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	 Aircraft represent one of the most significant technological advancements in human history. 
Aircraft not only provide convenient and rapid transportation, but also serve as critical tools for 
exploring the natural world. During the early stages of aircraft design, aerodynamic coefficients 
must undergo meticulous calculations and analysis to ensure the development of safe, reliable, 
and efficient aircraft. Generally, aerodynamic coefficients are obtained through numerical 
simulations using computational fluid dynamics and wind tunnel testing. These methods are 
effective and accurate; however, they often consume significant amounts of time and resources. 
With advancements in AI, deep learning techniques have been increasingly applied in 
aerodynamics research. To reduce the time and cost spent on wind tunnel testing during the 
aircraft design phase, we apply deep learning techniques to high-performance numerical wind 
tunnels to analyze aerodynamics in the aviation field. A backpropagation neural network model 
with an error compensation mechanism is created to enhance the efficiency of analyzing and 
validating aerodynamic coefficients. This approach minimizes the reliance on physical wind 
tunnel testing, thereby reducing overall development costs.

1.	 Introduction

	 In recent years, with the rapid development of modern information technology, the 
development of AI has become one of the most revolutionary technologies, with its applications 
expanding across numerous fields, including smart home appliances(1,2) and autonomous vehicle 
systems.(3,4) The extensive applications of AI have not only changed people’s lifestyles but also 
enhanced convenience, driving innovation and breakthroughs across various areas.
	 Among these applications, the integration of AI with aerodynamics in the aviation field has 
been increasingly utilized by experts and scholars for the design, analysis, and validation of 
aircraft configurations.(5,6) Aerodynamics, which is the study of the behavior and interaction of 
airflow, plays a critical role in influencing aircraft performance and design. By merging 
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advancements in AI with aerodynamic research, it is possible to optimize and accelerate the 
prediction of aircraft designs and performance, further advancing the development of aviation 
technologies.
	 Generally, during the preliminary design stage of aircraft, aerodynamic coefficients are 
primarily obtained through computational fluid dynamics (CFD) by numerical simulations and 
wind tunnel tests.(7,8) Although these methods are both effective and accurate, they often 
consume a lot of time and resources. CFD software requires a large number of computational 
resources and takes a long time to run. Completing a numerical simulation for an aircraft design 
involves analyzing multiple shape iterations across different stages, which can take weeks to 
months, depending on the complexity of the design requirements and the computational capacity 
available. Wind tunnel tests provide high-precision data; however, the process is constrained by 
the need to first fabricate a physical model for each specific configuration. The hardware of 
wind tunnels is expensive; moreover, the experiments are also costly and time-consuming. As a 
result, wind tunnel testing is primarily intended for final design validation rather than for use 
during early-stage iterative design processes.(9)

	 Although the Stanford University unstructured (SU2) open-source software provides a new 
analysis tool for aerodynamics,(10) its interface is not intuitive, and its complex flow field setup 
increases time costs. To address these challenges, reduce costs, improve efficiency, and maintain 
high accuracy, in this study, we employed deep learning algorithms to train neural network 
models. These models leverage the interpretability and real-time prediction capabilities of AI to 
rapidly learn and estimate aerodynamic coefficients, thereby establishing a valuable numerical 
wind tunnel. The numerical wind tunnel developed in this study, powered by AI and deep 
learning, significantly streamlines the aircraft design cycle by reducing reliance on extensive 
physical testing, improving overall efficiency, and minimizing both labor and cost. Furthermore, 
applying AI technology to aircraft shape analysis and validation represents a promising 
interdisciplinary advancement.

2.	 Related Literature

2.1	 Numerical wind tunnel development

	 The numerical wind tunnel is a wind tunnel testing method developed and studied using AI 
techniques.(11) It is generally considered superior to CFD technology and SU2 software analysis. 
The numerical wind tunnel can be used to evaluate and analyze the aerodynamic performance of 
aircraft under various flight conditions. Compared with traditional wind tunnel testing, the 
numerical wind tunnel offers detailed data and analysis results with significantly lower cost and 
time investment. It has gradually become a critical technology in modern aircraft design.
	 The preliminary design of an aircraft primarily determines its basic configuration based on 
performance requirements and mission specifications. Figure 1 shows the aircraft shape design 
process. The dimensions of the aircraft are calculated on the basis of wing area and aerodynamic 
coefficients, and the obtained results can generate the external mold lines. After obtaining the 
complete aerodynamic data set (ADS), it will be verified whether the previously established 
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performance requirements and mission specifications are met. If satisfied, the preliminary 
aircraft design is considered complete, and the next step of developing and validating the flight 
control laws can proceed. However, aircraft designs typically do not meet all the requirements 
on the first attempt. If the requirements are not met, adjustments to the aircraft shape will be 
made, and the design process will continue iteratively until the performance requirements and 
mission specifications are fully satisfied.
	 Before developing a numerical wind tunnel, it is essential to understand the definitions of 
aerodynamic forces and moments acting on the test model. Figure 2 shows an aircraft tested 
under relative wind conditions. The lines represent the body axes and the stability axes in three-
dimensional space (X, Y, Z axes), following the conventional right-hand body coordinate 
system.(12)

	 In this system, X represents the horizontal axis, Y represents the axis perpendicular to X, and 
Z represents the axis perpendicular to both X and Y, whereas V represents the direction of the 
relative wind. The angle α refers to the angle of attack, defined as the angle between the X body-
axis and the X stability-axis. The angle β, known as the sideslip angle, is defined as the angle 
between the X-axis of the direction of the relative wind and the X stability-axis in the wind 
tunnel. The transformation equations from body axes to stability axes are shown in Eq. (1).
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Fig. 1.	 Flowchart of aircraft shape design used for aerodynamic data analysis with neural network model.
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The transformation equations from stability axes to wind axes are shown in Eq. (2).
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	 Thus, the general transformation of any vector between the body and wind axes is shown in 
Eq. (3).
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	 Equations (1) to (3) are appropriately transformed into the corresponding coordinate systems 
and applied to the numerical wind tunnel. By integrating AI techniques and utilizing machine 
learning and deep learning methods, the efficiency and accuracy of simulations can be 
significantly enhanced. The development process of the numerical wind tunnel typically 
includes the following steps: data collection, model training, model validation and optimization, 
as well as simulation and analysis. These steps will be discussed in detail in the subsequent 
sections.
	 In aircraft design, the numerical wind tunnel can be utilized to enhance aerodynamic shape 
optimization, reduce design iteration time, and evaluate whether the aerodynamic coefficients 
meet performance and mission requirements. This approach improves design efficiency and 
minimizes the costs associated with physical wind tunnel testing. As a highly effective tool for 
aerodynamic analysis, the numerical wind tunnel accelerates the development of modern aircraft 
designs. It enables the rapid and precise evaluation and optimization of aircraft shapes, 
significantly improving overall efficiency. The flowchart of aircraft shape design used for 
aerodynamic data analysis with a neural network model is shown in Fig. 1.

Fig. 2.	 (Color online) Definitions of aerodynamic coefficients and coordinate system.
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2.2	 AI 

	 AI primarily aims to enable machines to mimic human cognitive processes, such as thinking, 
learning, reasoning, decision-making, and planning, allowing them to autonomously solve 
problems and make decisions across various tasks.(13) The core concept of AI is to empower 
computer systems to learn from experience, adapt to new data, and manage complex tasks.
	 The development of AI can be traced back to the 1950s when computers began to gain 
popularity in society. During that time, people became passionate about training computers in 
various computational methods, aspiring to create AI. Over the following decades, AI 
experienced several periods of stagnation and resurgence. Early AI was largely based on rules 
and symbolic logic, such as expert systems. Around the 2000s, with the rise of machine learning 
and statistical methods, AI technology began to advance.
	 However, the most significant breakthroughs occurred in the 21st century, driven by 
advancements in computational power, the emergence of graphics processing units (GPUs), the 
integration of software and hardware technologies, the advent of big data, and the maturity of 
deep learning techniques. These factors enabled AI to evolve rapidly. By late 2022, OpenAI 
launched ChatGPT, a conversational AI model, reigniting interest in AI and drawing widespread 
attention to the field. ChatGPT itself is a product of large-scale natural language processing 
models within the domain of AI.
	 The rapid development of modern AI is primarily driven by three indispensable elements: 
large-scale databases, advanced algorithms, and high-speed computational capabilities. 
Together, these factors enable AI to achieve widespread applications across various fields, 
including speech recognition, image processing, machine translation, autonomous driving, and 
medical diagnosis. AI has already become one of the most influential and promising technologies 
in the world today, significantly impacting the development of society and the global economy.
	 Machine learning(14) is a subfield of AI that focuses on enabling computers to learn and 
analyze data details autonomously through statistical methods. This technology identifies 
patterns and rules from data and continuously improves performance as experience grows, 
thereby accomplishing various tasks and objectives. In machine learning, model training 
involves providing data and labels, allowing the model to learn how to make accurate predictions 
or classifications.
	 Deep learning(15,16) is a subfield of machine learning that mimics the structure and 
functioning of the human brain’s neural networks to accomplish highly complex data processing 
tasks. The defining characteristic of deep learning lies in its multilayered neural network 
architecture, which can automatically extract features and make decisions, deriving higher-level 
insights from input data.
	 Artificial neural networks in deep learning can be trained using numerical simulation data 
from CFD and wind tunnel tests as inputs. This enables the development of rapid and accurate 
models that can optimize efficient aerodynamic shape designs and identify optimal 
configurations.(17)

	 Deep learning has been widely used in numerous fields. Common deep learning models 
include convolutional neural networks (CNNs), recurrent neural networks (RNNs), and 
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backpropagation neural networks (BPNNs), all of which have become core technologies in many 
applications.
	 For instance, CNN and other deep learning architectures can be trained to predict complex 
flow fields around aircraft shapes by learning underlying physical knowledge from simulation or 
experimental data.(17,18) This approach provides valuable insights into flow patterns, separation, 
and other aerodynamic phenomena, which can help design analysis and optimization. Through 
the technology and advantages of AI deep learning, the accuracy of aerodynamic analysis can be 
improved to effectively reduce the development time of aircraft shape design.

2.3	 BPNNs

	 Backpropagation is a core technique in artificial neural networks, first introduced in the 1986 
paper “learning representations by back-propagating errors” by Rumelhart et al.(19) This 
technique effectively addresses a significant challenge in training multilayer neural networks—
how to efficiently update network weights to enhance prediction accuracy. By utilizing 
backpropagation, deep learning neural networks can self-learn from training data and adjust 
weights on the basis of the error between actual and expected outputs, minimizing errors. This 
process is the key to the development of modern deep learning in aerodynamic parameter 
systems.
	 The backpropagation architecture involves two main stages: forward propagation and 
backward propagation. The key focus in backward propagation is adjusting weights based on 
predicted outputs to improve prediction accuracy. The primary goal of backpropagation is to 
adjust network weights by minimizing the loss function, which evaluates the difference between 
the prediction results of this neural network model and the actual results. Common loss functions 
include the mean squared error (MSE) and the mean absolute error (MAE1).
	 MSE: The calculation involves subtracting the predicted output value of the model from the 
actual target value, squaring the difference, summing up the squared differences, and then 
averaging the total. The formula is shown in Eq. (4) below.

	 ( )2
1

1 n

i i
i

MSE Y Y
n =

− ′∑＝ 	 (4)

	 The concept of this formula is that for each input data, the error between the actual target 
value Yi and the predicted output value of the model Yi' (i.e., Yi − Yi') is computed. This error is 
then squared, and the squared errors for all data are summed up and divided by the total number 
of input data (n), yielding the average error.
	 The reason for squaring the error is to prevent the positive and negative errors from canceling 
each other out. However, owing to the squaring characteristic, MSE is also particularly sensitive 
to extreme values. A small MSE indicates that the prediction results are close to the actual 
values, implying high model accuracy. In contrast, a large MSE suggests considerable errors 
between the predictions and the actual values, reflecting poorer model performance.
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	 MAE1: The calculation involves taking the error between the actual target and predicted 
output values of the model, computing the absolute value of this error, and then averaging it. The 
formula is shown in Eq. (5) below.

	 1
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MAE Y Y
n =

− ′∑＝ 	 (5)

	 The concept of the formula is similar to that of MSE, with the key difference being that while 
MSE squares the errors, MAE1 takes the absolute values of the errors. This approach provides a 
more direct reflection of the actual situation of the errors. Moreover, since MAE1 involves the 
absolute value of the errors, it avoids the issue of error magnification caused by squaring, which 
occurs in MSE, making MAE1 less sensitive to extreme values. Conversely, a large MAE1 
suggests considerable errors between predictions and actual values, implying poor model 
performance.
	 Backpropagation relies on the gradient descent method, which iteratively adjusts weight 
parameters to minimize prediction errors and loss values. The learning rate determines the step 
size for updating weights. If the learning rate is very high, the model may fail to converge or skip 
the global minimum. Otherwise, a learning rate that is very low may result in slow convergence 
or getting trapped in local minimum. Thus, selecting an appropriate learning rate is important 
for a successful gradient descent method. 
	 BPNNs are one of the indispensable technologies in deep learning. By updating weights layer 
by layer, they transform complex input data into precise output results. This capability allows for 
learning aerodynamic characteristics from input aircraft shape parameters and aerodynamic 
conditions. The method has been extensively studied and developed in the integration of AI with 
aerodynamics, demonstrating significant potential for advancing research in this field.
	 Several studies have demonstrated the application of BPNN in numerical wind tunnels.(20–22) 
For example, Balla et al.(23) proposed a BPNN-based method to predict aerodynamic 
characteristics under various flight conditions. Their research showed that BPNN-based 
predictions not only reduced computation time but also adapted to different aerodynamic 
conditions, providing accurate results.
	 In 2020, Huang et al.(9) investigated the effects of additional aircraft shape parameters on 
aerodynamic coefficients. They used parameters such as aspect ratio, angle of attack, Mach 
number, sideslip angle, Reynolds number, tank size, taper ratio, and sweep angle as input 
features for BPNN. The target outputs were lift and drag coefficients. However, they did not 
account for varying aerodynamic phenomena under different Mach numbers. Therefore, in this 
research, we incorporated Mach number as a critical feature in the experimental stage of the AI 
deep learning model, conducting segmented testing based on aerodynamic theory to enhance 
prediction accuracy.
	 With advancements in deep learning, BPNN exhibits significant potential in numerical wind 
tunnel applications. This method enables neural networks to effectively learn and predict 
aerodynamic characteristics in aircraft shape design, simultaneously improving computational 
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efficiency and reducing the costs of wind tunnel testing. In contrast to a previous study,(9) the 
present deep learning research incorporates the parameters within the ADS framework.

3.	 Deep Learning BPNN Method

	 We utilized aerodynamic data to construct a neural network model for deep learning, 
employing BPNN to establish an error compensation model for improving prediction accuracy. 
By this method, reliable aerodynamic data can be learned and predicted from historical wind 
tunnel tests. The expected outcome is to reduce the number of wind tunnel tests required while 
providing more accurate and reliable aerodynamic data, which can serve as a tool for AI-based 
aerodynamic analysis and significantly shorten the iterative design cycle.
	 The comprehensive table of aerodynamic coefficients for flight control laws, known as ADS, 
is analyzed and evaluated on the basis of validated aerodynamic data corresponding to various 
flight attitudes. The numerical wind tunnel system incorporates ADS parameters, which define 
key aerodynamic features. These coefficients are processed using neural network and deep 
learning techniques for shape prediction and analysis. These attitudes and analysis parameters 
involving these reliable data are shown in Table 1. The parameters include 10 feature values, 
namely, Mach number (Mach), angle of attack (AoA, α), angle of sideslip (AoS, β), leading edge 
flap (LEF), trailing edge flap (TEF), aileron asymmetry (dA), horizontal tail symmetry (dHS), 
horizontal tail asymmetry (dHA), rudder symmetry (dRS), and rudder asymmetry (dRA). The 
target outputs are the lift coefficient (CL) and drag coefficient (CD). 
	 The architecture of BPNN is shown in Fig. 3. This method constructs an error compensation 
model comprising three layers: input, hidden, and output layers. The input layer contains a total 
of 10 features, selected on the basis of the parameters adjusted during wind tunnel tests for 
different aircraft configurations. Therefore, these 10 fundamental test parameters were included 
as features in the model. 
	 A particular parameter among them is the Mach number. The other nine features represent 
variations in the attitude angles of aircraft, whereas the Mach number plays a crucial role in both 
aerodynamics and aircraft design. It directly reflects the relationship between the flight speed 
and the speed of sound, and aerodynamic phenomena behave differently under different Mach 
numbers. We ultimately adopted a segmented training approach based on Mach number to better 
capture variations in lift and drag coefficients, thereby reducing prediction errors, improving 
accuracy, and providing more reliable data.

Table 1
Summary of ADS parameters used in the numerical wind tunnel system.
Abbreviation ADS parameter Abbreviation ADS parameter
Mach Mach number dHS Horizontal tail symmetry
AoA (α) Angle of attack dHA Horizontal tail asymmetry
AoS (β) Angle of sideslip dRS Rudder symmetry
LEF Leading edge flap dRA Rudder asymmetry
TEF Trailing edge flap CL Lift coefficient
dA Aileron asymmetry CD Drag coefficient
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	 The optimal numbers of hidden layers and neurons will be determined on the basis of 
experimental results in the next section. The output layer generates two parameters, the lift 
coefficient and the drag coefficient. The lift coefficient affects flight stability, directly affecting 
whether the aircraft can maintain stable flight. The drag coefficient, on the other hand, impacts 
flight efficiency and fuel consumption, making it a critical indicator for minimizing energy 
losses in aircraft design. The balance between the lift and drag coefficients determines overall 
aircraft performance, including endurance, fuel efficiency, and stability. These coefficients 
serve as essential design references to meet flight requirements effectively.
	 The model’s fundamental setup includes a maximum training iteration of 30000, representing 
the upper limit of training cycles. Once this iteration count is reached, training stops. The 
learning rate is set to 0.01, which controls the step size for weight updates. Ultimately, the model 
aims for a target training error of near zero, which means that during the training process, if the 
error value is reached, the training will stop. However, this goal is idealistic, as it is nearly 
impossible to achieve a completely error-free state in practice.
	 The model aims to enhance the accuracy of aerodynamic parameter predictions by 
minimizing errors during the prediction process. It achieves this by iteratively updating weights 
through the backpropagation framework. Through iterative training, the neural network learns 
and predicts reliable aerodynamic parameters, providing a credible source of aerodynamic 

Fig. 3.	 (Color online) Architecture of ADS applied to BPNNs.
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coefficients for flight vehicle control laws. This approach significantly reduces reliance on wind 
tunnel tests, which are resource-intensive and time-consuming.
	 For example, during testing, time and manpower are required to calibrate the balance 
accuracy to ensure that the measured aerodynamic data fall within the acceptable error range. 
The obtained data must also undergo data processing procedures before being used for further 
analysis. Additionally, prior to testing, the model manufacturing for different aircraft 
configurations must be completed, which typically takes no less than six months. Therefore, the 
results of this study can save costs and time during the aerodynamic shape design and 
development process.
	 The deep learning method helps to obtain the comprehensive aerodynamic database for 
subsequent flight control law development and validation. These aerodynamic parameters can 
be evaluated for future flight conditions. By incorporating the actual aerodynamic parameters 
from flight control into a neural network architecture comprising input, hidden, and output 
layers, each layer is interconnected with subsequent layers through weighted connections. 
During the training process, the varied weight distributions between layers enable the model to 
learn complex, nonlinear relationships among aerodynamic parameters. This approach achieves 
data modeling and predictive capabilities, ultimately aiming to construct a complete ADS. 

4.	 Experimental Results

4.1	 Experimental environment

	 In these experiments, a computer with 64 GB of memory was employed to handle the 
primary computational tasks. This memory capacity is sufficient to meet the data processing 
requirements of most academic studies, particularly those involving complex numerical 
simulations and deep learning model training. Although this hardware configuration meets the 
demands of our research, ensuring system stability and efficiency becomes crucial when dealing 
with large-scale datasets or concurrent multi-experiment operations. The specific hardware 
specifications used in this study are detailed in Table 2.
	 The MATLAB toolbox is used to construct and train neural network models, and its powerful 
matrix computation capabilities are employed for large-scale data processing and analysis. 
During the experiments, the parallel computing function of MATLAB effectively took the 
advantages of multicore processors, accelerating the training process and producing results 
within a reasonable time. The choice of software and hardware environments in this study 
ensures the feasibility of the experiments and the reliability of the results.

Table 2
Computer hardware specifications.
Item Specification
Operating system Windows 10
CPU Intel i9-14900KF
GPU RTX-4070TI-O12G
RAM DDR4 64 GB
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4.2	 Effect of different activation functions on prediction accuracy 

	 In the first experiment, the prediction accuracies of lift coefficients using different activation 
functions were compared, including linear functions, sigmoid functions, and hyperbolic tangent 
(tanh) functions. Their respective equations are shown in Eqs. (6) to (8).
	
	 ( )f x x= 	 (6)

	 ( ) 1 
1 xx

e
σ −=

+
	 (7)

	 ( ) ( )2
2tanh  

1 1x
x

e−
=

+ −
	 (8)

	 The number of hidden layers was fixed at four, the number of neurons was set to 30, and the 
learning rate was maintained at 0.01. Each activation function was applied individually to 
evaluate its impact on prediction accuracy. The red line represents the predicted values generated 
by the neural network model, whereas the blue line indicates the actual values measured in wind 
tunnel tests. The X-axis denotes the angle of attack, tested in the range from −8 to 18°, whereas 
the Y-axis represents the lift coefficient. The Mach numbers covered in the experiments span 
from subsonic to transonic to supersonic.
	 To evaluate the performance more effectively, we adopted MSE, MAE1, and maximum 
absolute error (MAE2) as evaluation criteria, with their equations provided in Eqs. (9) to (11). 

	 ( )2
1

,1 n

i i
i

MSE Y Y
n =

= − ′∑ 	 (9)

	 1
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1 ,
n

i i
i

MAE Y Y
n =
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	 ( )2 max .i iMAE Y Y= − ′ 	 (11)

	 For error analysis, 100 data points were extracted for comparison between the trained model 
and the actual results. In Fig. 4, the green dots indicate the angle of attack corresponding to the 
largest error between the predicted and actual values, connected by a black line for clarity. For 
instance, in Fig. 4(a), using the linear function, the largest error occurred at an angle of attack of 
approximately −7.0°, with a predicted value of 0.0795 and an actual value of 0.0127. 
	 In Fig. 4(b), using the sigmoid function, the largest error occurred at an angle of attack of 
approximately 16.8°, with a predicted value of 0.0091 and an actual value of 0.0118. In Fig. 4(c), 
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the largest error for the hyperbolic tangent (tanh) function occurred at an angle of attack of 
approximately −5.4°, with a predicted value of 0.0142 and an actual value of 0.0127.
	 Here, Yi represents the actual aerodynamic data from wind tunnel tests, whereas Yi

' represents 
the predicted output of the model. When Yi = Yi

', the model achieves perfect prediction accuracy. 
Small MSE and MAE1 values indicate high model accuracy. Additionally, MAE2 as an evaluation 
index for capturing special flow field characteristics was used in this study. The smaller the 
MAE2 value, the greater the capability to capture special flow field characteristics.
	 The results showed significant differences between the lift coefficient predictions of the 
linear function and the wind tunnel testing data. This is attributed to the inherently nonlinear 
characteristic of lift coefficient prediction, making the linear activation function unsuitable for 
aerodynamic coefficient predictions. The MSE for the linear function reached approximately 
1.90 × 10−3, MAE1 was about 4.21 × 10−2, and MAE2 was about 6.68 × 10−2. 
	 It was also observed that the errors for the sigmoid function are larger than those for the tanh 
function in MSE, MAE1, and MAE2. This is because the output range of the sigmoid function is 

(a) (b)

(c)
Fig. 4.	 (Color online) Using different activation functions in lift coefficient prediction case study. (a) Linear 
function, (b) sigmoid function, and (c) tanh function.
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restricted between 0 and 1, limiting its ability to represent the data characteristics accurately. 
MSE for the sigmoid function was approximately 7.66 × 10−7, MAE1 was about 6.63 × 10−4, and 
MAE2 was about 2.70 × 10−3. Consequently, the hyperbolic tangent (tanh) function was selected 
as the optimal activation function for the next stage. Its MSE was approximately 4.95 × 10−7, its 
MAE1 was about 5.54 × 10−4, and its MAE2 was about 1.46 × 10−3, all of which were lower than 
the results obtained using the linear and sigmoid functions. It can clearly be seen that this type of 
nonlinear parameter analysis is not applicable to the linear activation function.

4.3	 Effect of different numbers of neurons in hidden layer on prediction accuracy

	 In the second experiment, the prediction accuracies of lift coefficients using different 
numbers of neurons in the hidden layers were compared, as shown in Fig. 5. Neural networks 
with 30, 40, and 50 neurons per hidden layer (with the number of layers fixed) were used to 
predict the lift coefficient at various angles of attack. The number of hidden layers was fixed at 
four, the learning rate was set to 0.01, and the activation function was selected as the hyperbolic 

Fig. 5.	 (Color online) Using different numbers of neurons in lift coefficient prediction case study. (a) 30, (b) 40, and 
(c) 50 neurons.

(a) (b)

(c)
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tangent (tanh) on the basis of the optimal result in the previous experiment, to compare 
prediction accuracy.
	 The predicted values obtained using the proposed method were compared with the 
aerodynamic coefficients from wind tunnel tests. As in the previous experiment, the red line 
represents the predicted values from the numerical wind tunnel, whereas the blue line represents 
the actual values from physical wind tunnel tests. The X-axis denotes the angle of attack, tested 
in the range from −8 to 18°, and the Y-axis represents the lift coefficient. The Mach numbers 
covered in the experiments span from subsonic to transonic to supersonic. For error evaluation, 
100 data points were extracted for comparison between the model predictions and the actual 
results, and the differences in prediction accuracy were found by adjusting the number of 
neurons.
	 Figure 5(a) shows the results obtained using 30 neurons. A notable difference exists between 
the predicted and testing results, indicating that the model has not yet converged. The MSE for 
using 30 neurons was approximately 4.95 × 10−7, MAE1 was about 5.54 × 10−4, and MAE2 was 
approximately 1.46 × 10−3, with the largest error occurring at an angle of attack of −5.4°.
	 In contrast, the graphs and trends shown in Figs. 5(b) and 5(c) appeared similar to the 
experimental results. On the basis of Table 3, for 40 neurons, MSE was approximately 8.62 × 
10−8, MAE1 was approximately 2.32 × 10−4, and MAE2 was approximately 7.27 × 10−4, with the 
largest error occurring at an angle of attack of 8.8°. For 50 neurons, MSE was approximately 1.45 
× 10−7, MAE1 was approximately 2.86 × 10−4, and MAE2 was approximately 1.02 × 10−3, with the 
largest error occurring at an angle of attack of 16.7°.
	 These results indicate that using 40 neurons was more accurate than using 50 neurons. This 
demonstrates that increasing the number of neurons does not necessarily improve accuracy and 
may lead to overfitting. Therefore, the optimal setting of 40 neurons was selected for the next 
experiment.

4.4	 Effect of different numbers of hidden layers on prediction accuracy 

	 In the third experiment, the prediction accuracies of lift coefficients using different numbers 
of hidden layers were compared. In this experiment, we used three, four, and five hidden layers, 
as shown in Fig. 6, to obtain the lift coefficients at different angles of attack. The activation 
function and the number of neurons were fixed as the optimal results from the previous 
experiments, namely, the hyperbolic tangent (tanh) function and 40 neurons, to evaluate the 
prediction accuracy.
	 The predicted values obtained using the proposed method were compared with the 
aerodynamic coefficients derived from wind tunnel tests. The red line represents the predicted 

Table 3
Error comparison of different numbers of neurons.
Number of neurons MSE MAE1 MAE2
30 4.95 × 10−7 5.54 × 10−4 1.46 × 10−3

40 8.62 × 10−8 2.32 × 10−4 7.27 × 10−4

50 1.45 × 10−7 2.86 × 10−4 1.02 × 10−3
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values from the numerical wind tunnel, whereas the blue line corresponds to the actual values 
from physical wind tunnel tests. The X-axis indicates the angle of attack, ranging from -8 to 18°, 
and the Y-axis denotes the lift coefficient. The Mach numbers covered in the experiments span 
from subsonic to transonic to supersonic.
	 Upon comparing the graphs and trends produced by the three different numbers of hidden 
layers, we observed that the results are similar. A detailed comparison of the errors shown in 
Table 4 reveals that, for Fig. 6(a) with three hidden layers, MSE was approximately 2.02 × 10−7, 
MAE1 was about 3.21 × 10−4, and MAE2 was about 1.24 × 10−3, with the largest error occurring 
at an angle of attack of 6.7°. In Fig. 6(b), using four hidden layers, MSE was approximately 8.62 
× 10−8, MAE1 was about 2.32 × 10−4, and MAE2 was around 7.27 × 10−4, with the maximum 
error occurring at an angle of attack of 8.8°. For Fig. 6(c), using five hidden layers, MSE was 
approximately 1.29 × 10−7, MAE1 was about 2.95 × 10−4, and MAE2 was approximately 8.71 × 
10−4, with the largest error at an angle of attack of 16.7°. From these results, the errors were 
smaller for the four hidden layers than for the three and five hidden layers. Therefore, for the 
final experiment, the optimal setting of four hidden layers was selected for training.

(a) (b)

(c)

Fig. 6.	 (Color online) Using different numbers of hidden layers in lift coefficient prediction case study. (a) Three, 
(b) four, and (c) five hidden layers.
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4.5	 Mach number segmentation for training on prediction accuracy

	 In the fourth experiment, on the basis of the results above, the optimal settings were selected: 
the hyperbolic tangent (tanh) function as the activation function, 40 neurons, and four hidden 
layers. MSE was reduced to less than 1 × 10−7, and MAE1 was reduced to less than 3 × 10−4. 
Under the existing feature values, it was found that training the model in segments based on 
different Mach numbers would further enhance the prediction accuracy and bring the trends 
closer to the actual values.
	 Mach number is the ratio of the speed of an aircraft to the speed of sound in air. Generally, 
aircraft cruising at high altitudes are controlled by the Mach number, which is a critical factor in 
aerodynamics and forms the academic foundation for the development of supersonic flight in 
aerospace technology.
	 Figure 7 shows the lift coefficient performance at different angles of attack for subsonic 
(Mach number less than 0.85), transonic (Mach number between 0.85 and 1.25), and supersonic 
(Mach number greater than 1.25). The red line represents the predicted values from the 
numerical wind tunnel, whereas the blue line indicates the actual wind tunnel test values. The 
X-axis represents the angle of attack, ranging from −8 to 18°, and the Y-axis represents the lift 
coefficient. In Fig. 7(a), using subsonic data to train the model, MSE was approximately 
3.11 × 10−8, MAE1 was about 1.35 × 10−4, and MAE2 was around 5.14 × 10−4, with the largest 
error occurring at an angle of attack of 7.2°. In Fig. 7(b), using transonic data for training, MSE 
was about 3.98 × 10−8, MAE1 was about 1.54 × 10−4, and MAE2 was around 5.75 × 10−4, and the 
largest error was at 11.0°. In Fig. 7(c), using supersonic data, MSE was approximately 2.38 × 
10−9, MAE1 was approximately 3.96 × 10−5, and MAE2 was around 1.22 × 10−4, and the largest 
error was at 7.2°. All MSE values were below 1 × 10−8, all MAE1 values were below 2 × 10−4, and 
the supersonic results almost perfectly matched the actual wind tunnel test values. This result is 
more accurate than that of training without segmentation, and the detailed error values can be 
found in Table 5. It can be concluded that training and predicting aerodynamic coefficients 
based on Mach number segmentation significantly improve accuracy.
	 After completing the training of the lift coefficient using the above settings and obtaining 
high accuracy results, segmented training was subsequently performed for the drag coefficient 
with the above optimal setting. Similar to the lift coefficient, the drag coefficient is an essential 
parameter in the initial stages of aircraft shape design. Therefore, the drag coefficient was 
incorporated into the BPNN for training, using the same settings: the hyperbolic tangent (tanh) 
function, 40 neurons, and four hidden layers.
	 Figure 8 shows the drag coefficient performance at different angles of attack for subsonic, 
transonic, and supersonic. As in previous experiments, the red line represents the predicted 

Table 4
Error comparison of different numbers of hidden layers.
Number of hidden layers MSE MAE1 MAE2
Three 2.02 × 10−7 3.21 × 10−4 1.24 × 10−3

Four 8.62 × 10−8 2.32 × 10−4 7.27 × 10−4

Five 1.29 × 10−7 2.95 × 10−4 8.71 × 10−4
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values from the numerical wind tunnel, whereas the blue line represents the actual wind tunnel 
test values. The X-axis represents the angle of attack, ranging from −8 to 18°, and the Y-axis 
represents the drag coefficient. In Fig. 8(a), using subsonic data to train the model, MSE was 
about 3.26 × 10−7, MAE1 was about 4.33 × 10−4, and MAE2 was around 1.54 × 10−3, and the 
largest error was at 11.7°. In Fig. 8(b), using transonic data for training, MSE was approximately 
3.61 × 10−7, MAE1 was about 4.84 × 10−4, and MAE2 was around 1.55 × 10−3, and the largest 
error was at 14.1°. In Fig. 8(c), using supersonic data, MSE was approximately 1.54 × 10−8,  
MAE1 was about 9.65 × 10−5, and MAE2 was around 3.60 × 10−4, and the largest error was at 

(a) (b)

(c)

Fig. 7.	 (Color online) Lift coefficient performance in case study using different Mach numbers for training. 
(a) Subsonic, (b) transonic, and (c) supersonic segmentations.

Table 5
Error comparison of lift coefficient prediction at different Mach numbers.
Mach number MSE MAE1 MAE2
Subsonic 3.11 × 10−8 1.35 × 10−4 5.14 × 10−4

Transonic 3.98 × 10−8 1.54 × 10−4 5.75 × 10−4

Supersonic 2.38 × 10−9 3.96 × 10−5 1.22 × 10−4
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14.0°. The predicted drag coefficient values aligned closely with the actual wind tunnel test 
values, with the lines nearly coinciding. MSE values ranged from 1 × 10−8 to 4 × 10−7, MAE1 
values ranged from 9 × 10−5 to 5 × 10−4, and the detailed error values can be found in Table 6. 
This indicates that using the above method for training the drag coefficient still maintains a high 
level of accuracy.
	 From the results of the four experiments, the best prediction results for the lift coefficient 
were MSE of approximately 2.38 × 10−9, MAE1 of approximately 3.96 × 10−5, and MAE2 of about 
1.22 × 10−4. For the drag coefficient, the optimal results were MSE of about 1.54 × 10−8, MAE1 of 
about 9.65 × 10−5, and MAE2 of approximately 3.60 × 10−4. The errors for both lift and drag 
coefficients were randomly distributed and fell within an acceptable error range. In comparison 
with the study conducted by Huang et al.(9) on aircraft shape design using artificial neural 
networks, the best prediction result for the lift coefficient was MAE1 of approximately 460.0 × 
10−5 in their work, while for the drag coefficient, the best result was MAE1 of approximately 
280.0 × 10−5. The results obtained in this study reveal a substantial improvement in prediction 
accuracy. The overall numerical trends closely matched the actual values from wind tunnel tests, 

Fig. 8.	 (Color online) Drag coefficient performance in case study using different Mach numbers for training. 
(a) Subsonic, (b) transonic, and (c) supersonic segmentations.

(a) (b)

(c)
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indicating that the proposed method has a high prediction accuracy. Lift and drag coefficients 
are critical parameters for evaluating whether an aircraft meets performance and mission 
requirements and can be used for initial aircraft shape design analysis and validation. The errors 
in all cases can be effectively controlled.

5.	 Conclusions

	 In this research, BPNN was utilized to establish the numerical wind tunnel so that the process 
of aircraft shape analysis and validation can be accelerated. The proposed approach, dividing the 
Mach number into subsonic, transonic, and supersonic ranges, can be used to train and predict 
the lift and drag coefficients of aircraft currently being designed and developed. Our approach 
also reduces reliance on physical experimental methods, saving resources and speeding up the 
design process, demonstrating that Mach number is a critical feature in training the model. 
Moreover, by adopting the BPNN error compensation model, it is possible to accurately predict 
aerodynamic parameters, reduce costs, and enhance aircraft design and manufacturing, while 
also enabling the development of AI-based analysis tools.
	 The authors advance prior work by leveraging deep learning for the rapid acquisition of 
preliminary shape parameters to support design decisions, while integrating ADS parameters 
and an AI-based database to identify key factors affecting aerodynamic design, thereby 
enhancing the effectiveness of the proposed analysis framework. The current predictive targets 
of this research are lift and drag coefficients.
	 Future work will focus on extending the methodology to other critical aerodynamic 
coefficients, such as side force coefficients and pitching moments, to enhance the value and 
completeness of the numerical wind tunnel framework. Additionally, efforts will be directed 
toward improving the prediction accuracy of the BPNN model by incorporating further key 
aircraft parameters, including Reynolds number, wing area, and other relevant design features.
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