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	 In underwater acoustic sensor networks (UASNs), power allocation is a critical challenge 
owing to the need to balance energy efficiency and communication quality. To address this 
issue, we propose a distributed power control algorithm based on a Stackelberg game integrated 
with a pricing mechanism. The approach incorporates residual energy awareness at relay nodes 
and employs multivariate data analysis, including channel gain and transmission cost, to achieve 
an effective trade-off between energy efficiency and cooperative performance. The interaction 
between source and relay nodes is modeled as a hierarchical game in which the source node, 
acting as the leader, minimizes its transmission and relay payment costs, while the relay nodes, 
as followers, dynamically adjust their power pricing to maximize revenue and reduce energy 
consumption. Optimal response strategies are derived using Lagrangian multipliers, and the 
existence and uniqueness of the Nash equilibrium are established. To adapt to time-varying 
channel conditions, a distributed iterative algorithm that relies only on local information is 
developed, thereby reducing signaling overhead and overall system cost. Simulation results 
demonstrate that the proposed method significantly improves the network lifetime, enhances the 
average transmission rate, and increases the energy efficiency of the nodes.

1.	 Introduction

	 Underwater acoustic communication networks (UACNs), which transmit information 
through acoustic signals, are being widely used in a variety of fields such as ocean exploration, 
target tracking, and marine environment monitoring.(1,2) As a fundamental infrastructure for 
underwater sensing systems, UACNs support the acquisition and transmission of sensor data in 
highly dynamic and energy-constrained environments. In recent years, significant progress has 
been made in UACN technology. For example, Pelekanakis and Cazzanti successfully solved the 
challenge of high spectral efficiency under bit error rate (BER) and signal-to-noise ratio (SNR) 
constraints.(3) In addition, Li et al. introduced cooperative relay nodes to reduce end-to-end 
delay under bandwidth-limited conditions.(4)

	 However, as communication distances and transmission frequencies increase, acoustic signal 
attenuation becomes more severe, significantly limiting the effective communication range of 
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sensor nodes. In addition, multi-node contention for channel access often leads to instability in 
network performance.(5,6) While cooperative communication has been proposed to improve 
bandwidth utilization and mitigate multipath fading,(7) it introduces additional energy 
consumption, making power control a key issue. Several solutions have been proposed to 
optimize power allocation. Wang et al. designed a joint relay selection and power allocation 
method to reduce energy consumption,(8) and Wang et al. proposed a novel distributed 
coordination algorithm based on reinforcement learning to effectively solve the power control 
and interference problems in UACNs.(9)

	 Game theory, as an effective mathematical tool, has been widely used in the field of resource 
allocation.(10–12) For example, Li et al. proposed a joint power and frequency allocation scheme 
based on game theory to derive the power and frequency allocation relationship among nodes, 
which significantly improves the SNR.(11) Rasti et al. introduced a power control mechanism 
based on the Stackelberg game and proposed a power augmentation control algorithm that 
reduces the system interference.(12) However, most existing works either neglect the energy 
balance among nodes or fail to incorporate energy awareness into their pricing strategies. This 
imbalance may shorten network lifetime and reduce sensing reliability. Some studies have 
explored the use of pricing models to incorporate interference as a resource,(13,14) but energy-
aware pricing in a Stackelberg game framework remains underexplored.
	 To address these limitations, in this paper, we propose an energy-aware Stackelberg game-
based power control algorithm tailored for UACNs. The model defines the source node as a 
leader and relay nodes as followers within a pricing-based interaction framework. Importantly, 
the utility function incorporates each node’s residual energy, allowing for the dynamic 
adjustment of power and pricing strategies while maintaining network cooperation. This design 
improves both energy efficiency and network lifetime, which are essential for the sustainable 
operation of underwater sensing networks.
	 To demonstrate the practical effectiveness of the proposed model under realistic network 
conditions, we introduce two comparative energy management schemes for validation: the 
energy retention coefficient method (ERCM) and the energy uncorrelation coefficient method 
(EUCM). The ERCM integrates residual energy into the utility function, guiding relay nodes to 
dynamically adjust their transmission behavior based on energy status. The method of designing 
the utility function with the power cost coefficient as a constant (i.e., EUCM) is described in 
detail in Refs. 15–17. These two schemes are compared through simulations to evaluate the 
impact of energy-aware design on system performance, including network lifetime, transmission 
rate, and energy efficiency. The novelty of this work lies in several key aspects:
	 A dynamic pricing mechanism based on a Stackelberg game is proposed, in which relay 
nodes adjust their power prices according to their residual energy levels, aiming to balance 
individual energy consumption and extend overall network lifetime.
	 Multiple decision-making parameters are integrated into the utility function using a 
multivariate modeling approach. These parameters include channel gain, SNR, energy level, and 
transmission cost. This integration enables more adaptive and energy-aware power control.
	 A distributed iterative algorithm is designed, allowing each node to make decisions based 
solely on local information, which reduces signaling overhead and enhances scalability.
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	 These innovations set our method apart from traditional game-theoretic schemes by 
addressing energy awareness and adaptability, making it more suitable for practical deployment 
in energy-limited underwater environments.

2.	 System Model and Problem Formulation

2.1	 Network and channel models

	 Figure 1 gives a collaborative UACN, which consists of N relay nodes, a source node S, a 
target node D, and a surface base station. The source node is responsible for collecting marine 
environment data, and the relay node forwards this information to the target node. The target 
node then transmits the information to the surface base station to realize the real-time monitoring 
and data transmission of the marine environment. It is assumed that each communication link is 
independent of each other and there exists a direct link from the source node to the target node 
with no interference between channels. In addition, the relay nodes work in amplify-and-forward 
(AF) mode, and the collaborative transmission of the system is divided into two-time intervals 
executed sequentially.
	 In the first time slot, the source node S broadcasts a message to the target node D and all the 
relay nodes, at which time the SNR at the target node D and the relay nodes are, respectively,
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Fig. 1.	 (color online) Network model.
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where Ps is the transmission power of the source node, and hs,d and hs,i denote the channel gains 
from the source node to node D and relay node i, respectively. N( f )Δf corresponds to the 
hydroacoustic channel noise at each node, and its calculation can be referred to in Ref. 18.
	 In the second time slot, the relay node amplifies and forwards the received signal to the target 
node D. The SNR at node D is then given by

	 ,
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where Pi is the transmission power of relay i and hi,d is the channel gain for the link from relay i 
to node D.
	 Finally, the target node D receives the information from the source and relay nodes using the 
maximum combined ratio (MRC) and finally obtains the end-to-end SNR, which can be 
expressed as(19)
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	 To simplify the calculation, assuming that each link noise is σ2, the SNR at the target node D 
can be expressed as
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where P = {Ps, P1, P2, ..., PN} is the power set of the source and relay nodes. Additionally, when 
the signal with the transmit frequency f is transmitted over a distance d, the channel gain h in 
Eq. (5) is expressed as(20)

	 1
0 ( ) ,k dh A d fα− − −= 	 (6)

where A0 denotes the normalization factor and k is the diffusion coefficient, with the usual value 
set to k = 1.5. In addition, the absorption coefficient α( f ) can be expressed as
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2.2	 Problem formulation

	 The Stackelberg game is a type of non-cooperative game with a two-layer structure, which 
can be used in this paper to jointly optimize the utility among nodes. The source node, as the 
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leader, acts first to determine the amount of relay power purchased; the relay node, as the 
follower, chooses the optimal power price strategy to maximize its utility gain according to the 
amount of power purchased by the source node.
	 Assuming γth is the SNR threshold, the service quality of the source node S is guaranteed 
when γ(P) ≥ γth at target node D. At this time, the optimization objective of the source node can 
be expressed as 

	 1
min
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where Us is the utility function of the source node, and vs and vi represent the unit power prices 
of the node S and the relay node, respectively.
	 The revenue of relay node i consists of the reward paid by node S for purchasing power and 
the transmission cost. Therefore, the optimization problem for relay node i can be expressed as
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where mi is the power cost price of relay node i, βi = Etotal − Et/Etotal represents the remaining 
energy percentage of the relay node i, and Etotal and Et denote the total energy and the energy 
consumed at a given moment, respectively.
	 The proposed model leverages multivariate data analysis by integrating several parameters 
into the power control decision process. The utility functions are formulated as functions of 
channel gain, SNR, transmission cost, energy consumption, residual energy level, and dynamic 
power pricing. These variables interact within the Stackelberg game framework, allowing nodes 
to make energy-aware decisions under varying environmental and network conditions. Such a 
multivariate design enhances the responsiveness and robustness of the power allocation 
mechanism.

3.	 Stackelberg Game Solution and Equilibrium Analysis

3.1	 Sub-game for the leader

	 To solve the optimal set of transmit power P*, we first fix the source node power Ps. We 
employ the Karush–Kuhn–Tucker (KKT) conditions, which are a set of first-order necessary 
conditions for optimality in nonlinear programming with inequality and equality constraints. 
These conditions extend the method of Lagrange multipliers by incorporating both the primal 
and dual variables. Thus, considering the Lagrange multipliers λ, the Lagrange function can be 
expressed as
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	 The optimization problem (8) under KKT conditions can be expressed as
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	 The optimal power allocation strategy for the relay i node, derived from the first term of 
Eq. (11), can be expressed as
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	 Under the exact fulfillment of the minimum SNR threshold, the relationship is given by
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	 According to Eqs. (12) and (13), we obtain
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	 From Eqs. (12) and (14), the optimal transmit power of relay i can be obtained and expressed 
as
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	 Bringing Eq. (15) into Eq. (8) can re-express the optimization problem as
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for the function f(x) = ax + b/x + c, x > 0, has a unique minimum point, which is the global 
minimum. Thus, Eq. (16) has a globally unique minimum at Ps > 0. Taking the derivative with 
respect to Ps for Eq. (16) and making it zero, the optimal transmit power at the node S can be 
obtained after solving the equation as
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	 Finally, the optimal transmit power of the relay node can be obtained by bringing Eq. (17) 
into Eq. (15) as
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3.2	 Sub-game for the follower

	 The optimal transmit power of the source and relay nodes has been solved in the previous 
section; therefore, Eq. (18) can be brought into Eq. (9) to re-obtain the optimization problem 
representation as
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	 When the transmit power of the source node and the amount of power purchased are certain, 
by taking the derivative of Ui with respect to vi and making it zero, the optimal power price of 
the relay node is expressed as
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3.3	 Game equilibrium analysis
	
	 In this subsection, we will analyze and prove that the set of optimal solutions 

* * * * *
1 2{ , , , , }s NP P P P P=   and the optimal power price *

iv  are the Nash equilibrium (NE) points of 
the game.
	 Theorem 1: The transmission power of the source node and the relay node power set

* * * * *
1 2{ , , , , }s NP P P P P=  , along with the relay node power price *( 1,2, , )iv i N∈  , form the NE 

point of the Stackelberg game.
	 Property 1: When the relay node power price is fixed, there exists a unique optimal power 
set P* that satisfies the following equation for the optimization problem (8):

	
*
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	 Proof: Since the objective function in Eq. (8) is a linear combination of Ps, Pi, it is a convex 
function. For the concavity verification of the constraints, we define the auxiliary functions 
y1(Ps) = 1/Ps and y2(Pi) = 1/Pi, both of which are convex (with non-negative second-order 
derivatives). The composite function y3(Ps, Pi) = hi,dy1(Ps) + hs,iy2(Pi) + 2y1(Ps)y2(Pi) is 
constructed, and since the two auxiliary functions are convex and the composite function is a 
linear combination of convex functions, y3(Ps, Pi) is also convex. In addition, the SNR function 
γ(P) is expressed as
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	 Since 1/y3(Ps, Pi) is the inverse of a convex function, it is a concave function, and hence, its 
linear combination γ(P) remains concave. Since the constraint term γ(P) ≥ γth is the lower-level 
set of the concave function, it constitutes a convex set. The minimum value of the convex 
objective function on the convex constraint set exists and is unique, so there is a unique global 
optimal solution. Thus, for all feasible power sets P, the unique optimal power set P* satisfies 
Us(P*) ≤ Us(P) and Property 1 holds.
	 Property 2: When the power prices of other relay nodes are fixed, the optimal transmission 
power *

iP  of the relay decreases as the unit power price *
iv  increases.

	 Proof: By taking the partial derivatives of *
iP  and *

sP  with respect to vi, we can derive the 
following expression:
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	 From Eq. (23), we know that * / 0i iP v∂ ∂ < . Therefore, the optimal transmission power *
iP  of 

the relay decreases as the unit power price vi increases, thus proving Property 2.
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	 Property 3: The utility function Ui is concave with respect to the power price vi. The node 
power price represents the weight of the resource cost required by the relay node to forward the 
data in the game model, and its value is dynamically adjusted by the amount of power sold and 
energy reserve. When other relay nodes’ prices are fixed, its transmission power can be derived 
from Eq. (18).
	 Proof: Since *

iP  and the utility function Ui are continuous functions of vi, the second-order 
partial derivative of Ui with respect to vi can be expressed by Eq. (24). Therefore, Ui is a concave 
function with respect to the power price vi. Furthermore, for the relay node, there exists an 
optimal power price * 0iv >  that satisfies * *( ) ( )i i i iU v U v> .
	 By Property 1 and Property 3, it can be concluded that Theorem 1 holds.

	

( )

2
2

2 2 5/2
1,

3
4 4

0.

i i
i s N

ii
j i

j j ii s th i

v mA P
U A v
v DP v

β

σ γ = ≠

 
+ 

∂  = − <
∂ −

∑ 	 (24)

3.4	 Stackelberg game iterative algorithm

	 In the iterative process of the algorithm, the source node first determines the amount of 
power to be purchased from the relay node. The relay node updates the power price on the basis 
of the quantity of power purchased and feeds the updated power price back to the source node, 
which adjusts its power purchase strategy based on the power price. After collaborative 
communication is completed, the relay node gains revenue by selling power, while the source 
node pays the cost required to realize collaborative communication. On the basis of the above 
description, we summarize the specific implementation process of the proposed algorithm as 
Algorithm 1.

Algorithm 1
Distributed Stackelberg Game-based Power Control Algorithm with Price Mechanism.
1:	 Initialize relay node energy Etotal and transmitting node power Ps(0);
2:	 Initialize relay node power price information vi(0), power Pi(0), and remaining energy percentage βi(0);
3:	 Set t = 0, the maximum number of iterations is tmax = 25 ;
4:	 For t = 1:tmax
5:		  For t = 1:N
6:			   Receive the transmission power Ps and the purchased power quantity Pi;
7:			   Calculate the remaining energy percentage βi;
8			   if βi ≥ 0.1:
9:				    The relay node assists in communication by calculating the relay power Pi and the power price vi 

using Eqs. (18) and (20);
10:			   else:
11:				    set Pi = 0, the remaining energy of the relay is insufficient;
12:			   The transmitter node receives the power price feedback from the relay and calculates the power Ps using 

Eq. (17);
13:			   Calculate the energy consumption Et of the node;
14:		  End For
15:	 End For
16:	 return { } { }( ) ( ), ( ) , 1, ( ) ,...,max s max i max i max NP t P t P t v t i∗ ∗ ∗ ∗= ∈ ;
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4.	 Simulation Results and Analysis

	 In this section, we evaluate the performance of the proposed distributed Stackelberg game 
power control algorithm based on the price mechanism through numerical simulations. The 
experiments are conducted in a 3 km target underwater region distributed with a source node, 
multiple collaborative relay nodes, and a target node. In the operation of the communication 
network, considering the random nonstationarity of underwater signals, we introduce a variable 
φ to reflect the impact of underwater uncertainty on the channel. Specifically, φ = hϑ, where ϑ 
follows a Rayleigh distribution with a mean of 0.1. Thus, in the numerical simulations, the gain 
of the underwater acoustic channel is modeled as h + φ. Additionally, the duration of each data 
slot is set to 0.2 s. Throughout the collaborative communication process, it is assumed that when 
the remaining energy of a relay node falls below 10% of its initial energy, the relay will exit the 
collaboration. Other system parameters are listed in Table 1.
	 In the underwater multisensor node distributed algorithm application scenario, whether the 
NE solution can be obtained quickly is the key to evaluating the convergence of the algorithm. 
Figure 2 shows the convergences of the node power set with power price in the case of five relay 
nodes simultaneously. 

Table 1
Simulation parameters.
Parameter Symbol Value
System bandwidth W 1 MHz
Propagation coefficient k 1.5
Carrier frequency f 20 kHz
SNR threshold γth 0.1
Background noise σ2 1.5 × 10−7 W
Initial energy Etotal 50 J
Relay cost mi 10

(a) (b)

Fig. 2.	 (color online) Convergences of (a) power and (b) power price.
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	 Figure 2(a) illustrates the convergence process of the node power set, where at the initial 
moment, there is a difference in the amount of power purchased by the source node from each 
relay due to the different channel conditions in which the relay nodes are located. In addition, the 
transmission power of all nodes converges rapidly in a short period of time, which indicates that 
the nodes reach an equilibrium state after fewer information interactions. Figure 2(b) shows that 
the power price of relay nodes can converge rapidly; for the relay with a higher power price, the 
source node buys less power quantity, which verifies the game relationship between nodes and 
the effectiveness of the algorithm.
	 To further validate the dynamic adaptation under the consideration of node energy 
constraints, we analyze the correlation between the transmission power, survival time, and 
residual energy of the relay nodes. Figure 3(a) illustrates that the relay node’s transmit power 
gradually decreases as the number of collaborative transmissions increases. This trend results 
from declining residual energy due to accumulated transmission tasks. As energy depletes, the 
cost of forwarding increases, prompting relay nodes to raise power prices and reduce the amount 
of power sold to balance overall energy consumption.
	 Figure 3(b) shows the variation of the survival time of each relay node under the ERCM and 
EUCM methods, and Table 2 shows the survival times of specific nodes. Under ERCM, the 
survival curves flatten gradually, indicating more balanced energy consumption and avoiding 

(a) (b)

Fig. 3.	 (color online) (a) Power and (b) survival time.

Table 2
Node survival times for ERCM and EUCM.

Relay node Survival time (s)
ERCM EUCM

1 196.3 174.5
2 176.8 156.9
3 161.5 136
4 158 116.7
5 163.6 111
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the premature failure of nodes. As a result, the network lifetime is extended. Specifically, the 
first node failure occurs at 161.5 s under ERCM, compared with 111 s under EUCM, representing 
a 45.45% improvement in network lifetime.
	 We analyze the effect of relay node quantity on transmission rate and node energy efficiency. 
The average network transmission rate is 2 , ,1log (1 ) /N

s i diR NTγ
=

= +∑ , where N represents the 
number of relays and T denotes the transmission duration. The energy efficiency of a node is 
given by ηi = sum(Ri)/0.9Etotal, where sum(Ri) represents the total data transmission of the relay 
node throughout its life cycle.
	 Figure 4(a) presents the impact of relay node count on the network’s average transmission 
rate. As the number of relay nodes increases, all methods experience performance degradation 
owing to the rising power acquisition cost for the source node. Notably, the ERCM method 
consistently maintains a higher performance than both EUCM and the stochastic strategy. At 
five relay nodes, ERCM achieves an average transmission rate of 1.61 b/s/Hz, which is 28.49% 
higher than that of EUCM and 100.77% higher than that of the stochastic method. Over the full 
range of relay nodes from 2 to 10, ERCM shows a decrease of 84.67%, whereas EUCM and the 
stochastic method exhibit more severe drops of 90.64 and 90.74%, respectively. These results 
demonstrate ERCM’s effectiveness in preserving transmission performance under network 
scaling by dynamically adjusting power strategies based on residual energy.
	 Figure 4(b) further confirms the advantage of the ERCM method in terms of node energy 
efficiency (in B/J). At five relay nodes, ERCM achieves 1.553 B/J, representing improvements of 
30.83 and 126.91% over EUCM and the stochastic method, respectively. When the number of 
relays increases from 2 to 10, ERCM’s energy efficiency drops by 80%, from 4.851 to 0.972 B/J. 
In comparison, EUCM and the stochastic method decrease by 87.7 and 87.1%, respectively. 
Although all methods show declining trends with increasing relay count, ERCM exhibits a 
significantly lower rate of degradation. This can be attributed to its dynamic energy-aware 
power control strategy, which adjusts each node’s transmission power based on its residual 
energy, thereby optimizing the energy distribution throughout the network’s life cycle.

(a) (b)

Fig. 4.	 (color online) (a) Average transmission rate and (b) node energy efficiency.
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5.	 Conclusions

	 In this paper, we proposed a distributed power control algorithm based on the Stackelberg 
game to address optimal power allocation in UACNs with energy-constrained nodes. By 
modeling the interaction between source and relay nodes within a hierarchical game and 
introducing residual energy awareness, the proposed method achieves balanced energy 
consumption and enhanced cooperative performance. Simulation results demonstrated that, 
compared with the conventional EUCM method, the proposed ERCM improves network lifetime 
by 45.45%, average transmission rate by 28.49%, and energy efficiency by 30.83%. The 
proposed approach successfully integrates multivariate decision factors into the game-theoretic 
power control framework, enhancing adaptability to dynamic underwater environments. In 
addition, the algorithm requires only local information and operates without centralized control, 
making it suitable for practical deployment in underwater sensor networks.
	 Nevertheless, the current evaluation is limited to static network topologies and ideal channel 
conditions. Future work will focus on extending the algorithm to dynamic underwater 
environments with node mobility and incorporating machine learning techniques for relay 
selection and power optimization under uncertain channel states, further enhancing adaptability 
and intelligence.
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