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	 A novel algorithm [high-performance graphical processing unit net version 2-efficient multi-
branch and scale feature pyramid network-multipath coordinate attention-you only look once 
(HGNetV2-EMBSFPN-MPCA-YOLO, HEM-YOLO)] was used in this study to improve smoke 
and fire detection accuracy in complex environments. By modifying the weights of negative and 
positive samples, we identified small target classes using improved exponential moving averages 
with spatial learning loss (EMASlide loss). Multipath coordinate attention (MPCA) was also 
employed to improve detection accuracy as it efficiently extracted local and global features from 
images. The backbone network in HGNetV2 enabled more efficient and rapid training of the 
algorithm. As a result, the enhanced detector head model in EMBSFPN recognized complex 
patterns to detect and identify smoke and fires in complex environments. The enhanced HEM-
YOLO reduced the number of parameters to 1.8 million and floating point operations per second 
to 6.0 G and increased the accuracy by 4.2% in smoke and fire detection. Its efficiency was 
further improved, reducing false detections and demonstrating its versatility across multiple 
applications.

1.	 Introduction

	 Fire safety and fire prevention are essential in constructing an effective system for efficient 
emergency management.(1–3) Therefore, smoke and fire detection technologies are vital for the 
early identification of fires to minimize potential damage. However, current fire detection 
systems rely on their capability to monitor temperature, humidity, and smoke.(4–6) However, 
their effectiveness is influenced by the distance between sensors and the fire’s point of origin, 
often resulting in false alarms for fires occurring at greater distances. To overcome this 
limitation, video fire detection technology has been used as it enables rapid identification owing 
to its anti-interference capabilities at a low management cost. Compared with conventionally 
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used sensor technologies, video fire detection technology provides intuitive fire-site information, 
facilitating faster personnel evacuation and more efficient firefighting.(5–7)

	 In video fire detection technology, static and dynamic features, including flame color, flicker 
characteristics, smoke texture, shape, and area changes, are extracted. Kong et al.(8) developed a 
logistic regression algorithm to analyze the color difference between the fire and the background 
and identify the area, color, and other characteristics to calculate the probability that the detected 
fire was real. Yuan proposed a cumulative motion model for fire detection by combining various 
images taken on-site, which predicted the direction of smoke movement and enhanced detection 
robustness.(9) 
	 Previous detection models were developed on the basis of manual feature engineering. The 
parameters in the models did not appropriately represent complex environments, limiting their 
accuracy and adaptability in identifying smoke and fires from diverse combustible materials 
under different lighting conditions and fluctuating airflows. To overcome such limitations, a 
faster region-based convolutional neural network (FR-CNN), you only look once (YOLO), and a 
single shot multiBox detector (SSD) have been applied to the models. Li et al. combined CNN 
with a detection transformer (DETR) network for smoke and fire detection and added a 
normalization-based attention module to more accurately detect small objects.(10) Chaoxia et al. 
adopted a color-based anchor point and global information guidance strategies to improve FR-
CNN for smoke and fire detection.(11) On the basis of the improved YOLOv4 model and the 
convolutional block attention module, Muhammad et al.(12) proposed an automatic smoke and 
fire detection system for the visually impaired. 
	 The effectiveness and precision of the smoke and fire detection system have been enhanced 
owing to the aforementioned models and networks. However, they cannot monitor fluctuations 
in the size, shape, and area of smoke and fires in video images accurately. Preset anchor frames 
are not accurately identified, which hinders the precise capture of fire-related targets. In 
addition, the complexity of the models leads to low efficiency when they are deployed in 
embedded systems, low accuracy, and poor real-time performance. Therefore, it is necessary to 
develop an algorithm with enhanced capability to detect smoke and fires. In this study, an 
enhanced algorithm was developed for smoke and fire detection by integrating high-performance 
graphical processing unit net version 2 (HGNetV2), efficient multi-branch and scale feature 
pyramid network (EMBSFPN), multipath coordinate attention (HEM), and you only look once 
(YOLO) (HEM-YOLO). The enhanced algorithm is lightweight with an efficient up-sampling 
module, a global isomeric kernel selection mechanism, and an innovative attention mechanism, 
ensuring multi-scale feature-weighted fusion and multi-scale efficient convolution. The 
multipath coordinate attention (MPCA) module is also integrated to train the model and adjust 
the intersection over union (IoU) loss on the basis of YOLOv8. The developed algorithm reduced 
the number of parameters by 2.1 G and increased the detection accuracy by 4.2%, which enables 
broad applicability to various-target identification.



Sensors and Materials, Vol. 37, No. 7 (2025)	 3341

2.	 YOLOv8 Model
	
	 YOLO is a single-stage object detection method that divides input images into multiple grids 
and assigns bounding boxes and corresponding object classes for each grid.(13–17) YOLO 
employs the non-maximum suppression (NMS) technique to identify overlapping bounding 
boxes to enhance detection accuracy. YOLOv8 shows excellent scalability, which is well-suited 
for the different sizes of hardware and compatible with previous YOLO versions.(6,18–20) Its 
design enables the intuitive comparison of model performance and rapid deployment and testing 
in different applications with diverse requirements. YOLOv8 optimizes the features of previous 
YOLO models owing to its efficient backbone networks, accurate targeting, and enhanced 
feature fusion. Because of these advantages, YOLOv8 ensures high accuracy and fast reasoning 
speed for various real-time detection tasks, such as autonomous driving, video surveillance, and 
industrial inspection.(8,21–23) With its optimized application programming interface (API) 
capability and enhanced cross-platform compatibility, YOLOv8 simplifies the development and 
deployment process, making it easy for developers to tackle the challenges of different tasks and 
hardware. Figure 1 shows the YOLOv8 network structure.

3.	 HEM-YOLO

3.1	 Macrostructure 

	 The architecture of HEM-YOLO comprises a backbone, neck, and head (Fig. 2). The 
backbone is the initial part of the network responsible for feature extraction. It processes the 
input image and reduces its spatial resolution while increasing its semantic richness. The 
backbone’s primary role is to generate a set of feature maps at various scales and extract 

Fig. 1.	 (Color online) YOLOv8 model’s structure.
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hierarchical visual representations from the input image. These feature maps are input to the 
subsequent neck. The input image is processed by the backbone, which consists of five stages: 
StemBlock[0], HGStage[1], HGStage[2], HGStage[3], and HGStage[4]. 
	 The neck is responsible for feature fusion and aggregation. It takes the multi-scale feature 
maps from the backbone and combines them in a way that enhances information flow and 
enriches the features for detection. The neck builds a robust and semantically rich feature 
pyramid that integrates information from different scales of the backbone’s output. This allows 
the head to detect objects of various sizes effectively. In the neck structure with EMBSFPN, the 
information obtained by the backbone is transmitted to the convolutional layer via HGBlock in 
the first bottom-up path. In the second path, the fusion module transmits the information to 
Node_mode through bidirectional feature fusion and weighted feature aggregation. In the Node_
mode module, multi-scale convolution is performed to obtain features on different scales, 
thereby enhancing the representation capability of multi-scale information. On the other hand, 
several features are reused in different multi-scale convolution block (MSCB) layers by 
leveraging the structure characteristics of the cross-stage partial network (CSPNet), which 
preserves the feature flow and effectively reduces calculation. The efficient up-convolution 
block (EUCB) module enhances the feature representation capability by employing channel 
extension, convolution update, and feature fusion. The mass storage device class (MSDC) 
module is used to extract features of multiple scales by using a multi-scale convolution operation 

Fig. 2.	 (Color online) HEM-YOLO model structure in this study.
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in the Node_mode and combining convolution kernels of different sizes. Finally, the target 
bounding boxes and their corresponding classes are predicted in the detection head on the basis 
of the feature map on each scale and calculated losses. 
	 The head is the final part of the network responsible for prediction. The head processes and 
fuses features obtained from the neck and translates them into meaningful object detections, 
including bounding box coordinates, confidence scores, and class probabilities for each detected 
object. The exponential moving average (EMA) and slidelessness are used to ensure the 
robustness and applicability of these predictions. The head generates the final detection outputs. 
The head of the YOLOv8 algorithm is used for dimensional mapping and processing features in 
the convolutional procedure. In the HEM-YOLO model structure, HGNetV2 replaces the 
YOLOv8 backbone, and the multi-branch auxiliary fusion (MAF)-YOLO structure is used to 
design the neck. MPCA is used to enhance the learning capability of the model.

3.2	 Backbone structure 

	 HGNetV2 integrated into the backbone network of YOLOv8 uses graph neural networks 
(GNNs) and time series analysis to enhance target detection performance. Graph convolution is a 
core operation in GNNs, aggregating information obtained from adjacent nodes and updating 
the features of each node. The formula is

	 ( ) ( ) ( )( )1 ,ˆl l lH AH Wσ+ = 	 (1)

where H(l) is the characteristic matrix of the layer l node, Â is the normalized adjacency matrix 
(including self-ring), W(l) is the weight matrix of layer l, and σ is the activation function.
	 HGNetV2 integrates EMBSFPN, which utilizes convolution cores on different scales in the 
feature layer to efficiently acquire multi-scale perceptual field information, which is obtained 
from the trident network for the accurate detection of objects of various sizes. The network 
enhances feature extraction in a series of convolutional layers, from HGStem to HGBlock, and 
then the spatial pyramid pooling-fast (SPPF) module. Moreover, the MPCA module further 
improves attention and maintains temporal consistency. In the feature pyramid stage, multi-scale 
feature weighted fusion is carried out in the bi-directional feature pyramid network (BIFPN), 
which replaces the concatenation operation with the addition operation, thereby reducing the 
number of parameters and improving computational efficiency. EUCB is applied to nodes in the 
convolutional layer for efficient upsampling, which is critical for feature layers conducting 
fusion in the Node_mode module. The network outputs multilevel detection headers that enable 
efficient object detection through the convolutional to fusion layers. Integrating HGNetV2 with 
the YOLOv8 framework and EMBSFPN enables a lightweight, efficient, and effective multi-
scale feature fusion network, which significantly improves the accuracy of target detection 
(Fig. 3).
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3.3	 Head structure 

	 On the basis of the global isomeric kernel selection mechanism of MAF-YOLO, EUCB and 
the multi-scale feature weighted fusion in BIFPN are used for reference.(24–26) If the 
concatenation operation is replaced with the addition operation to reduce computational 
complexity and the number of parameters, self-applicable selection weighted fusion is carried 
out depending on the importance of features on different scales to improve the accuracy and 
efficiency of detection. The information flow of BIFPN is exchanged during up- and down-
sampling using Eq. (2).

	
1

n
fusion i iiF W F

=
= ⋅∑ ,	 (2)

where Wi and Fi represent the weighting coefficient and the feature map of layer i, respectively.
	 In the following recursion operations, Fhigh and Flow represent the high-level and low-level 
feature maps, respectively.

	 ( )high low highF Upsample F F= + 	 (3)

	 ( )low high lowF Downsample F F= + 	 (4)

	 The head structure utilizes a series of convolution layers to extract and optimize feature maps 
that play a key role in downsampling and capturing contextual information (Fig. 4). The C2f 
layer is integrated to ensure smooth transitions between different feature scales and seamlessly 
transmits information to the various stages of the network. In the head structure, the Node_mode 
module is introduced to transform specific features, providing dynamic adaptability to the 
feature map and making its representation flexible and adaptable. In fusion, features from 

Fig. 3.	 (Color online) Structure of HGNetV2.
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different sources are connected and combined, enriching feature information and diversity. 
Subsequently, the EUCB module optimizes the feature map by recalibrating channel features, 
emphasizing informative channels while suppressing less relevant features.(2,27–30) Combined 
with an efficient upsampling technique and accurate feature calibration, this mechanism greatly 
enhances feature differentiation. On the other hand, the EUCB module improves the spatial 
resolution of feature maps, ensuring that the most critical features are extracted, thus improving 
the object detection and classification capabilities of the model. CSPNet improves computational 
efficiency by splitting the feature graph F into two, F1 and F2, and processing them separately.

	 ( )1 2,F F Split F= 	 (5)

	 Through different convolution operations, the following are obtained.

	 ( )1 1'F Conv F= 	 (6)

	 ( )2 2'F Conv F= 	 (7)

	 The processed F1' and F2' are merged as

	 ( )' '
1 2, .cspF Concat F F= 	 (8)

	 The MSCB layer uses convolution kernels of different sizes to handle different scales of 
feature maps. For the multiple convolution kernels of sizes 3 × 3, 5 × 5, and 7 × 7 (K1, K2, and K3, 
respectively), the multi-scale convolution operation is conducted as follows. 

Fig. 4.	 (Color online) Structure of the MAF-YOLO
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	 ( )
3

1
, ,MSC k

k
F Conv F K

=

= ∑ 	 (9)

where Kk is the size of the convolution kernel, and Conv(F,Kk) represents a convolution operation 
with a convolution kernel of size Kk on the input feature map F.
	 The head structure also includes a detection layer that predicts target bounding boxes and 
class probabilities, which is essential for converting the optimized feature map into an actionable 
output for accurate target detection. In the layer, the category prediction is performed using Eqs. 
(10) and (11).

	 ( ) max box fusion boxC Soft W F b= ⋅ + 	 (10)

	 ( )moid box fusion boxB sig W F b= ⋅ + 	 (11)

3.4	 Loss functions

	 Unbalanced training samples still exist in bounding box regression through the process. 
Traditional techniques are used to address this imbalance, but they require resampling and 
reweighting samples during training despite their limited effectiveness.(28–30) Therefore, a focal 
loss is used to solve this issue by highlighting readily identifiable negative samples in the overall 
loss and modifying the slope appropriately.(23) By changing the weights of positive and negative 
samples, the model enhances differentiation among samples in uncommon target categories. In 
other words, negative samples that are reasonably easy to classify are less weighted, whereas 
positive samples that are challenging to classify are prioritized. In target size analysis, observable 
targets are considered negative samples, whereas microscopic targets are considered positive 
samples owing to their difficulty in localization.(7,31,32) Negative samples are detected effectively 
as they are optimized in bounding box regression.(33,34) In contrast, the model needs to process 
positive samples to improve its overall performance, which increases computational complexity. 
To solve this problem, improved exponential moving averages with spatial learning loss 
(EMASlide loss) are introduced as they enable the creation of a smoother loss curve with more 
stable convergence, reducing the influence of outliers on training and improving the model’s 
generalization capability.

	 ( ) ( )( )_ ( ) _ ( 1) 1 _ ( )iou mean t t iou mean t t auto iou tα α= ⋅ − + − ⋅ ,	 (12)

	 ( ) ( )( ) 1 exp( )t decay t decay tα τ= = ⋅ − − ,	 (13)

where α(t) is the attenuation factor, which gradually decreases with increasing number of 
training steps t, and decay is a fixed attenuation coefficient, which is set to 0.999 to ensure a 
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long smoothing period without immediately reducing the influence of historical values. 
auto_iou(t) is the average IoU value of the current batch sample, and iou_mean(t) is the IoU 
value after the sliding average.

3.5.	 Attention mechanism

	 In the HEM-YOLO structure, the MPCA module is designed to enhance feature processing. 
The module starts from the input feature graph. 
	 Firstly, Xh ∈ RC×H×1, Xw ∈ RC×1×W, and global average pooling (GAP) X ∈ RC×H×W are obtained 
by the average pool in the X and Y directions. Then, the global features are extracted with 
different spatial information to obtain Xch = GAP(X) ∈ RC×1×1. The features are integrated and 
rearranged to form a richer feature representation. Feature fusion is conducted in the 
concatenation and permuting operations to concatenate Xh and Xw in the channel dimension to 
obtain Xhw ∈ RC×(H+W)×1. The combined information is extracted through a convolution operation 
to obtain the fused feature graph Xhw' ∈ RC×(H+W)×1 and then refined in the convolution layer. In 
this process, multiple layers of convolutional operations capture more important features while 
maintaining computational efficiency. Furthermore, the features extracted in the convolution 
layer are nonlinearly transformed by the Sigmoid activation function. The features are then 
divided and averaged to generate the attention weight Ahw = σ(Conv1×1(Xhw')) ∈ RC×(H+W)×1, 
which is divided into Ah ∈ RC×H×1 and Aw ∈ RC×1×W. The weight is used to recalibrate the input 
features in subsequent multiplication operations, providing emphasized X and Y direction feature 
weights (X Weight and Y Weight in Fig. 5). For the final feature output, the weighted features in 
the X and Y directions are multiplied by the original features. Ah and Aw are applied to Xh and Xw. 
On the other hand, the average value of Ahw is weighted to the global feature Xch. The most 
valuable information is extracted by obtaining Xh' = Xh·Ah, Xw' = Xw·Aw, and Xch' = Xch·mean(Ahw). 
Through further multiplication, these enhanced features are integrated to generate the output of 
the MPCA module, enhancing the reasoning power of the entire model as follows.

	 ( ) ( ) ( ) ( )' ' 'h w chMPCA X X X X Xσ σ= ⋅ ⋅ ⋅ 	 (14)

	 In the modular design (Fig. 5), the MPCA module improves the capability to distinguish 
features and ensures efficient and effective computation. This module plays a key role in feature 
selection and enhancement and contributes to the improvement in the overall performance of the 
model.

3.6	 Dataset, equipment, and evaluation

	 In the experiment, a well-constructed dataset composed of a large number of high-
dimensional images is required so that the model can extract rich and diverse features for 
accurate smoke and fire detection. Therefore, we collected images online from the flame and 
smoke detection dataset (FASDD), ‘FireAndSmokeDataset1’, and ‘Fire Smoke DetectionDataset2’, 
which contain images of fire and smoke.(35,36) The dataset constructed in this study was filtered 
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and annotated using LabelImg software. 1200 images were split randomly into the training, test, 
and validation sets at a ratio of 7:2:1. An online data augmentation library, Albumentations, was 
used for median blur, blurring, and grayscale transformation. Contrast-limited adaptive 
histogram equalization was applied to enhance the robustness, feature extraction capability, 
contrast enhancement, denoising capability, and data diversity of the model.
	 The model was created in Python in the PyTorch deep learning framework. PyTorch is an 
open-source machine learning framework developed by Meta AI, widely recognized for its 
flexibility and strong graphic processing unit (GPU) acceleration. It is widely used in deep 
learning research and development.(37) Compute unified device architecture (CUDA) 12.6.65 
was used to speed up the training process. CUDA is a parallel computing platform and API 
developed by NVIDIA. It enables the use of NVIDIA GPUs, a paradigm known as general-
purpose computing on graphics processing units (GPGPU). CUDA is the backbone of GPU 
acceleration for deep learning frameworks such as PyTorch.(38) The hardware used in the 
experiment included a 12th-generation Intel® Core™ i3-12100F CPU and an NVIDIA RTX 
4060 Ti GPU with 8 GB of video memory. In the training, the input image size was set as 640 × 
640 pixels, and the optimizer with weight decay in stochastic gradient descent was employed. 
The model was trained for 200 epochs with an early stop strategy to prevent overfitting. The 
batch size was 32, and the initial learning rate was 0.01.
	 Mean average precision (mAP) was calculated to evaluate model performance. The 
complexity of the model was measured in giga floating point operations per second (GFLOPs), 
whereas the model size was evaluated using the parameters. Generally, the smaller the number 
of parameters and GFLOPs, the lower the computational load on the model. 

Fig. 5.	 (Color online) MPCA structure.
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4.	 Results and Discussion

4.1	 Effectiveness of enhanced attention mechanism

	 To evaluate the effectiveness of the MPCA module, YOLOv8n was used as the backbone 
network. Other attention mechanisms, such as SpatialGroupEnhance, the lattice-structured 
kernel block (LSKBlock), and the simple attention module (SimAM), were integrated into the 
SPPF module. These attention mechanisms were used to train the model and verify the purposes 
at the backbone network. Table 1 presents the target parameters for effectiveness evaluation.
	 The performances of the models with different attention mechanisms were evaluated by 
comparing detection performance (Table 2).

Table 1
Target parameters of effectiveness evaluation of attention mechanism.

Model
Number of 
parameters 
(million)

FLOPs 
(GigaFLOPs)

Model 
(Megabyte) mAP (%) Precision (%) Recall (%)

YOLOv8n 3.01 8.1 6.2 51.1 51.9 50.3
YOLOv8n-SimAM 3.01 8.1 6.2 54.9 57.9 50.5
YOLOv8n-spatial group-
wise enhance (SGE) 3.01 8.1 6.2 53 57.8 51.3

YOLOv8n-transformer-
based prediction attention 
(TPA)

3.01 8.1 6.2 53.3 56.3 52

YOLOv8n-LSKB 3.26 8.1 6.5 52.3 56.8 46.9
YOLOv8n-AFGC 3.07 8.1 6.3 52.4 52.2 50.4
YOLOv8n-extended 
finite-state machine 
(EFSM)

3.07 8.1 6.3 55.3 57.2 50

YOLOv8n-MPCA 3.33 8.1 6.6 56.4 61.3 53.8

Table 2
Performance comparison of different models.

Model
Number of 
parameters 
(million)

FLOPs 
(GigaFLOPs)

Model 
(Megabyte) mAP (%) Precision (%)

YOLOv8n 3.01 8.1 51.1 51.9 50.3
YOLOv8n-HGNetV2 2.35 6.9 45.8 42.6 48.4
YOLOv8n-EMBSFPN 2.12 7.1 55.1 54.9 53.8
YOLOv8n-MPCA 3.33 8.1 56.4 61.3 53.8
YOLOv8n-EMASL 3.01 8.1 52.9 52.8 50.5
YOLOv8n-EMBSFPN-MPCA 
(HEM-YOLO) 1.80 6.0 55.3 59.6 48.7
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	 In training, the YOLOv8n models with different attention mechanisms showed various 
mAPs. The HEM-YOLO model used the EMASlide loss function instead of the IoU loss function 
with an mAP of 59.6% with a smaller number of parameters and FLOPs. The EMASlide loss 
enhanced accuracy. The YOLOv8n-EMBSFPN model optimized the head part and reduced the 
number of parameters and FLOPs by 0.89 M and 1.0, respectively, resulting in a 4% increase in 
mAP and a 3% increase in accuracy compared with YOLOv8n. The YOLOv8n-EMBSFPN 
model reduced the complexity of the model while improving its detection accuracy. The 
backbone structure of the YOLOv8n-HGNetV2 model was modified to reduce the number of 
parameters by 0.66 M and FLOPs by 1.2 G, indicating that the model structure was lighter and 
more efficient. The YOLOv8n-MPCA model with an improved attention mechanism increased 
the number of parameters by 0.32 M with constant FLOPs. This resulted in a 5.3% improvement 
in mAP, a 9.4% improvement in accuracy, and a 3.5% improvement in recall. Compared with the 
original YOLOv8n model, the number of parameters of the HEM-YOLO model was reduced by 
1.21M, mAP was increased by 4.2%, and the accuracy was increased by 7.7%. The HEM-YOLO 
model improved precision and reduced the weight of the model significantly.
	 Table 2 shows that the HEM-YOLO model showed an mAP of 59.6% and a precision of 
48.7%, which indicated that the model’s capability was enhanced to correctly identify and locate 
fires, reducing missed fires and false alarms. HEM-YOLO achieved a higher mAP than the other 
models, indicating superior fire detection. Real-time responsiveness is directly related to a lower 
number of parameters, FLOPs, and model size. The number of parameters, FLOPs, and size of 
the HEM-YOLO model were 1.80 million, 6.0 GigaFLOPs, and 55.3 megabytes, respectively, 
which showed that the model has a significantly reduced size and computational complexity. The 
HEM-YOLO model processed images much faster than other models, making it highly 
appropriate for applications where immediate fire detection is critical, such as surveillance 
systems, drones, or edge devices. The HEM-YOLO model was significantly lighter and more 
efficient than the other models but processed the image in milliseconds to send an almost 
instantaneous alert for quicker intervention. The rapid response, efficient deployment, enabling 
extended operational time, and accurate detection capability make the HEM-YOLO model well 
suited for small devices, such as drones, as it can extend the patrol duration and ensure 
continuous monitoring before significant battery draining occurs. 

4.2	 Ablation experiment
	
	 To examine the effect of improved models on the detection of smoke and fire, ablation 
experiments were conducted with the same parameters. The YOLOv8n and YOLOv8n-EMASL 
models had enhanced loss functions, the YOLOv8n-EMBSFPN model had improved head 
structures, the YOLOv8n-HGNetV2 model had an enhanced backbone network, and the 
YOLOv8n-MPCA model had improved attention mechanisms. The results are illustrated in 
Table 3, in which ‘√’ indicates the improvement.
	 The YOLOv8n algorithms with enhanced attention mechanisms outperformed the original 
YOLOv8 model. The mAP was improved by 4.2% on average. Although FLOPs decreased by 2.1 
G, the number of parameters decreased by 1.21 M. The ablation experiment results verified the 
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effectiveness of the models with enhanced attention mechanisms compared with the traditional 
YOLOv8n model, emphasizing the advantages and applications of the modified models.
	 The YOLOv3, YOLOv5, YOLOv6, and YOLOv8 models were trained using the same dataset 
with their hyperparameters and training parameters. Their results were compared with those of 
the HEM-YOLO model developed in this study. The results shown in Table 4 indicate that the 
HEM-YOLO model improved mAP by 7.7%. In addition, while optimizing FLOPs, the number 
of parameters, precision, and recall were also enhanced.
	 The training results of the YOLOv8n and HEM-YOLO models are shown in Fig. 6. In 
training, the accuracy of the HEM-YOLO model was higher than that of the YOLOv8n model. 
The HEM-YOLO model completed training after 90 epochs using the early stop method, 
whereas the YOLOv8n model required more than 140 epochs for training and learning. The 
precision of the HEM-YOLO model was higher than that of the YOLOv8n model. 
	 Figure 7 verifies the better performance of the HEM-YOLO model than of the YOLOv8n 
model. The YOLOv8n model failed to detect incipient fires, whereas the HEM-YOLO model 
detected them under the same conditions with a higher detection precision. The HEM-YOLO 
model conducted feature fusion and context awareness better and improved overall detection by 
enabling precise location and identification. The HEM-YOLO model assigned higher confidence 
scores to its detections than the YOLOv8n model for the same fire instances. For example, in the 
third row, the second image with a truck with fire, YOLOv8n detected “fire 0.3”, whereas HEM-
YOLO detected “fire 0.9”. This higher confidence indicated that the HEM-YOLO model was 
more certain about its detections, reducing ambiguity. For the small fire on the truck (third row, 
second image), the HEM-YOLO model’s bounding box accurately encompasses the fire, whereas 
the YOLOv8n model showed vague or lower confidence. Although not explicitly showing false 
negatives, the HEM-YOLO model showed better detections and was less likely to miss fire 
instances at a lower false negative rate and higher recall. 
	 Figure 8 presents heat maps, which visualize where the model “looks” or focuses its attention 
to identify a fire. Areas with higher intensity (red/yellow) indicate where the model’s attention is 
concentrated. In the first image pair (hand with fire source), the YOLOv8n model’s heatmap 
shows a diffused attention, spread around the hand and the fire source. In contrast, the HEM-
YOLO model’s heatmap shows more concentrated and localized features on the fire source (the 
bright flame). This indicates that the HEM-YOLO model is more adept at isolating the critical 
“fire” features from the background or surrounding elements. The sharper, more focused heat 

Table 3
Comparison of results of ablation experiments using different models.

YOLOv8n YOLOv8n-
HGNetV2

YOLOv8n-
EMBSFPN

YOLOv8n-
MPCA

YOLOv8n-
EMASL

Number of 
parameters 
(million)

FLOPs 
(GigaFLOPs) mAP (%)

√ 3.01 8.1 51.1
√ √ 2.35 6.9 45.8
√ √ √ 1.47 5.9 43.6
√ √ √ √ 1.8 6.0 51.7
√ √ √ √ √ 1.8 6.0 55.3
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Fig. 6.	 (Color online) Comparison of mAP between YOLOv8n and HEM-YOLO models.

Fig. 7.	 (Color online) Comparison of detection results between (a) YOLOv8n and (b) HEM-YOLO models.

Table 4
Comparison of results of different YOLO models.

Model Number of parameters 
(million)

FLOPs 
(GigaFLOPs) Model (Megabyte) mAP (%) Precision (%)

YOLOv3 12.13 18.9 52.5 48.1 49.2
YOLOv5 2.50 7.1 50.6 48.5 46
YOLOv6 4.23 11.8 49.7 47.3 49.8
YOLOv8n 3.01 8.1 51.1 51.9 50.3
HEM-YOLO 1.80 6.0 55.3 59.6 48.7

(a) (b)
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maps of the HEM-YOLO model suggest its superior capability to distinguish fire features from 
other visually similar elements, which is crucial for reducing false positives and improving 
precision. 
	 By focusing more precisely on the fire, the HEM-YOLO model was more robust to cluttered 
backgrounds or challenging lighting conditions, as it can effectively filter out irrelevant 
information. Figures 7 and 8 show the quantitative improvements in the HEM-YOLO model’s 
capability to provide higher confidence, more accurate bounding boxes, and more vivid heat 
maps. This shows the superiority of the HEM-YOLO model in fire detection over the YOLOv8n 
model. The HEM-YOLO model provides a better visualization of incipient fires, offering a 
refined and specific distribution that enhances the detection and representation of small-scale 
fires. The model also consistently demonstrates superior detection accuracy, better localization, 
and enhanced focus on relevant features for fire detection compared with the baseline YOLOv8n 
model. This leads to more reliable and precise fire detection.
	
5.	 Conclusions

	 In this study, an enhanced smoke and fire detection algorithm, the HEM-YOLO model, was 
developed to address the limitations of traditional sensor- and video-based detection 
technologies, particularly in complex environments with poor image resolution and difficult 
feature extraction. On the basis of YOLOv8, the HEM-YOLO model incorporates multiple 
improvements, such as HGNetV2 as a lightweight yet efficient backbone network, the 
EMNSFPN detector head for complex pattern recognition, and MPCA for effectively capturing 

Fig. 8.	 (Color online) Comparison of heat maps of YOLOv8n and HEM-YOLO models.
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local and global features. Additionally, the EMASlide loss is employed to modify the weights of 
negative and positive samples to enhance the recognition of small target classes. These 
enhancements collectively improve the model’s adaptability, detection accuracy, precision, and 
recall under various environmental conditions, including diverse lighting and airflow. Ablation 
experiment results confirmed the individual and combined contributions of each component to 
overall model performance. Compared with the YOLOv8n models with different attention 
mechanisms, the HEM-YOLO model demonstrated a 4.2% increase in mAP, a 7.7% boost in 
accuracy, and a reduction of 1.21M parameters, validating its efficiency and lightweight design. 
Moreover, it meets real-time detection requirements while significantly reducing computing and 
storage demands, facilitating deployment on resource-constrained platforms. These results 
highlight the HEM-YOLO model’s potential for applications in emergency management, 
industrial safety monitoring, and intelligent surveillance. In future research, expanded datasets 
need to be used for the model’s optimization in embedded and edge computing environments to 
improve its scalability and adaptability.
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