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	 In this study, we present an innovative computer-vision-based displacement monitoring 
(CVDM) instrument, which includes a microcomputer, camera module, telescopic lens, and 
chessboard. The computer vision technology is employed to detect ground movements with an 
ultralong-distance, long-term, solar-powered, and real-time monitoring system. The average 
standard deviations and resolutions of three-axis displacements in the CVDM are 0.06 pixels 
and 0.01 cm at the 30 cm distance and 0.95 pixels and 0.10 cm at the 50 m distance, respectively, 
in experimental tests. The CVDM system can reach an ultralong distance of 1000 m in the field. 
The standard deviation and resolution of the ultralong-distance test are 0.33 pixels and 0.27 cm, 
respectively. Then, the CVDM system was installed inside a self-designed enclosure for long-
term and real-time monitoring on a slope of the Jiufenershan landslide area with a 33 m distance 
between the enclosure and a chessboard. The CVDM system in the area can detect four frames 
of image recognition per second and transmit three-axis relative displacement and image data 
every 10 min with a 5G network for 24-h monitoring. Finally, the CVDM system is the artificial 
intelligence of things (AIoT) solution for computer-vision-based, economically efficient, and 
energy-saving slope monitoring.

1.	 Introduction

	 There is a need for the real-time, long-term, and early-warning monitoring of slope movement 
in landslide areas. Handy and automated monitoring devices are necessary for outlying 
mountainous areas, because usually, manpower and electric power are insufficient.(1) When 
landslides occur in mountain villages, a real-time and reliable monitoring system is needed for 
emergency response. In this study, we developed a noncontact image recognition instrument 
with a microcomputer, camera, and chessboard to monitor the displacement of engineering 
structures or landslide slopes to provide 24 h monitoring data and image information. 
Traditionally, the Global Positioning System or theodolites are often used for long-distance 
measurements.(2) However, these instruments are expensive and energy-consuming. Other 
conventional displacement monitoring sensors commonly employed in civil engineering 
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applications, such as extensometers and inclinometers, remain relatively costly and are not easily 
adaptable for monitoring internal structural deformation, especially in mountainous terrains.(3) 
In this study, we developed a relative displacement monitoring instrument using the 
microcomputer Raspberry Pi, a high-quality (HQ) camera module, telescopic lens, and 
chessboard. A computer-vision-based displacement monitoring (CVDM) system includes the 
instrument and user interfaces with the computer vision technology of the OpenCV library and 
Python programming. Moreover, we use solar power and the 5G network for 24 h slope 
monitoring in the CVDM system.
	 In recent years, computer vision technology has been used to evaluate construction safety 
using information obtained from images and videos.(4,5) There are also some applications of 
image recognition technology and IoT transmission to the displacement data detected in flood or 
landslide disasters.(6,7) However, image and video data used in previous studies, such as AI-
trained aerial images or stereo image pairs, were not well suited for displacement detection over 
long distances or continuous 24 h monitoring.
	 In this study, we focus on innovative instruments for the long-distance and long-term 
monitoring of displacement detection using computer vision technology. The precision of the 
instruments can be comparable to that of traditional surveying instruments such as theodolites. 
The system of the instruments is designed to be a real-time, solar-powered, noncontact, cost-
effective, and artificial intelligence of things (AIoT)-based system for displacement monitoring 
on a slope.

2.	 Materials and Methods

	 The CVDM instrument is applied to three-dimensional displacement measurements for civil 
engineering structures. The principle is similar to theodolite measurements, where a chessboard 
is set at a potential moving point, and the CVDM instrument is installed at a relatively fixed 
point. The computer vision technology analyzes image changes of the chessboard caused by 
relative displacements between the fixed and moving points, as shown in Fig. 1. When there is a 
relative displacement between the moving (chessboard) and fixed (CVDM instrument) points, 
the image of the chessboard captured by the camera of the CVDM instrument will also change. 
The CVDM system can calculate the changes in the pixels of the chessboard image to determine 
the amount of displacement using OpenCV library and Python programming.
	 The CVDM system uses the projection technology of camera images, as shown in Fig. 2.(8,9) 
A point Q in real-world coordinates (X, Y, Z) is projected onto the image plane through a ray 
passing through the camera projection center, and the resulting point on the image is q = (x, y, f ) 
in Fig. 2(a), where x and y indicate the imaging plane coordinates and f means the focal length of 
the lens.

	 andscreen x x screen y y
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	 Then, the parameters fx, fy, cx, and cy of the camera can be rearranged into a 3 × 3 matrix, 
known as the camera intrinsic matrix.(8,9) The projection of the points in the physical world into 
the camera is summarized as 
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	 Next, planar homography was defined as projective mapping from one plane to another, as 
shown in Fig. 2(b).(8) A mapping from the object plane to the image plane simultaneously 
comprehends the relative locations of those two planes as well as the camera projection matrix 
using 

Fig. 1.	 Principle of CVDM instrument.

Fig. 2.	 Principle of computer-vision-based image recognition.(8)
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	 s= ⋅ ⋅ ⋅q M W Q


 ,	 (3)

where s is an arbitrary scale factor and W = |Rt


|, with R being the rotation matrix and t


 the 
translation matrix.
	 In this study, we use OpenCV library (cvCalibrateCamera2 and cvFindChessboardCorners) 
to automatically record the coordinates of the chessboard image that is calculated using its center 
positions and perimeter.(10,11) Changes in distance between the camera and the chessboard can be 
detected, as both the camera focal length and the chessboard dimensions are known. The relative 
displacement of the chessboard center point is calculated using Eq. (4). Thus, the actual 
displacement per unit pixel in the X- and Y-directions of the center point is determined.

	      ( )  cm cm)
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Actual length of the chessboard Relative length per pixel
Image length of the chessboard

= 	 (4)

	 The actual distance (d) between the lens and the target for the Z-direction is calculated using 
the focal length of the camera ( f ) and scale using Eq. (5), where W means the actual side length 
of the chessboard (cm), w means the image of the side length (pixels), and d means the distance 
between the lens and the chessboard.

	  f Wd
w
×

= 	 (5)

	 The experimental configuration of the CVDM system used in this study is illustrated in Fig. 
3. The CVDM instrument comprises the microcomputer Raspberry Pi 4B, an HQ camera 
module, industrial and telescope lenses, and a chessboard.
	 The experimental tests for the CVDM instrument were conducted using two different lenses. 
One was an industrial lens mounted on the HQ camera module for the fixed-point observation at 
a short distance of 50 cm. The second setup employed a telescopic lens mounted on the HQ 
camera module at an extended range of 50 m. Specifications of the CVDM devices are shown in 
Table 1. Moreover, we developed an innovative solar-powered cubic chessboard integrated with 
LED lights. The LED cubic chessboard consists of six acrylic chessboard sheets (20 × 20 cm 
each), six solar panel modules, and two low-power LED lights, specifically designed to enable 
continuous 24-h monitoring for long-distance displacement measurements under nighttime 
conditions.

2.1	 CVDM testing using an industrial lens

	 A 20-cm-square chessboard was set up on a manually adjustable stage platform for the static 
observation at a distance of 50 cm, as shown in Fig. 3. Pixels in the X-, Y-, and Z-directions of the 
chessboard were collected under the static condition using OpenCV Python programming. 
Then, the average value and standard deviation in accuracy test results were determined and are 
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shown in Table 2. The average values of the image center and perimeter of the chessboard in the 
X-, Y-, and Z-directions were 390.221, 285.882, and 174.417 pixels, respectively. The standard 
deviations in the X-, Y-, and Z-directions were 0.05, 0.04, and 0.06 pixels, respectively, for a total 
of 2574 data numbers during 10 min. Additionally, most of the observed data fell within two 
standard deviations.
	 Furthermore, 3-axis stages with the chessboard were moved 1 cm in the X-, Y-, and Z-axes. 
The movement of the chessboard was detected as the change in pixels of its image using the 
CVDM system. The error in the testing results was analyzed and is shown in Table 3. The 
average error in the X-, Y-, and Z-directions is 0.01 cm for a total of 2574 data numbers per 
direction. The error is the same as that of a traditional theodolite.

2.2	 CVDM testing using a telescope lens

	 The CVDM instrument equipped with a telescopic lens was employed to detect a solar-
powered cubic chessboard integrated with LED lights, with which ultralong-distance, continuous 
24 h monitoring was possible. The solar panels were embedded on the surface of the chessboard 
to become part of black zones in the chessboard, as shown in Fig. 4(a).

Table 1
Specifications of CVDM devices.
Raspberry Pi 4B BCM2711, ARM Cortex-A72, 8 GB of RAM

HQ camera module Raspberry Pi HQ Camera 
Sony IMX477R stacked sensor, 1/2.3'', 12.3 megapixels

Industrial lens Zoom lens, focal length: 12–120 (mm), resolution: 300 megapixels
Telescope Focal length: 500 (mm), Optical tube: 80 (mm), 45–60× magnification
Cubic LED chessboard Size of chessboard: 20 × 20 cm2, 6 sets of 1.5 W solar panels, 2 sets of 2 W LEDs

Fig. 3.	 (Color online) Configuration of CVDM system.
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	 In the long-distance testing, as shown in Fig. 4(b), the CVDM system was set up to statically 
detect the LED cubic chessboard for 72 h at a distance of 50 m in the experimental test. Then, 
the average value and standard deviation of the testing results were analyzed and are shown in 
Table 4. The average values of the image center and perimeter of the chessboard in the X-, Y-, 
and Z-directions were 466.145, 217.359, and 231.447 pixels, respectively, with an average 
standard deviation of 0.955 pixels. Given that a pixel represents 0.105 cm at 50 m in the test, the 
average precision is 0.100 cm.

Table 2
Indoor accuracy test results of fixed-point observation in CVDM using an industrial lens.

X-axis direction Y-axis direction Z-axis direction
Average (pixel) 390.221 285.882 174.417
Standard deviation (pixel) 0.058 0.042 0.067
Amount of data (number) 2574 2574 2574
Twice the standard deviation (%) 98.25 96.19 97.75
Note: One pixel represents a length of 0.16 cm

Table 3
Indoor error test results in CVDM using an industrial lens.

Moving direction Actual 
movement (cm)

Displacement measured by 
instrument (cm) Error (cm) Amount of data

X-axis 1 −0.9907 0.0092 2574
Y-axis 1 −0.9954 0.0046 2574
Z-axis 1 1.0107 0.0107 2574

Fig. 4.	 (Color online) Configuration of indoor CVDM system with a telescope. (a) Set of Raspberry Pi, HQ 
camera, and telescope lens. (b) CVDM devices and display. (c) Solar-powered LED cubic chessboard.
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3.	 Field Testing

3.1	 CVDM with a telescope lens in 1000-m-distance measurement

	 The experimental method in the 1000-m-distance measurement was similar to that in the 
previously conducted 50 m indoor experiment; however, a larger chessboard size (85 × 85 cm2) 
was employed to facilitate measurements at long distances exceeding 1000 m along a river 
embankment. Figure 5(a) shows that a larger chessboard with a size of 85 × 85 cm2 was installed 
on the river embankment because a smaller chessboard cannot be detected in image recognition 
using the computer vision programming. A theodolite was set up beside the CVDM instrument, 
as shown in Fig. 5(b), to measure the initial reference distance. A retroreflective surveying prism 
was placed beside the chessboard, and the measured distance of 100487 cm between the 
theodolite and the prism was entered as a parameter into the CVDM programming for 
calculating the changes in X-, Y-, and Z-axis image pixels. Figure 5(d) shows the display of the 
computer vision program within the CVDM system, illustrating the detection of the chessboard.
	 To evaluate the effect of a high image resolution on the measurement accuracy of the CVDM 
instrument under ultralong-distance conditions, two different image resolutions (1280 × 960 and 
1920 × 1440 pixels) were tested. Static measurement errors along the X-, Y-, and Z-axes were 
recorded during a designated field testing period. The monitoring results for each resolution are 
presented in Fig. 6.
	 The image resolutions of 1280 × 960 and 1920 × 1440 pixels represent actual lengths of 0.83 
and 0.56 cm per pixel, respectively, in the CVDM system in the field. The standard deviations of 
average X-, Y-, and Z-axis image recognition accuracies in the chessboard for the image 
resolutions of 1280 × 960 and 1920 × 1440 were 0.33 and 0.39 pixels, corresponding to actual 
displacements of 0.27 and 0.22 cm, respectively, as shown in Table 5. Nevertheless, the amount 
of data in the image with a resolution of 1280 × 960 is 2400 sets during 10 min, which is more 
than the 600 sets in the case of 1920 × 1440 resolution. Thus, the image resolution of 1280 × 960 
is suitable for the CVDM setup in the long-distance test. The results show that the recognition 
and precision for the distance of more than 1000 m are acceptable for the CVDM system.

3.2	 Long-term displacement monitoring for a landslide slope

	 The CVDM system was installed in the Jiufenershan landslide area in Nantou County as a 
case study. The area of the Jiufenershan landslide is 195 hectares within which severe landslides 

Table 4
Indoor accuracy test of 50 m distance for CVDM with a telescope lens.

X-axis direction Y-axis direction Z-axis direction
Average (pixel) 466.145 217.359 231.447
Standard deviation (pixel) 1.469 0.686 0.709
Amount of data (number) 668971 668971 668971
Amount of twice the standard deviation (%) 98.50 97.07 95.73
Note: One pixel represents a length of 0.105 cm.
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Fig. 5.	 (Color online) Setup of CVDM using a telescope lens for observation over a long distance exceeding 1000 
m.

Fig. 6.	 Monitoring graphs of CVDM system for 1000-m-distance measurement. Image resolutions of (a) 1280 × 
960 pixels and (b) 1920 × 1440 pixels.

Table 5
Accuracy test results of CVDM with a telescope lens for a measurement distance of more than 1000 m.

X-axis 
direction

Y-axis 
direction

Z-axis 
direction Average

Image resolution Amount of data 
(number) Standard deviation (Pixel)

1280 × 960 
(0.83 cm per pixel) 717 0.38 0.32 0.22 0.33

1920 × 1440 
(0.56 cm per pixel) 615 0.39 0.39 0.38 0.39
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occurred accompanying the 1999 Chi-Chi earthquake. The amount of collapse in the event was 
35 million cubic meters. Remediation works and vegetation restoration projects have been 
undertaken in the area. However, the area remains a dangerous zone for landslides.(12)

	 The CVDM instrument and a solar-powered LED cubic chessboard were set up on both sides 
of the Longnan Road in the landslide area. The distance between the CVDM instrument and the 
LED chessboard was 33 m. The instrument was placed in a monitoring enclosure with a height 
of 200 cm, a length of 60 cm, and a width of 50 cm with a solar power of 100 W for 24 h 
monitoring, as shown in Fig. 7.
	 The LED cubic chessboard was placed on the landslide slope. Then, the CVDM system 
continuously measured the relative displacement of the chessboard in real time. The monitoring 
data and chessboard images were simultaneously transmitted to a cloud database through a 5G 
IoT network.
	 First, analytic results of data from the 24 h real-time CVDM are shown in Table 6. The 
average pixel values of the detected target image center and edge pixels in the X-, Y-, and Z- 
directions were 536.31, 268.68, and 338.53, respectively. There were 568503 sets of one-day 
monitoring data per axis in the CVDM system. The standard deviations in the X-, Y-, and 

Fig. 7.	 (Color online) On-site configuration of CVDM instrument and chessboard on landslide slope.

Table 6
Accuracy test results of 33-m-distance measurement using CVDM in Jiufenershan area.

X-axis direction Y-axis direction Z-axis direction
Average (pixel) 536.31 268.68 338.53
Standard deviation (pixel) 1.53 3.36 2.64
Amount of data (number) 568503 568503 568503
Amount of twice the standard deviation (%) 97.69 99.45 96.54
Note: One pixel represents a length of 0.089 cm.
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Z-directions were 1.53, 3.36, and 2.64 pixels, respectively. One pixel represented a length of 
0.089 cm in the case study, so the average precision was 0.22 cm.
	 Second, the long-term monitoring data from December 23 to 30, 2024 are shown in Fig. 8. 
Figure 8(a) shows that temperature changes caused monitoring data fluctuations between −0.5 
and 0.5 cm in the X-displacement direction but the changes remained within a millimeter-level 
error. The on-site CVDM system was effective for monitoring during rainy weather both in the 
daytime and at night from Dec. 23 to 24 in the landslide area, as shown in Fig. 8(b). There was a 
settlement of Y displacement by approximately 1 cm in the evening of Dec 28. Consequently, the 
CVDM can be set up to detect ground movement for 24 h real-time monitoring on the slope. In 
the case study, the average precision and error of CVDM were 0.22 and 0.5 cm, respectively. 
Overall, the effect of temperature on the slope displacement measurements was found to be 
negligible. Although rainfall may induce temperature fluctuations and potentially affect slope 

Fig. 8.	 (Color online) Relationship between X- and Y-axis displacements, precipitation, and temperature for seven 
days of single-lens fixed-point observation test in Jiufenershan landslide area.
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displacements, no significant effects were observed during the monitoring periods shown in Fig. 
8.

3.3	 AIoT application

	 Monitoring data and images of the CVEM system are transmitted to a cloud database via 5G 
in this study. The CVDM system detects the XYZ three-direction displacement of the LED cubic 
chessboard on the landslide slope. Moreover, the system displays real-time monitoring data in 
accordance with the IoT flow chart shown in Fig. 9. To ensure 24 h operation, the Raspberry Pi 
of the CVMD automatically reboots daily to clear its cache and run image recognition programs 
with Python programming. Then, monitoring data from records of XYZ displacements, including 
pixel values of the center point and perimeter edge of the chessboard and pixel-to-centimeter 
conversion format, are stored in JSON format. Furthermore, the image data were recorded at an 
average rate of 4 frames per second using OpenCV programming, with the data transmitted to 
the cloud server at 10 min intervals. Finally, the AIoT application is capable of displaying 
synchronized multidimensional monitoring data and images on a web-based platform, as shown 
in Fig. 10. The displayed information includes the original pixel values in the X-, Y-, and 
Z-directions, the corresponding converted displacement values in centimeters, and the on-site 
images of the chessboard.

4.	 Discussion

	 In this study, we developed a three-axis displacement-detecting instrument embedded in a 
telescope for long-distance measurement using computer vision technology. Figure 10 illustrates 
the design drawing of the CVDM instrument, which includes the Raspberry Pi recording module 
with a camera embedded in a telescope, and a solar-powered LED chessboard that can be 
monitored 24 h a day, both during the day and at night.

Fig. 9.	 (Color online) Flowchart and display of AIoT system and data for CVDM instrument.
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	 Computer-vision-based approaches are gaining increasing attention in the field of geotechnics 
because of their advantages such as noncontact, real-time, and low-cost operation.(13,14) However, 
there are some limitations of computer vision including heavy rain, lighting at night, and camera 
distance.(15,16) This is why it is important to continually develop a telescope embedded in the 
CVDM system for long distances and solar-powered lights embedded in the chessboard for 24 h 
monitoring, as shown in Figs. 10(b) and 10(f). On the other hand, we designed a stainless-steel 
enclosure where the CVDM instrument is installed so as to stably detect the displacement of the 
chessboard against adverse environmental conditions (rain, water, and wind), as shown in Fig. 
10(d). The use of computer-vision- and IoT-based sensors is proposed to make the wireless and 
solar-powered system more energy efficient.(17–19) Thus, one set of 100 W solar power and four 
sets of 240 Wh storage batteries were used for 24 h monitoring in this study, as shown in Figs. 
10(j) and 10(k), respectively. Moreover, small solar panels and a rechargeable battery were 
incorporated in the LED chessboard, as shown in Figs. 10(h) and 10(i).
	 Finally, the microcomputer Raspberry Pi and a 5G dongle integrated within the CVDM 
instrument are shown in Fig. 10(a), and the solar-powered LED chessboards are mounted on an 
iron rack [Fig. 10(c)]. The CVDM instrument detects relative displacements of the chessboard in 
real time and transmits both the monitoring data and images to a cloud database via 5G IoT 
connectivity, forming a novel AIoT-based monitoring system.
	 The on-site CVDM instrument with the Raspberry Pi, a telescopic lens, chessboard, solar-
powered system, and stainless-steel enclosure costs about USD 2,000, so it is a cost-effective 
solution at roughly one-fifth the cost of conventional instruments such as total stations or GNSS 
systems. Moreover, the CVDM system provides a measurement precision of up to 0.01 cm with 
the advantages of power efficiency, 24 h monitoring, and IoT-based application of data and 
images. Table 7 shows that the cost of a CVDM instrument is much less than those of traditional 
monitoring devices, and its resolution is better than that of the GNSS. In addition, the CVDM is 
an IoT system with computer vision technology and 5G wireless communication.

Fig. 10.	 Design drawing of CVDM instrument: (a) Raspberry Pi and HQ camera, (b) telescope, (c) steel frame, (d) 
stainless-steel enclosure, (e) window of enclosure, (f) LED chessboard, (g) translucent material checkerboard, (h) 
small solar panel, (i) LED, (j) large solar panel, and (k) storage battery.
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	 Up to now, many computer-vision-based approaches have been applied to the measurement of 
structures such as bridges, retaining walls, and tunnels.(21) However, these on-site measuring 
distances were between 1 and 50 m. Longer distances are often required for the measurement of 
structures such as embankments, landslide slopes, and dams, whereas the instruments of the 
above approaches were limited and the measurement accuracy decreased with increasing 
measurement distance. We devised a new instrument for displacement measurement to detect 
ultralong distances of 1000 m along a river embankment using a microcomputer, telescope, and 
computer vision technology. An optical- or computer-vision-based instrument is often affected 
by the environmental temperature and light, which causes fluctuations of monitoring data.(22,23) 
Thus, a stainless-steel enclosure was designed to house the CVDM instrument, minimizing 
environmental effects such as dust, rain, and wind fluctuations. We also developed a solar-
powered LED chessboard comprising small solar panels and a rechargeable battery, effectively 
addressing the illumination challenges during nighttime monitoring. The results of long-term 
field monitoring indicate that the CVDM system achieves an average error of approximately 0.5 
cm for a 24 h real-time monitoring system. Consequently, the CVDM instrument will be 
applicable to the monitoring of longer distance for bridges, dams, buildings, and offshore wind 
turbine foundations in the future.

5.	 Conclusions

	 In this study, we developed an innovative sensor for ground movement monitoring for 
ultralong-distance and long-term measurement using computer vision technology. The solar-
powered LED cubic chessboard measuring target was designed to solve light problems during 
nighttime measurement. The CVDM instrument was shown to be a 24 h, real-time, energy-
saving, cost-effective, and AIoT-based device for slope monitoring. The resolution of the XYZ-
direction displacements in the CVDM instrument was 0.01 cm. The average precisions of 
displacement measurements in the X-, Y-, and Z-directions using the CVDM instrument were 
0.10 cm at a distance of 50 m in indoor tests, 0.22 cm at a distance of 33 m on a landslide slope, 
and 0.27 cm at a distance of 1000 m along a river embankment.
	 The CVDM instrument was deployed on a landslide slope to detect the displacement of the 
solar-powered LED cubic chessboard through 24 h, real-time, IoT-based monitoring. Although 
the long-term monitoring data showed fluctuations in the displacements owing to temperature 
changes, average errors for the XYZ-direction displacements were less than 1 cm. The on-site 
CVDM system proved to be an effective monitoring device capable of operating continuously 
under rainy weather conditions in a landslide area. The CVDM system achieved a real-time 
image recognition rate averaging four frames per second, with monitoring data and images 

Table 7
Characteristics of CVDM instrument and traditional monitoring devices.

CVDM Total station GNSS
Resolution 0.01 cm 0.01–0.1 cm 0.1–2 cm
Price $2000 USD $10000–15000 USD $6000–10000 USD
IoT application Yes No Yes, if connected to other devices.(20)
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being transmitted to a cloud database via 5G at 10 min intervals in this study. In the future, the 
innovative CVDM instrument should be able to provide noncontact, ultralong-distance, and 
cost-effective displacement monitoring for the monitoring of engineering structures. The 
fluctuations and decreases in errors of the data from CVDM will be postprocessed using moving 
average or Gaussian filter methods.
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