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	 In this study, we sought to augment existing driver fatigue detection techniques, which are 
deficient in individual fatigue feature analysis, precision, and resilience. A novel driver fatigue 
monitoring intelligent system is introduced, employing human–machine hybrid enhancement. 
To address these limitations, a human–machine hybrid fatigue driving experimentation platform 
was designed using a hardware-in-the-loop system. This amalgamation delivers accurate fatigue 
level assessments. Subsequently, three preprocessing methods were compared for facial imaging 
and vehicular status data, developing a driver human–machine hybrid fatigue driving database. 
This comprehensive database includes facial images, steering wheel angle, and acceleration 
pedal data, aiding in detecting fatigue-induced behavioral shifts. Lastly, variance analysis was 
employed to quantify the significant difference levels of human–machine hybrid fatigue feature 
parameters across varying fatigue levels. On the basis of this analysis, a machine-learning-
technique-based human–machine hybrid enhanced driver fatigue monitoring intelligent system 
was developed, achieving accuracies of 95.5%, 91.5%, 94.7%, and 95.0% in distinguishing four 
driver fatigue stages, namely, wakefulness, mild fatigue, fatigue, and severe fatigue, respectively. 
Our findings validate the efficacy of our proposed system in discerning driver fatigue levels and 
its potential to significantly improve transport system safety and efficiency.

1.	 Introduction

	 Driver fatigue is a significant threat to road safety. Recent data suggests an annual increase in 
accident rates attributable to fatigue. This alarming crisis has stimulated extensive research and 
development within the technological sector, focused on pioneering driver fatigue detection 
techniques, which are critical safeguards for transportation safety.
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	 Fatigue impacts driver performance, affecting concentration, reaction time, and judgment. 
Prolonged driving, inadequate rest, and physiological/psychological factors are the primary 
contributors. Fatigue driving can lead to severe consequences, jeopardizing the driver and 
potentially harming others. 
	 The pursuit of effective fatigue detection technologies in road safety research has escalated. 
Advances have been marked by a surge of innovative concepts and experimental results, paving 
the way for advanced solutions capable of detecting driver fatigue and alerting drivers before it 
escalates. As these technologies become more prevalent and integrated into existing vehicle 
systems, they can serve as a potent deterrent against fatigue driving, ensuring a safer, more 
secure road network for all. Current fatigue detection technologies include the following:
1)	� Physiological signal detection: This strategy involves observing alterations in biological signs 

such as eyelid movements and pulse rate for gauging driver fatigue. Sensor information such 
as electroencephalography, electrooculography, electrocardiography, and electromyography 
are used for signal collection. Houshmand et al. devised a method based on 
electroencephalogram (EEG) alpha spindle waves for checking fatigue.(1) This method first 
uses continuous wavelet transform and Morlet function to identify EEG features, then uses 
convolutional neural network for the adaptive classification of EEG, and finally uses a self-
learning method to determine early fatigue.(1) Jeong et al. presented a deep spatiotemporal 
convolutional bidirectional long short-term memory network model for fatigue detection.(2) 
This model employs BrainAmp equipment to gather EEG data from subjects, which is then 
preprocessed prior to detection. The fatigue level of the EEG signal is categorized into five 
stages and evaluated utilizing the Karolinska Sleepiness Scale (KSS) table, which indicates 
two psychological statuses and five fatigue levels.(2) Gromer et al. designed an 
electrocardiogram acquisition device that employs a sensor to gather heart rate variability 
data to detect driver fatigue.(3) Gao et al. proposed a novel approach for fuzzy feature 
integration and developed a comprehensive adaptive interpretable Takagi–Sugeno–Kang 
Fuzzy Classifier.(4) Zhong et al. introduced a two-stage framework that leverages graph 
neural networks and functional connectivity to identify mesoscopic regions in EEG signals, 
improving driver fatigue detection.(5) Guo et al. designed a Multi-modality Attention 
Network for driver fatigue detection, integrating frontal EEG, electrodermal activity, and 
photoplethysmography signals into a hybrid model.(6) Zhang et al. proposed a generative-AI-
enhanced framework for multi-modal physiological signal analysis in intelligent 
transportation safety systems.(7) Although these methods exhibit high precision and 
durability, they require data collection equipment that may affect driver performance. 
Moreover, the costs of conducting the tests are substantial, the equipment size is considerable 
and inconvenient for transportation, and there are significant individual variations, limiting 
the application of this detection method primarily to laboratories or driving simulators, 
rendering it unsuitable for widespread adoption.

2)	� Facial feature detection for drivers: This method employs a camera to capture the driver’s 
face, utilizing machine vision techniques such as facial key point localization and face 
detection to identify attributes such as eye gaze direction, blinking frequency (BF), eye 
aspect ratio, and Percentage of Eyelid Closure Over Time (PERCLOS). Extracted features 
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include head movement, head rotation angle, and mouth aspect ratio, all detected using 
advanced algorithms. Carnegie Mellon University has conducted consistent testing to 
determine the PERCLOS parameter that measures fatigue. PERCLOS has three standards: 
EM, P70, and P80. Among these, P80 is deemed the superior standard for assessing human 
fatigue and is frequently used by researchers to evaluate a driver’s mental state.(8) Anitha et 
al. proposed a yawn detection system that utilizes the upper and lower parts of the face. 
Mouth features from the lower face are extracted, and binary images are used to detect 
yawning and assess the driver’s condition. (9) The fatigue detection method that utilizes driver 
facial characteristics offers several advantages, including affordability, non-intrusive nature, 
ease of implementation, minimal equipment, seamless integration, reasonable precision, and 
immediate monitoring. However, challenges arise when the driver’s head is excessively tilted, 
they wear sunglasses, or the ambient lighting is inadequate, leading to unidentifiable 
occurrences.

3)	� Intelligent sensors: This method utilizes onboard sensors that collect data on vehicle 
acceleration, steering wheel rotation angle, and so forth, to analyze and determine the driver’s 
fatigue level.(10) This approach provides real-time monitoring, accuracy, and portability. 
McDonald et al. input data such as steering angle, pedal positions, vehicle speed, and 
acceleration into a dynamic Bayesian network algorithm to detect driver fatigue.(11) Li et al. 
utilized the approximate entropy of the steering wheel angle sequence to select input data and 
extracted fatigue-related features using LSTM units.(12) They also used the information gain 
method to identify correlations between potential features and fatigue to obtain the most 
effective representation of fatigue features. Li et al. proposed a method to detect driver 
fatigue by measuring steering wheel grip strength.(13) This method determines the driver’s 
mental state by analyzing the discrepancy between the steering wheel grip strength and the 
standard deviation of grip strength when the driver operates the vehicle. Zhu et al. proposed a 
multilayer adaptive driver fatigue monitoring model on the basis of the steering wheel signals 
obtained from 25 participants in a driving simulator.(14)

	 Fatigue exhibited by drivers manifests in their vehicle’s behavior, which includes speed, 
acceleration, yaw angle, and lane deviation. These distinctive features are captured via sensors 
and scrutinized to detect driver consciousness. Pomerleau engineered an adaptable lateral 
position handler system. This system utilizes road image analysis through template matching 
and testing strategies, estimating vehicle deviation displacement, and subsequently determining 
driver state.(15) Cai et al. utilized the controller area network bus to record vehicle behavior data, 
extracting 18 features such as speed, acceleration, and pedal usage. The Pearson correlation 
coefficient is employed to assess feature correlation with fatigue, and four algorithms are applied 
to detect driver fatigue.(16)

	 Driver-status-focused fatigue detection methods offer advantages including accessible data 
collection, affordability, compact equipment, transportation convenience, and comparable 
precision. They hold potential in the market and are easily deployed and operated. Nevertheless, 
they may become vulnerable to road conditions, driver proficiency, and driving habits.
	 The main contribution of this study is that multiple strategies for fatigue driving detection are 
proposed, despite some challenges. For example, by utilizing facial driver video capture 
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technology, recognition accuracy may be reduced due to differences in lighting intensity. To 
improve the accuracy and reliability of fatigue detection methods and enhance their overall 
generalization ability, it is urgent to propose a new type of fatigue detection method. In this 
study, we utilized a human–machine hybrid enhanced driver fatigue monitoring system based 
on deep learning. The driver fatigue detection model based on multi-feature fusion proposed in 
this paper effectively solves the limitations of single data source fatigue detection, providing 
theoretical and technical support for subsequent fatigue detection model research.
	 This paper’s structure is as follows:
	 In Sect. 2, we have established a complex hardware-in-the-loop system platform for driver 
fatigue driving detection. A comprehensive simulation experiment design was specifically 
formulated. Nine expert drivers were recruited for fatigue driving experiments on the platform. 
Comprehensive driving status and facial features were meticulously collected from these drivers 
at various fatigue stages.
	 In Sect. 3, we describe the data processing methods used in this article. Local histogram 
equalization (LHE), fast automatic color equalization, and adaptive contrast enhancement (ACE) 
are employed to balance the image illumination and improve the image recognition accuracy. 
Driving status data preprocessing involves the use of Carmaker’s control software for exporting 
data for further analysis, excluding turning and lane changing data. After preprocessing, data is 
segmented on the basis of the driver’s KSS score and four-level fatigue judgment method to 
establish a fatigue sample database.
	 In Sect. 4, we identified the features for fatigue driving assessment, including vehicle 
information and driver facial features. 
	 In Sect. 5, a human–machine hybrid enhanced driver fatigue monitoring system employing 
the back propagation neural network was implemented. 
	 In Sect. 6, the system was developed using machine learning techniques (deep learning) 
within a Pycharm Integrated Development Environment. The process involved the random 
selection of training and testing sample sets for system training and validation.

2.	 Driver Fatigue Driving Platform

	 Given the significant safety risks in authentic road fatigue driving experiments, ensuring 
driver and staff safety or validating driving investigation accuracy is unattainable. Existing 
fatigue detection research primarily utilizes driving simulators as substitutes.

2.1	 Experimental platform

	 In this study, we utilized a bespoke simulated driving platform, a hardware-in-the-loop 
system driving simulator, and relevant software (incorporated by Carmaker and Matlab/
Simulink).
	 The fatigue driving experimental platform incorporates a driving simulator, a National 
Instruments real-time system, and an HD camera, coupled with pertinent software (including 
Carmaker and Matlab/Simulink software). The driving simulator has three components: driving 
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platform, 6-DOF simulation platform, and visual display system. The specific driver fatigue 
driving platform is shown in Fig. 1. 

2.2	 Experimental drivers

	 Nine drivers (7 males and 2 females) aged between 22 and 28 and with driver’s licenses and 
extensive driving experience participated in the fatigue driving tests. All drivers’ driving states 
are shown in Figure 2. The testing personnel maintained optimal health conditions to minimize 
variations in outcome. Participants refrained from alcohol consumption and refreshing beverages 
the day before the test, ensuring a minimum of eight hours of sleep. To ensure the confidentiality 
of experimental data, protect the privacy of experimenters, and ensure the integrity of data, all 
drivers must sign an informed consent form before conducting the experimental testing, and 
they need to understand how their experimental data will be used.

Fig. 1.	 (Color online) Fatigue driving experimental platform.

Fig. 2.	 (Color online) Driver driving scenes under different ambient lighting conditions.
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	 The objective of this study was to gather driving status data and facial characteristics of 
drivers in varying fatigue states, encompassing waking, mild fatigue, fatigue, and severe fatigue. 
Considering drivers’ routine, fatigue may occur around 14:00 PM or 1:00 AM. Hence, fatigue 
driving experiments were conducted from 13:00 to 15:00 PM and 1:00 to 3:00 AM, allowing a 
comprehensive recording of drivers’ fatigue states and facilitating future research.

2.3	 Road simulation scene design

	 To ensure that the experimental data is closer to real driving situations, driver fatigue driving 
experiments were conducted in different single road environments and under different 
environmental lighting conditions to further expand the diversity of the experimental dataset. 
On the basis of the above environment that causes fatigue for drivers, different road environments 
were designed. In this study, we created four driving scenarios, namely, driving on highways 
during the day, driving on urban expressways during the day, driving on highways at night, and 
driving on urban expressways at night. The specific road simulation scenes are shown in Table 1.
	 If there is no traffic flow and various driving vehicles in the simulated road environment, 
there may be significant differences between the simulated road and the actual road conditions, 
which may lead to driver distraction and relaxation. To get closer to the actual traffic situation, 
the simulated road detailed in this article incorporates synchronized traffic flow, including both 
opposing and approaching vehicles. This aligns better with the actual road environment, 
ensuring a more realistic data collection. This study’s data collection environment mainly 
comprises two traffic scenarios, highways and urban expressways, simulating the Zhaoqing City 
to Guangzhou highway road with a total distance of 300 km, as illustrated in Fig. 3(a), and the 
Duanzhou District urban expressway road with a total distance of 100 km, as depicted in Fig. 
3(b). The entire expressway features six lanes in each direction, with a standard maximum width 
of 3.75 m per lane. Throughout the journey, there are four lanes in each direction, each measuring 
3 m wide.

3.	 Data Preprocessing Methods

	 When the driver accelerates, variations in cab or outdoor light levels result in fluctuations in 
camera video image intensity, blurring, and other nuisances. Such inconsistent and blurred 
illumination interferes with fatigue feature parameter identification, impacting detection 
precision.

Table 1
Road simulation scenes.
Scenario Scenario abbreviation Scenario overview
Scenario 1 DH day, driving on highways
Scenario 2 DUE day, driving on urban expressways
Scenario 3 NH night, driving on highways
Scenario 4 NUE night, driving on urban expressways
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	 We explored three strategies, namely, LHE, fast automatic color balancing (ACB), and ACE, 
to attain illumination equalization on captured images, thereby enhancing clarity.

3.1	 LHE

	 Histogram equalization aims at normalizing the original image’s histogram to the new 
distribution through its cumulative distribution function, hence homogenizing the gray scale 
level and enhancing image illumination.(17) Image histogram equalization is solved through a 
discrete form of cumulative distribution function, and the mapping method during the histogram 
equalization process is performed using Eq. (1).
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Here, Sk represents the value of the current gray level after being mapped by the cumulative 
distribution function, N represents the total gray level of pixels in an image, nj represents the 
number of pixels in grayscale level, and L represents the total number of gray levels in the image.
	 The impact of illumination on images can be divided into two types: global and local. The 
global impact indicates that the overall illumination of the image is either too high or too low. In 
this case, it is necessary to perform equalization processing on the entire image, but the 
computational cost is relatively high. The illumination has a significant impact on the driver’s 
facial image, so only local equalization processing is needed for the driver’s facial image, which 
has high processing efficiency and good accuracy.
	 The steps of LHE are as follows:
(1)	�Scan each pixel of the original grayscale image sequentially and calculate the grayscale 

histogram of the image.
(2)	�Calculate the cumulative distribution function of the grayscale histogram.
(3)	�Obtain the mapping relationship between input and output based on the cumulative 

distribution function and histogram equalization principle.
(4)	�Obtain the results based on the mapping relationship and perform image transformation.

Fig. 3.	 (Color online) Road environments: highways and urban expressways. (a) Highway and (b) urban 
expressway routes

(a) (b)
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	 Figure 4 shows the impact of LHE on video image processing under different lighting 
conditions. The upper image shows the processing result of the driver’s facial image using the 
LHE method under good lighting conditions. The lower image shows the processing result of the 
driver’s facial image using the LHE method under night or poor lighting conditions. It can be 
clearly seen that the LHE method can effectively process the driver’s facial image under good 
lighting conditions. However, in nighttime or poor lighting environments, the LCE method may 
not have a very clear effect on the processing of driver facial images.

3.2	 Fast ACB

	 Narendra et al. developed a method based on Retinex theory for color equalization.(18) This 
technique utilizes the spatial phase relation of color and brightness for adapting local image 
patches, regulating both image brightness and color, and altering contrast.
	 Fast ACB mainly adjusts the color of images to achieve color difference correction, which 
can be represented by Eq. (2).
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Here, Rc is an intermediate result of image processing, Ic is the original input image, c represents 
the color channel, Ic(p) − Ic( j) represents the difference in brightness between pixel points p and 
j, d(p, j) is the distance function between pixel points p and j, and r(*) represents the relative 
brightness function, mainly used to explain the difference in relative brightness between a point 
and its nearby points. r(*) is shown in Eq. (3) below.

Fig. 4.	 (Color online) Comparison before and after LHE.
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Here, the parameter T is the saturation critical value, which can be adjusted reasonably according 
to actual needs to obtain the expected value.
	 The fast automatic color balance algorithm is applied to a single color channel, and for color 
images, each color channel needs to be processed separately. Figure 5 shows the effect after 
ACB processing.
	 As shown in Fig. 5, the ACB algorithm improves the overall visual effect of the image by 
calculating the local contrast of each pixel and enhancing it. The ACB algorithm is suitable for 
image processing in low-contrast (poor lighting) environments. Therefore, compared with the 
LHE algorithm, it has better performance in processing the facial images of night drivers.

3.3	 ACE
	
	 ACE divides an image into two components: the low-frequency and high-frequency sections. 
The former is attained through low-pass filtering, whereas the latter arises by subtracting the 
filtered result from the original image. ACE mainly achieves image enhancement by changing 
the gain coefficient of the high-frequency part.
	 Owing to the fact that an image is composed of numerous pixels, M(i, j) is represented as a 
region centered around a point (i, j) with a window size of [(2n + 1) × (2m + 1)]. The local mean 
and variance can be expressed using Eqs. (4) and (5), respectively.
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Fig. 5.	 (Color online) Comparison before and after ACB processing.
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Here, f(k, l) represents the pixel value when the coordinate is (k, l), M(i, j) represents the local 
mean, and σ2(i, j) represents the local variance. Gain convolution is applied to the high-frequency 
part.

	 ( ) ( ) ( ) ( ), , , ,I i j M i j G f i j M i j = + −  	 (6)
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Here, I(i, j) denotes pixel values after enhancement processing, G is gain value, and α is 
coefficient parameters, 0 < α < 1. Usually, G is greater than 1, so using G[ f(i, j) − M(i, j)] can 
enlarge the high-frequency part of the image, thereby enhancing the processed image. Figure 6 
shows the effect before and after ACE.
	 As shown in Fig. 6, the ACE algorithm enhances the high-frequency part of the image (i.e., 
the driver’s facial area) by analyzing local regions of the image, thereby improving the contrast 
of the image. Through the ACE algorithm, the contrast of the driver’s facial image can be 
significantly improved, which can enhance the details and visual effects of the image.
	 By comparing the images before and after processing using the three different lighting 
equalization methods mentioned above, it can be seen that LHE and fast automatic color balance 
methods have good processing effects on images with dark lighting, but have poor processing 
effects on images with bright lighting. The ACE method not only has good processing effects on 
images with dark light but also on images with bright light. Therefore, we adopted an ACE 
method to balance the illumination of collected driver facial images.

Fig. 6.	 (Color online) Comparison before and after ACE.
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4.	 Feature Selection for Fatigue Driving Assessment

4.1	 Subjective driving fatigue evaluation

	 The subjective fatigue status of 10 subjects (numbers for A–J) in the driving experiment 
designed in this study was investigated by questionnaire. To ensure the authority and accuracy 
of the fatigue level of the subjects, the internationally recognized KSS was used to score the 
fatigue level.
	 In this study, we used the criteria for determining level 4 fatigue and the KSS sleep scale to 
classify drivers from wakefulness to severe fatigue into four levels: awake, mild fatigue, fatigue, 
and severe fatigue. The four level fatigue assessment method can more clearly analyze the 
process of drivers transitioning from a conscious state to a severe fatigue state. Research shows 
the following: KSS ≤ 3 indicates that the driver is at the awake level, 3 < KSS ≤ 5 indicates that 
the driver is at a slight fatigue level, 5 < KSS ≤ 7 indicates that the driver is at a fatigue level, and 
KSS > 7 indicates that the driver is at a severe fatigue level.(19)

4.2	 Fatigue performance analysis of driving data

	 We compiled driving status data from a six-degree-of-freedom driving simulator, 
encompassing steering wheel angle and accelerator pedal opening and closing. Turning and 
lane-changing maneuvers were excluded from the collected data as extreme steering actions 
skew experimental precision. Given the IPG-generated erg format in Carmaker software, the 
IPG Control data processing software was employed for data management. This tool permits 
both real-time observation of simulated road vehicle states and postprocessing of simulation 
data, exportable in diverse formats for further data analysis software treatment.
	 The analysis considered steering wheel angle data from the vehicle lateral control and throttle 
pedal opening data from the vehicle longitudinal control. It evaluated driver’s driving conditions, 
investigated driver state shifts across varying fatigue thresholds, and chose suitable driving state 
parameters to assist in detecting fatigue driving.

4.2.1	 Steering wheel angle

	 The driver must actively monitor the environment and road conditions to ensure safety 
during driving, particularly when managing the steering wheel and adjusting accordingly as 
fatigue sets in over extended periods. The fluctuation in steering wheel angle can serve as an 
indicator of the driver’s fatigue level.
	 Studies indicate that when drivers navigate in a straight path, the amplitude of steering wheel 
angle, the frequency of abrupt steering wheel changes, and the standard deviation of steering 
wheel angle all progressively increase over time. Therefore, we used the Absolute Mean of 
Steering Wheel (AMSW) angle and the Standard Deviation of Steering Wheel (SDSW) angle as 
indicators for driver fatigue assessment.
	 Neglecting the steering wheel’s direction of rotation, we focused solely on magnitude. Thus, 
AMSW symbolizes the mean, determined by absolute steering wheel angle, which equates to
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In the above equation, N is the number of sampling points, and SWi is the steering wheel angle.
	 The calculation formula for the steering wheel angle’s standard deviation SDSW is
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The above equation defines 1 N
m ii iSW SW

N =
= ∑  as the average steering wheel angle.

	 Figures 7 and 8 illustrate the evolution of the steering wheel angle’s mean and standard 
deviation during simulated driving, respectively. These graphs reveal an increase in the absolute 
mean and standard deviation of the steering wheel angle throughout the driving phase.
	 Ten driver fatigue samples were chosen for analysis, encompassing levels of awake, mild, 
fatigue, and severe fatigue, for 5, 10, and 15 s intervals. The data was analyzed through variance 
measurement to assess differences in mean steering wheel angle and standard deviation across 
fatigue levels. The significance level is the probability of making errors when estimating the 
population parameters falling within a certain interval, represented by α. Under the condition of 
determining significance level α equal to 0.05, the findings are presented in Table 2.
	 As shown in Table 2, when the selected time window equals 10 s, both P-values for AMSW 
and SDSW fall below 0.05, implying that AMSW and SDSW are suitable indicators for evaluating 
driver fatigue, with their F-values reaching a peak. Hence, the optimal extraction time boundary 
for these parameters is 10 s.

4.2.2.	 Throttle pedal opening

	 The throttle pedal opening is a key indicator of a driver’s mental state. When the driver is 
energetic or has strong alertness, the driver’s control accuracy of the throttle pedal is high, and 

Fig. 7.	 (Color online) AMSW angle over time. Fig. 8.	 (Color online) SDSW angle over time.
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the vehicle can maintain stable and efficient driving in the lane. When the driver’s mental state is 
poor or there are fatigue symptoms, the stability of the throttle pedal control decreases, causing 
the vehicle to move fast and slow in the lane. Therefore, the driver’s control of the throttle pedal 
opening can reflect the driver’s mental state. Therefore, in this study, we selected the throttle 
pedal opening to analyze driver fatigue.
	 We employed Average Throttle Pedal Opening (ATPO) and Standard Deviation of Throttle 
Pedal Opening (SDTPO) as key indicators to detect driver fatigue. ATPO is expressed as

	
1

1 N

i
i

ATPO TPO
N =

= ∑ .	 (10)

In the above equation, N is the number of sampling points for the sample, and TPOi is the throttle 
pedal opening. The calculation formula for the standard deviation SDTPO of throttle pedal 
opening is 
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In the above equation, 1
1 N

m iiTPO TPO
N =

= ∑  represents the overall average of throttle pedal 
opening.
	 Figures 9 and 10 depict the evolution of the average and standard deviation of driver throttle 
pedal opening levels throughout simulated driving, respectively. The data indicate that as 
driving duration extends, both average and standard deviation diminish. As fatigue escalates, the 
driver’s longitudinal vehicle control diminishes, leading to compromised accelerator pedal 
precision.
	 We randomly selected 10 samples from each of the four fatigue levels, calculating the mean 
and standard deviation of the accelerator pedal position across three time frames of 60, 120, and 
180 s. The variance analysis verifies levels. The comparison of mean and standard deviation 
values for different fatigue levels at α = 0.05 is shown in Table 3.
	 The data indicate notable disparities in the mean and SDTPO across various fatigue levels. 
Assigning a 120-s window for these values demonstrated significant variations across fatigue 

Table 2
Analysis of the absolute mean and standard deviation of the steering wheel angle.

Parameters
Time 

window 
(s)

Awake Mild fatigue Fatigue Severe fatigue
F value P valueAbsolute 

mean
Standard 
deviation

Absolute 
mean

Standard 
deviation

Absolute 
mean

Standard 
deviation

Absolute 
mean

Standard 
deviation

AMSW
5 0.015 0.002 0.020 0.007 0.017 0.003 0.023 0.016 1.017 0.073

10 0.011 0.002 0.021 0.006 0.020 0.002 0.026 0.013 1.533 0.038
15 0.012 0.002 0.022 0.005 0.025 0.004 0.031 0.006 1.061 0.093

SDSW
5 0.022 0.005 0.033 0.009 0.030 0.006 0.043 0.033 0.774 0.062

10 0.014 0.002 0.034 0.007 0.050 0.009 0.048 0.023 1.349 0.012
15 0.018 0.004 0.056 0.027 0.056 0.021 0.056 0.020 0.836 0.079
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levels (F = 0.759, P = 0.043 < 0.05; F = 13.750, P = 0.021 < 0.05). Thus, the average and variance 
of accelerator pedal movement can serve as fatigue indicators for driver fatigue recognition. The 
optimal time window chosen is 120 s.

4.3	 Fatigue analysis on facial features

	 Studies indicate that variations in the eyes manifest most prominently during fatigue, 
followed by modifications in the mouth. Fatigue detection within facial features primarily 
employs eye and mouth characteristics. 
	 However, facial feature fatigue detection necessitates specific collection equipment and 
environment conditions. For instance, the camera-face configuration, image resolution, and 
ambience lighting can impair facial feature extraction. Consequently, a facial image 
enhancement preprocessing step was implemented in the second portion of this work, 
significantly enhancing the precision of facial fatigue feature detection.

4.3.1	 BF

	 In optimal non-fatigue, drivers blink rapidly due to external stimuli and objects. In an ideal 
mental state, blinking occurs at a rate of 15–20 times/min, each blink lasting 0.25–0.3 s.(19) Mild 

Fig. 9.	 (Color online) ATPO over time.. Fig. 10.	 (Color online) SDTPO over time.

Table 3
Analysis of the absolute mean and standard deviation of the steering wheel angle.

Parameters
Time 

window 
(s)

Awake Mild fatigue Fatigue Severe fatigue
F value P valueAbsolute 

mean
Standard 
deviation

Absolute 
mean

Standard 
deviation

Absolute 
mean

Standard 
deviation

Absolute 
mean

Standard 
deviation

ATPO
60 0.122 0.194 0.126 0.148 0.106 0.114 0.108 0.071 0.434 0.045

120 0.141 0.203 0.139 0.202 0.116 0.176 0.104 0.031 0.759 0.043
180 0.120 0.181 0.099 0.221 0.103 0.066 0.138 0.049 0.756 0.049

SDTPO
60 0.112 0.201 0.058 0.099 0.048 0.131 0.033 0.083 6.336 0.047

120 0.118 0.182 0.081 0.154 0.027 0.073 0.015 0.054 13.750 0.021
180 0.125 0.217 0.055 0.155 0.049 0.129 0.012 0.039 9.608 0.025
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fatigue reduces BF and extends blink interval; severe fatigue exhibits blinking near zero 
frequency and prolonged eye closure.
	 We scrutinized the test records of five drivers at 5-min intervals, as illustrated in Fig. 11. The 
visual examination indicates that as time progresses, BF variance diminishes gradually, although 
individual distinctions result in variation for some drivers compared with most individuals.
	 We isolated 10 specimens each from wakefulness, mild fatigue, fatigue, and severe fatigue 
via the acquired data and analyzed them using established methodologies. Different selection 
intervals were established; BF differences across fatigue stages were scrutinized, aiming to 
identify an optimal interval for fatigue parameter identification. Time segments of 30 and 60 s 
were selected to compute BF’s mean and standard deviation sequentially. Analysis of variance is 
conducted to verify the distinction between these two under varying degrees of driver fatigue, as 
shown in Table 4.
	 From the data, there is notable variance in BF at α = 0.05 significance level with a 30 or 60 s 
time window. Consequently, BF can serve as a fatigue indicator. To maximize fatigue detection, 
60 s is chosen as the time window for BF.

4.3.2	 PERCLOS

	 PERCLOS, a ratio of eyelid closure to time, indicates fatigue through demonstration of a 
positive correlation with its duration. We extracted real-time detection data from five test 
drivers, sampled at 5-min intervals. Results shown in Fig. 12 reveal that PERCLOS steadily 
increases over time, although personal variances cause minute deviations in PERCLOS values.
	 To evaluate the alterations in PERCLOS values with driver fatigue, 10 data points were 
randomly chosen for each fatigue state from a total pool of sample data. For 30 and 60 s time 

Fig. 11.	 (Color online) Driver BF

Table 4
Analysis of variance of driver's BF.

Parameters
Time 

window 
(s)

Awake Mild fatigue Fatigue Severe fatigue
F value P valueAbsolute 

mean
Standard 
deviation

Absolute 
mean

Standard 
deviation

Absolute 
mean

Standard 
deviation

Absolute 
mean

Standard 
deviation

BF
30 15.105 3.891 15.301 3.880 13.750 4.013 12.532 4.336 8.512 0.035
60 15.105 6.171 15.301 5.513 13.750 5.316 12.532 5.105 9.495 0.032
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windows, the average and standard deviation of PERCLOS values were calculated and subjected 
to analysis of variance. The findings are tabulated in Table 5.
	 Evaluation of PERCLOS values within two selected time windows (30 and 60 s) indicated 
statistical significance at the α = 0.05 threshold. Consequently, PERCLOS values serve as useful 
fatigue indicators. To simplify computations, we utilized a 30-s time frame for PERCLOS 
values.

4.3.3	 Yawning frequency

	 Yawning serves as a physiological response of humans to combat fatigue. Fatigued 
individuals spontaneously yawn, relieving fatigue and transiently reinvigorating them.
	 In this study, we analyzed the empirical data of five test drivers, recording every 5 min, 
resulting in the yawning frequency curve shown in Fig. 13. This indicates that yawning 
frequency progressively increases with time, yet individual variances result in slight fluctuations.

5.	 Human–Machine Hybrid Enhanced Fatigue Monitoring Intelligent System

5.1	 Back propagation (BP) neural network-based driver fatigue detection model

	 As shown in Fig. 14, in the BP neural network section, we configured the number of neurons 
in the input, output, and hidden layers, as well as the number of hidden layers. Subsequently, we 
selected the transfer functions and initial weight values for each layer. Lastly, we ascertained the 
learning efficacy and selected an appropriate expected error.

5.2	 Input layer of BP

	 The driver fatigue driving detection model constructed in this study is based on the driver’s 
driving state and facial features, and selects all fatigue feature parameters that satisfy significant 
differences in the third part as inputs to the model.
	 To mitigate the impact of dimensionality discrepancies across fatigue parameters and the 
transfer function’s input-output amplitude, it is necessary to scale the model’s input and output 

Fig. 12.	 (Color online) Driver’s PERCLOS.
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data to the interval [0,1] or [−1,1]. We employed the (0,1) normalization function within the 
Pycharm integrated ecosystem to standardize the input and output data.

5.3	 Output layer of BP

	 The fatigue detection model constructed in this study is a four-level detection model, and the 
determined outputs are 1-awake, 2-mild fatigue, 3-fatigue, and 4-severe fatigue, with a quantity 
of 1. In this study, we used thresholds of 1.5, 2.5, and 3.5.

Fig. 13.	 (Color online) Driver BF.

Table 5
Analysis of variance of driver's PERCLOS.

Parameters
Time 

window 
(s)

Awake Mild fatigue Fatigue Severe fatigue
F value P valueAbsolute 

mean
Standard 
deviation

Absolute 
mean

Standard 
deviation

Absolute 
mean

Standard 
deviation

Absolute 
mean

Standard 
deviation

PERCLOS
30 0.089 0.044 0.219 0.049 0.335 0.025 0.481 0.086 4.164 0.032
60 0.088 0.040 0.225 0.041 0.346 0.026 0.535 0.082 3.231 0.043

Fig. 14.	 (Color online) BP neural network-based driver fatigue detection model.
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5.4	 Hidden layer of BP

	 The model constructed in this paper includes only one hidden layer. We ultimately 
determined the number of hidden layer nodes to be 11.
	 As shown in Fig. 15, we proposed the BP neural net as the fusion algorithm for the driver 
fatigue detection model. Primarily, a state-of-the-art human–machine hybrid enhanced driver 
intelligent fatigue detection system was fashioned around a BP neural network-based driver 
fatigue detection model. Next, Python programming was utilized to formulate model programs 

Fig. 15.	 Fatigue detection model based on human–machine hybrid enhanced intelligent system.
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in the Pycharm environment. Lastly, an instance dataset was chosen at random from the 
established fatigue sample database for model training, validation, and testing. Refer to the 
diagram in Fig. 15 for the human–machine hybrid fatigue detection enhanced system.
	 The fatigue detection model based on the human–machine hybrid enhanced intelligent 
system devised in this paper constitutes a four-tier detection model, with the designated 
outcomes being 1-awake, 2-mild fatigue, 3-fatigue, and 4-severe fatigue.

6.	 Model Verification 

	 Five hundred and sixty randomly selected sample data were procured from the fatigue 
driving sample database. This comprises 140 samples of wakefulness, mild fatigue, fatigue, and 
severe fatigue. One hundred and twenty samples from each fatigue level were designated as the 
requisite training data, and the remaining 20 sets constitute the test data. A Python-based script 
was devised for establishing a fatigue detection model using the Pycharm integrated development 
environment. The model was trained with samples representing different fatigue levels. To 
prevent overfitting, 480 sets of samples were divided into a 5:2:3 ratio for training, validation, 
and testing. The training and validation sets were utilized to refine the model, whereas the 
testing set was used to evaluate its performance. After iterative training, the error performance 
curve of the model is as shown in Figure 16.
	 Figure 16 shows the validation of the trained model through the analysis of error variations 
across different datasets. After 105 training instances, the model’s mean square error tightened 
to 0.001, indicating an accelerated convergence rate due to the training data. It takes less time to 
achieve the expected mean square error. The remaining 80 samples comprise the validation set, 
with labels assigned as follows: label 1 = wakefulness, label 2 = mild fatigue, label 3 = fatigue, 
and label 4 = severe fatigue.
	 Figure 17 indicates the model’s average accuracies of 95.5%, 91.5%, 94.7%, and 95.0% for 
differentiating four driver fatigue stages: wakefulness, mild fatigue, fatigue, and severe fatigue, 
respectively. This model is suitable for fatigue driving detection.

Fig. 16.	 (Color online) Detection model er ror 
performance curve.

Fig. 17.	 (Color online) Verification results of fatigue 
detection model.
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7.	 Conclusions

	 We developed a high-accuracy fatigue driving detection model using multi-feature fusion 
(combining driving state and facial features) and a BP neural network. Our main research results 
are as follows:
(1)	�A fatigue driving experimental platform was constructed by utilizing a six degree of freedom 

driving simulator, NI real-time machine, camera, and simulated driving simulation software 
(Carmaker, Matlab/Simulink). According to the designed experimental plan, a total of 9 
drivers were invited to conduct experiments on two simulated roads: highways and urban 
expressways.

(2)	�The multi-feature fusion approach overcomes the limitations of single-source data, providing 
a stronger foundation for fatigue detection research.

(3)	�We built a fatigue detection model based on the BP neural network, and then used Python 
language to write the detection model program in the Pycharm integrated environment. The 
results showed that the model constructed in this paper had average accuracies of 95.5%, 
91.5%, 94.7%, and 95.0% in detecting four levels of fatigue for drivers: wakefulness, mild 
fatigue, fatigue, and severe fatigue, respectively.
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