx x x…  are inputs, 1 2, , ,  j j j
nA A A…    are type-2 fuzzy sets, and 10  j jn

i i iw w x=+Σ  is the TSK-
type consequent part of the fuzzy rule.
Layer 1: This layer receives environmental information from LiDAR and passes this information 
to the next layer. Therefore, this layer does not need to do any calculations.
Layer 2: This layer is responsible for blurring the output information of the previous layer. Each 
node is defined as a type-2 fuzzy set. These fuzzy sets handle uncertainty through Gaussian 

Fig. 1.	 (Color online) T2FNC-based navigation control of UGV. 

Fig. 2.	 Architecture of the proposed T2FNC.
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membership functions, which has an uncertain mean value [ ]1 2,m m  and a fixed standard 
deviation σ. The membership function Aµ  of type-2 fuzzy set is 
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The degree of membership of the membership function Aµ  is called the uncertainty footprint, 
which is jointly represented by the upper boundary membership function Aµ  and the lower 
boundary membership function Aµ  . 
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The output of each node is expressed as an interval,   ,j j
i iA Aµ µ 

   

, which is composed of an upper 
boundary membership function and a lower boundary membership function, reflecting the 
range of the uncertainty footprint.
Layer 3: Each node represents a fuzzy rule and uses the algebraic product to implement fuzzy 
intersection operations. The firing strength Fj of each fuzzy rule is defined as follows.

	 ,j j jF f f =  	 (5)
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Layer 4: This layer reduces the order of the type-2 fuzzy set and converts it into a type-1 fuzzy 
set. The center-of-gravity method is used to defuzzify the type-2 fuzzy set to obtain its upper 
and lower bounds [yupper, ylower]. To reduce the computational complexity of the order-reduction 
process, the center-of-sets order-reduction method is adopted, and the formula is as follows.
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Layer 5: This layer averages the output results of the previous layer to obtain the final output. 
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Since the UGV used in this study is a differential wheel, the T2FNC yields two outputs 
corresponding to the left wheel speed (yLeft) and the right wheel speed (yRight).

2.2	 Proposed IMSA learning algorithm

	 In this subsection, we introduce our proposed IMSA learning algorithm. The specific steps of 
IMSA are as follows.
Step 1: Initialization
	 In this step, each mantis is randomly positioned in the D-dimensional solution space and 
initialized, and the N mantises in the mantis swarm are randomly distributed in the solution 
space. Therefore, a two-dimensional matrix x of size N × D can be expressed. The position of 
mantis i at the function evaluation t can be defined by a vector initialized randomly within the 
lower and upper bounds of the optimization problem(26) as the following formula:
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ix x r x x= + −
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,	 (10)

where t
ix  is the current position of the mantis, r  is a vector with a randomly generated value 

between –1 and 1, and ux  and lx  represent the upper and lower bounds, respectively. 
Step 2: Coding
	 The position of the mantis is encoded through parameters. The parameters of each mantis 
include the mean 1 2,j j

i im m 
  , standard deviation j

iσ , and weights 0
jw  and j

iw  in the T2FNC. 
That is, these parameters are used to describe the state of the mantis in the solution space.
Step 3: Search for prey
	 In this step, the members of the mantis swarm are divided into two behavioral roles: pursuers 
and ambush predators. Pursuers actively search for prey and simulate movement behaviors of 
different steps and directions. The formula is
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where 1τ
  is a random number generated by the Levy flight strategy, and 2τ

  is a random number 
generated in accordance with the normal distribution. To simulate the pursuer’s direction of 
action, the binary vector U



 is used:
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where 4  r  and 5  r  are uniformly distributed random vectors between 0 and 1. If 4  r  of the jth 
dimension is less than 5r

 , the corresponding U


 will be 0; otherwise, U


 will be 1. 
	 Ambush predators will remain stationary and wait for their prey to enter attack range. 
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Here, '
arx  is the currently existing global optimal solution, and t  ax  is a random individual in the 

mantis group. α is the factor that controls the position of the mantis’ head: 

	 ( )6cos rα µ= π ⋅ ,	 (14)

where μ is the distance factor,

	 1  t
E

µ  = − 
 

,	 (15)

with t being the current number of iterations and E the target number of iterations.
Step 4: Attack prey
	 In the step of attacking the prey, the position of the mantis is updated in accordance with the 
dynamic changes occurring during the attack.
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vs is the attack speed, 
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where l is a random parameter used to control the attack speed, and φ is the gravity acceleration 
during attack. ,

t
si jd  is the attack distance.
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If the attack fails, the mantis will reorient and launch a new attack:

	 ( )1
, , 13 , ,  t t t t

i j i j a j b jx x r x x+ = + ⋅ − .	 (19)

Equation (20) is used in conjunction with the failure probability Pf to enhance the convergence 
rate towards the optimal solution in an optimization problem:
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where Pf  is used to determine whether the next operation will be performed. 
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Step 5: Proposed SARLSA local search algorithm
	 To avoid the mantis algorithm falling into the local optimal solution, a SARLSA local search 
algorithm is formulated as 
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where Mj represents the current jth mantis, MGbest represents the mantis with the current global 
best solution, BF1 and BF2 are interest factors, Mi is the ith mantis randomly selected from the 
mantis group, and r14 and r15 are random numbers between −1 and 1. 
	 The mantis will compare the current fitness value Fit( ,

t
i jx ) with those of the generated new 

positions Fit( 1t
jM + ) and Fit( 1t

iM + ). If the fitness value of the generated new position is better than 
the current fitness value, the mantis will choose to jump out of the current position:
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, /t t

i i jFit M Fit x T
e r

+ −
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where 𝑇 is the temperature coefficient and r is a random number between −1 and 1. If Eq. (25) or 
Eq. (26) is satisfied, the current solution will generate a new solution by using the proposed 
SARLSA in accordance with Eqs. (22)–(24); otherwise, the current solution will be randomly 
regenerated in accordance with Eq. (11). 
Step 6: Sexual cannibalism
	 To ensure that the solutions advantageous for the mantis group will be retained, we simulated 
the phenomenon of female mantises eating male mantises after mating, which means that 
solutions with poor performance are eliminated. 

	 ( )1
16 *   t t t t

i i i ax x r x x+ = + −
    

	 (27)

16r  is a randomly generated attraction factor.
Step 7: Termination condition
	 When the termination condition is met, the optimal solution has been found and the algorithm 
stops.
	 Steps 2 to 6 are repeated until the termination condition is met. 

2.3	 Definition of fitness function

	 The fitness function is designed to evaluate the performance of the proposed T2FNC. The 
inputs of the T2FNC are four angles from LiDAR, which are L0, L1, L2, and L3 with the values of 
10o, 40o, 60o, and 90o, respectively. The detection distance range of LiDAR is 100 m. To reduce 
the amount of computation required by NVIDIA Jetson AGX Orin, the LiDAR detection range 
is limited to 0.5 to 8 m. The output of the T2FNC determines the left and right wheel speeds of 
the differential wheel UGV.
	 The designed fitness function ρ includes four subfitness functions, namely, ρ1, ρ2, ρ3, and ρ4. 
The subfitness function ρ1 is used to evaluate the actual moving distance of the UGV. When the 
actual moving distance Ddis reaches the set end distance (Dstop), it means that the UGV has 
completed one complete training process. In this study, we set Dstop to 250 m. 

	 1 1  dis

stop

D
D

ρ = − 	 (28)

	 The subfitness function ρ2 is used to estimate the distance between the UGV and the wall and 
to calculate its average distance during movement.



3228	 Sensors and Materials, Vol. 37, No. 7 (2025)

	
( )

2

 
1

all
dis

all

T
I t

t
T

ρ
∑

=
= 	 (29)

	 With this subfitness function, we expect the UGV to maintain a stable distance from the wall. 
In this case, the value of Idis is close to zero.

	 ( ) ( )3  dis wallI t L t d= − 	 (30)

dwall represents the fixed distance to the wall and is set to 2 m.
	 The subfitness function ρ3 is used to estimate the average angle between the UGV and the 
wall.
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θ is the angle between the UGV and the wall. We expect the UGV to be able to move parallel to 
the wall as
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θ is the angle between L2 and L3 in the LiDAR information and angle(t) is the angle calculated 
using the cosine formula. 

	 ( ) ( )2 2
3 2 3 2 2 cos 30angle t L L L L= + − ⋅  	 (33)

	 The subfitness function ρ4 is used as an indicator to estimate the obstacle avoidance distance 
of the UGV. When the UGV encounters an obstacle, it needs to make turns and maintain stability 
during linear motion. If the angle between the UGV and the wall is 90o, and the distance 
returned by the sensing front (L0) is less than 6 m, the turning angle is calculated. 
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Here, Lmd is the maximum detection distance of LiDAR sensing, which is set to 8 m in this 
study. Lmd is compared with the data returned by L0 to obtain the indicator of whether the UGV 
should turn or keep moving in a straight line.
	 Finally, the fitness function can be expressed by combining the four subfitness functions.

	 ( )1 2 3 4

1 
1       

ρ
ρ ρ ρ ρ

=
+ + + +

	 (35)

3.	 Experimental Results

	 To verify the performance of the proposed IMSA-based T2FNC, we designed a 50×50 m 
training environment, as shown in Fig. 3. The fitness values and movement distances of various 
controllers for obstacle avoidance control and wall-following behavior are analyzed in this 
environment. 

3.1	 Parameter settings

	 In MSA, six parameters need to be preset: the buffer length of optimal solutions (A), the 
probability of attack failure (pa), the probability of exchange between the exploration and 
development stages (pe), the restoration coefficient of the relationship between pursuer and 
ambusher (Rc), the gravitational acceleration of the mantis attack (G), and the probability of 
cannibalism (Pc). The values of these parameters are set to A = 1.0, pa = 0.5, pe = 0.5, Rc = 2.0, 
G = 6.0, and Pc = 0.2. To ensure the fairness of comparisons between algorithms, each algorithm 
was trained for 1000 iterations. The initialization parameters of all algorithms are default values.

3.2	 Experimental results in the training and testing environments

	 To clearly display the output results of the T2FNC, we use different colors to represent the 
angle changes. For example, red means the UGV moves in a straight line, blue means the UGV 
turns left, and green means the UGV turns right. The color definitions are as follows.

Fig. 3.	 (Color online) Schematic diagram of training environment.
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	 If the speed difference between the two wheels of the UGV is less than 0.2, the UGV is 
moving forward and is indicated in red. That is, we choose a threshold to filter out some small 
deviations that are not turns. If the left wheel speed is greater than the right wheel speed by 0.2, 
the UGV turns right and is indicated in green; conversely, if the right wheel speed is greater than 
the left wheel speed by 0.2, the UGV turns left and is indicated in blue.
	 The evaluation indicators of the controller include the fitness function (F), the movement 
distance of the UGV (D), and the time it takes for the UGV to circle the environment (T). Table 1 
shows the experimental results of obstacle avoidance control using various algorithms in the 
training environment. In this table, the fitness function, movement distance, and movement time 
of the proposed T2FNC with IMSA are 0.983452, 200 m, and 47.1 s, respectively. The fitness 
function and movement time of the proposed IMSA method are better than those of the other 
methods.(21,22,26,30,31) Although the IMSA method’s driving distance of 200 m is longer than the 
GA(22) method’s 190 m, the fitness function and moving time of the IMSA method are better 
than those of the GA method.
	 Figure 4 shows the movement trajectories of the T2FNC based on various algorithms for 
wall-following control in the training environment. In the figure, the movement trajectory of 
IMSA moves smoothly and is clearly better than those of the other methods. In particular, when 
the UGV passes through turns and square obstacle areas, the IMSA can maintain stable speed 
and direction and reduce unnecessary pauses and deviations.	
	 In addition, we also designed a 50 × 50 m2 testing environment to verify the performance of 
the proposed IMSA-based T2FNC. Table 2 shows the experimental results of obstacle avoidance 
control using various algorithms in the testing environment. In this table, the fitness function, 
movement distance, and movement time of the proposed T2FNC with IMSA are 0.979115, 
222 m, and 53.1 s, respectively. The fitness function, moving distance, and moving time of the 
proposed T2FNC with IMSA are better than those of the other methods,(21,26,30,31)  except that 
the moving distance of the GA method (210 m)(21) is better than that of our method.

Table 1
Experimental results of obstacle avoidance control in the training environment.

Methods
Evaluation indicators
Training environment

F D (m) T (s)
GA(21) 0.927236 190 48.6
PSO(23) 0.966063 205 51.6
MSA(26) 0.982070 205 49.2
ABC(30) 0.954546 213.5 72.4
DE(31) 0.958116 200 51.3
Proposed IMSA 0.983452 200 47.1
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	 Figure 5 shows the movement trajectories of the T2FNC based on various algorithms for 
wall-following control in the testing environment. In this figure, the moving distance of the 
proposed IMSA [Fig. 5(f)] is 10 m shorter than those of PSO [Fig. 5(d)] and MSA [Fig. 5(e)]. In 
the figure, the movement trajectory of IMSA is smooth and clearly better than those of the other 
methods. 

Fig. 4.	 (Color online) UGV movement trajectories using T2FNC based on (a) ABC, (b) DE, (c) GA, (d) PSO, (e) 
MSA, and (f) IMSA in the training environment.

(a) (b) (c)

(d) (e) (f)

Table 2
Experimental results of obstacle avoidance control in the testing environment.

Methods
Evaluation indicators
Testing environment

F D (m) T (s)
GA(21) 0.923144 210 57.5
PSO(23) 0.966212 232 55.4
MSA(26) 0.977064 232 55.3
ABC(30) 0.923896 246 104.9
DE(31) 0.958383 225 57.4
IMSA 0.979115 222 53.1



3232	 Sensors and Materials, Vol. 37, No. 7 (2025)

3.3	 Experimental results of navigation control

	 The navigation control system of this study is divided into two parts: wall-following control 
(i.e., obstacle avoidance control) and movement control toward the target. First, as shown in 
Fig. 6, we divide the LiDAR detection range of the vehicle into four areas: 1P  from +15° to −15°, 

2P  from −15° to −90°, 3P  from +15° to +90°, and 4P  180° behind the vehicle. When the vehicle 
moves forward, if the obstacle is located in any area from 1P  to 3P , the navigation control will 
switch to wall-following control to allow the vehicle to bypass an obstacle. When the obstacle no 
longer falls within the detection area, navigation control switches to movement control toward 
the target.
	 Table 3 shows the experimental results of obstacle avoidance control using various 
algorithms. In this table, the movement time of the proposed IMSA is only 29.4 s, which is 
significantly better than those of the other methods.(21,23,26,30,31) Furthermore, the moving 
distance of the proposed IMSA is close to that of the GA method (23) and shorter than those of the 
other methods.(21,26,30,31)

	 UGV movement trajectories of navigation control using various methods are shown in Fig. 7. 
In the figure, the motion trajectory of the proposed IMSA algorithm is smoother and more stable 
than those of the other algorithms, especially when the UGV encounters a sharp turn. Compared 

Fig. 5.	 (Color online) UGV movement trajectories using T2FNC based on (a) ABC, (b) DE, (c) GA, (d) PSO, 
(e) MSA, and (f) IMSA in the testing environment.

(a) (b) (c)

(d) (e) (f)
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Fig. 6.	 (Color online) Four zones in the vehicle environment.

Table 3
Experimental results of obstacle avoidance control.

Method Evaluation
D (m) T (s)

GA(21) 128.3 33.5
PSO(23) 135.5 32.4
MSA(26) 134.3 30.9
ABC(30) 138.6 52.6
DE(31) 132.8 35.7
IMSA 129.4 29.4

Fig. 7.	 (Color online) UGV movement trajectories of navigation control using T2FNC based on (a) ABC, (b) DE, 
(c) GA, (d) PSO, (e) MSA, and (f) IMSA.

(a) (b) (c)

(d) (e) (f)
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with other algorithms, IMSA maintains vehicle stability more effectively and reduces the 
number of unnecessary deflections. In addition, IMSA successfully avoids endless loops during 
navigation.

4.	 Conclusions

	 In this study, a T2FNC based on the IMSA was proposed for navigation and obstacle 
avoidance applications of UGVs in unknown environments. A LiDAR sensor was used to 
capture distance information between UGVs and the surrounding environment. The IMSA 
learning algorithm was adopted to adjust the parameters in the T2FNC. In addition, the 
SARLSA was employed to avoid the traditional MSA from falling into the local optimal 
solution. In wall-following control, the fitness function, movement distance, and movement time 
of the proposed T2FNC with IMSA were 0.983452, 200 m, and 47.1 s, in the training environment 
and 0.979115, 222 m, and 53.1 s, in the test environment, respectively. In navigation control, the 
movement distance and movement time of the proposed T2FNC with IMSA were 129.4 m and 
29.4 s, respectively, which are better than those of the other methods. Compared with the 
traditional MSA algorithm, the movement distance and movement time of the proposed T2FNC 
with IMSA were reduced by 4.5% and 4.14%, respectively.
	 The current T2FNC control system uses one-dimensional LiDAR data as input to detect 
obstacles and navigate vehicles, and has also obtained good experimental results. However, in 
practical applications, we often face problems of high/low and thick/thin obstacles, which will 
affect the navigation stability of the system. To overcome this problem, we will use three-
dimensional LiDAR data in future research to further enhance the system’s sensing capabilities. 
This will provide the system with a more detailed interpretation of its surroundings, including 
the height and depth of obstacles. Moreover, in future research, we will also consider the energy 
efficiency of the proposed wall-following control system when evaluating its performance.
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