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	 The dynamic control synchronization schemes proposed in previous studies can synchronize 
chaotic systems with different initial values of the same type; however, not all chaotic systems 
can achieve synchronization. Therefore, previous synchronization schemes have been improved. 
In this study, we investigated the synchronization of two entirely different chaotic systems using 
the ameliorated dynamic control scheme, where a new controller design is integrated into the 
system signals to achieve synchronization between distinct systems. The stability of 
synchronization between the two different chaotic systems is analyzed using the Lyapunov 
theory and the master stability function approach. The results confirm that the previously 
proposed improved scheme is effective and can be utilized in the development of chaotic 
synchronization decrypters.

1.	 Introduction

	 Synchronization is a widely studied and fascinating topic in the field of chaotic systems. In 
some instances, specific constraints must be applied to achieve synchronization, a process 
referred to as forced or controlled synchronization. In recent years, there has been an increasing 
interest in this area of research, leading to the exploration of various synchronization techniques 
and modes,(1–7) which have resulted in numerous technical applications.(8–11)

	 A global synchronization method applicable for all systems has long been the goal of 
researchers. However, some synchronization schemes have restricted applicability. For instance, 
in a previous study, a synchronization scheme that utilized a static controller was unsuccessful 
in synchronizing the Rössler system.(12) To overcome this limitation, Ramirez et al.(12) 
introduced a scheme featuring a dynamic controller made up of a first-order system, as opposed 
to the traditional static controller, and showed that their synchronization strategy was effective 
for a wide range of dynamical systems, including chaotic ones. However, does this strategy 
really apply to all chaotic systems?
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	 After reevaluating the scheme, we discovered that while it was appropriate for most 
dynamical systems, it was not applicable to all chaotic systems. For instance, it cannot 
synchronize the Lorenz and Lü chaotic systems.(13) In this study, we propose an improved 
synchronization scheme to address this issue. We designed a dynamic controller driven by the 
proportional differences between the master and slave system signals. By simultaneously 
measuring the state variables in both the master and slave systems and introducing the dynamic 
controller into the slave system’s signals, we enhance the coupling between the two systems. The 
Lorenz and Lü chaotic systems were used as a test case in this study, employing the master 
stability function(14) along with the Lyapunov indirect method(15) to examine the partial stability 
of the error function, confirming that the proposed synchronization scheme is effective. The 
results of this research can be applied to the development of chaotic synchronization sensors.

2.	 Synchronization Scheme Using a Dynamic Controller

	 Consider the master–slave system described below.

	 ( ): m m

m m

x F x
y x

 =


=



Master 	 (1)

	 ( ): s s

s s

x F x Bh
y Cx

 = −


=



Slave 	 (2)

	 [ ]{: m sh h kC x xα= − − −Dynamic controllers 	 (3)

	 In this context, xm ∈ n represents the state vector of the master system, whereas xs ∈ n 
denotes the state vector of the slave system. The outputs of the two systems are ym ∈  and 
ys ∈ , respectively. It is assumed that function F is sufficiently smooth, B is a constant column 
vector in n, C is a constant row vector in 1 × n, h is the dynamic control input in , k is the 
coupling strength in +, and α is a design parameter in +.
	 Suppose that the nonlinear function F comprises both linear and nonlinear components:

	 ( ) ( ) , ,,i i iF x ix Ax f m s= + = 	 (4)

where A is a constant matrix in n × n.
	 Thus, the error dynamics for the systems described in Eqs. (1)–(3) can be expressed as
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where m se x x= − , ( ) ( ) ( ), m sg t e f x f x= − , e ∈ 1n+
  is the state vector, and matrix A ∈ ( 1) ( 1)n n+ × +

  
is assumed to be Hurwitz.(16) Because the paths of the master system are confined within certain 
limits, the term ( ),g t e  can be considered a perturbation that will disappear on e if it meets the 
following condition:

	 ( ) 1
22

,, 0, ,ng t e e t e Dγ +≤ ∀ ≥ ∀ ∈ ⊂    	 (6)

where 2  represents the Euclidean norm. The stability characteristics of the error dynamics in 
Eq. (5) can be analyzed as follows. First, let us examine the quadratic Lyapunov function.

	 ( ) TV e e Pe=  

	 (7)

Here, P ∈ ( 1) ( 1)n n+ × +
  is a symmetric matrix that is positive definite and acts as the solution to the 

Lyapunov equation.

	 TPA A P Q+ = − 	 (8)

Here, Q ∈ ( 1) ( 1)n n+ × +
  is a positive definite and symmetric matrix; a common choice is Q = I, 

where I is the identity matrix of the appropriate size. Furthermore, a unique solution for Eq. (8), 
P = PT > 0, always exists, as it has been assumed that A in Eq. (5) is Hurwitz.
	 Next, by performing calculations, we find that the time derivative of the Lyapunov function 
in Eq. (7) meets the following condition:

	 ( ) ( ) ( ) 2
2 ,2min maxV e Q P eλ λ γ ≤ − − 



 

	 (9)

where λmin(•) and λmax(•) represent the minimum and maximum eigenvalues, respectively.
	 If A is assumed to be Hurwitz, a sufficient condition for the local stability of the system in 
Eq. (5) is that the bound γ on the perturbation term in Eq. (6) is sufficiently small to meet the 
following requirement:

	 ( )
( )2

min

max

Q
P

λ
γ

λ
< .	 (10)

	 As a result, the time derivative of the Lyapunov function is nonpositive, indicating that the 
error dynamics are asymptotically stable and that the master and slave systems achieve 
synchronization.
	 Although the aforementioned scheme can synchronize most pairs of systems, it is not 
universally applicable. For instance, the synchronization approach with a dynamic controller 
does not succeed with the Lorenz and Lü chaotic systems. To address this issue, we propose an 
improved synchronization scheme that incorporates dynamic controllers.
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3.	 Ameliorated Synchronization Scheme Using Dynamic Controllers

	 Consider the master–slave system described below.

	 ( ): m m

m m

x F x
y x
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

=
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Master 	 (11)
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	 [ ]: m sh h kC x xα= − − −Dynamic controllers 	 (13)

	 In this context, xm ∈ n represents the state vector of the master system, whereas xs ∈ n 
denotes the state vector of the slave system. The outputs of the two systems are ym ∈  and 
ys ∈ , respectively. It is assumed that the functions F and S are sufficiently smooth, B is a 
constant column vector in n, C is a constant row vector in 1 × n, h is the dynamic control input 
in , k is the coupling strength in +, and α is a design parameter in +.
	 Suppose that the nonlinear functions F and S comprise both linear and nonlinear components:

	 ( ) ( )i i iF x Ax f x= + ,	 (14)

	 ( ) ( ) ( )s s sS x F x M x= − ,	 (15)

where A is a constant matrix in n × n and M is also a matrix in n × n that can be used to adjust or 
modify the dynamic behavior of the slave system.
	 Thus, the error dynamics for the systems described in Eqs. (11)–(13) can be expressed as

	 ( ),
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0
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where m se x x= −  and ( ) ( ) ( ) ( ), m s sE t e f x f x M x= − −  is the state vector.
	 As the trajectories of the master system are bounded, the term ( ) ( ) ( ), m sg t e f x f x= −  can 
be considered a perturbation. Thus, the error dynamics for the systems can be expressed as
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where e ∈ n+1 is the state vector, the matrix A ∈ ( 1) ( 1)n n+ × +
  is assumed to be Hurwitz,(16) and 

( ),m t e  and ( ),g t e  are the error and perturbation terms, respectively.
	 Finally, the error dynamics of the system can be expressed as

	 ( ) ( ), , .
e e

A m t e g t e
h h

   
= + +   

   



 



	 (19)

4.	 Synchronized Lorenz and Lü Chaotic Systems

	 The Lorenz chaotic system(17) is a famous example of chaotic behavior in dynamical systems. 
It is described by the following equations:
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	 (20)

where σ = 10, β = 8/3, and ρ = 28.
	 The Lü chaotic system(18) is also an important model of 3D chaotic systems. It can be 
described as

	

( ) ,

,

,
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
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	 (21)

where a = 36, b = 3, and c = 20.
	 The Lorenz and Lü chaotic systems are both classic chaotic systems with high sensitivity and 
complex dynamic behavior. Now, we regard these two systems as master–slave systems, 
described as follows.
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	 When the error functions are defined as 1 m se x x= − , 2 m se y y= − , and 3 m se z z= − , the 
dynamics can be expressed in the form of Eq. (17) with
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where σ = 10, β = 8/3, ρ = 28, a = 36, b = 3, and c = 20.
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	 According to the Rouih–Hurwitz stability criterion,(14) the characteristic polynomial of 
matrix A will have negative roots if and only if the following condition is satisfied:

	 k = 1600 and 102.82772345116345 ≤ a < 135.27539822911677.

	 We selected and designed the parameters α and k in the control term to ensure that the chaotic 
system, with the control term applied, complies with the support of Lyapunov stability, thereby 
achieving chaotic synchronization. We can certainly find appropriate values for α and k to 
achieve chaotic synchronization.
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	 As a result, the error dynamics of the systems in Eqs. (22)–(24) are globally asymptotically 
stable, meaning that the master and slave chaotic systems will synchronize asymptotically.
	 Figure 1 shows the changes in the 3D error equations over time. We start to add dynamic 
control from 1000 ms. The change in the curve in the figure shows the effect of dynamic control. 
After 1000 ms, the curve gradually becomes stable and close to zero, which shows that the two 
systems are synchronized.

5.	 Discussion

	 The synchronization method using a dynamic controller can successfully achieve 
synchronization in some cases where the traditional master–slave approach with a static 
controller fails. However, it is not universally applicable to all systems. To address this limitation, 
we propose an improved synchronization method that incorporates dynamic controllers. The 
strength of our proposed approach lies in enhancing the coupling between systems by increasing 
the dimensionality of the coupling. In certain systems, simply increasing the coupling strength 
within the same dimension may not be sufficient for synchronization. In such cases, the Rouche–
Hurwitz stability criterion suggests that it is not possible to find appropriate values for the design 
parameter α and the coupling strength k that would make the error dynamics of the systems 
asymptotically stable. Our research includes an in-depth comparison of the number of 
dimensions in the control term. It focuses on improving the dynamic control synchronization 
method by transforming a system that originally cannot achieve synchronization into one that 
can, rather than comparing its performance with other different control methods.
	 To overcome this challenge and improve the overall coupling effect, our enhanced scheme 
boosts the coupling strength across multiple dimensions, effectively introducing coupling in two 
distinct dimensions simultaneously. This strategy results in the desired synchronization 
outcome.

Fig. 1.	 (Color online) Time series of (a) xm − xs, (b) ym − ys, and (c) zm − zs.

(a) (b)

(c)
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6.	 Conclusions

	 In the pursuit of a more comprehensive and effective approach to synchronize all systems, we 
proposed an enhanced synchronization scheme that employs dynamic controllers. This novel 
scheme is specifically designed to address the synchronization challenges of chaotic systems, 
effectively synchronizing both the Lorenz and Lü chaotic systems, which were initially 
unsynchronized. The key innovation in our approach lies in the enhancement of the coupling 
mechanism, particularly by expanding the dimensionality of the coupling terms. Through this 
adjustment, the synchronization is achieved more efficiently and robustly. Our result validates 
the feasibility and effectiveness of this proposed synchronization method.
	 In this research, we primarily focused on addressing the challenges encountered in dynamic 
control synchronization—specifically, the inability to achieve synchronization between two 
different chaotic systems. We proposed a novel improvement to achieve chaotic synchronization 
and conducted a theoretical investigation. First, we employed Lyapunov stability to support the 
validity of our approach and used numerical simulation programs to verify its feasibility. The 
design of circuit experiments is the next phase of our research. We have already transformed the 
general equations of the chaotic system into circuit equations and are currently selecting 
appropriate circuit components to realize the physical implementation. Our goal is for the 
proposed improvement in dynamic control synchronization to gain theoretical recognition, 
providing a foundation for further implementation of actual circuit synchronization. 
	 Moreover, the versatility of this approach suggests its potential application in developing 
advanced chaos-synchronization sensors, which can be instrumental for monitoring and 
controlling complex systems in various fields of science and engineering.
	 In our future research, we will conduct a detailed evaluation of computational complexity, 
including the computation time and resource consumption of the controller under different 
system dimensions. Additionally, we will explore ways to further reduce computational costs 
while maintaining fast synchronization.

References

	 1	 B. R. Andrievskii and A. A. Selivanov: Autom. Remote Control 79 (2018) 957. https://doi.org/10.1134/
S0005117918060012

	 2	 H. Tirandaz: Nonlinear Eng. 7 (2018) 45. https://doi.org/10.1515/nleng-2017-0050
	 3	 U. E. Kocamaz, B. Cevher, and Y. Uyaroğlu: Chaos, Solitons Fractals 105 (2017) 92. https://doi.org/10.1016/j.

chaos.2017.10.008
	 4	 P. Bagheri, M. Shahrokhi, and H Salarieh: J. Vib. Control 1 (2015) 1. https://doi.org/10.1177/1077546315580052
	 5	 I. Pchelkina and A. L. Fradkov: IFAC Proc. Volumes 46 (2013) 59. https://doi.org/10.3182/20130703-3-

FR-4039.00034
	 6	 A. A. Selivanov, J. Lehnert, T. Dahms, P. Hövel, A. L. Fradkov, and E. Schöll: Phys. Rev. E 85 (2012) 016201. 

https://doi.org/10.1103/PhysRevE.85.016201
	 7	 A. Fradkov, H. Nijmeijer, and A. Markov: Int. J. Bifurcation Chaos 10 (2000) 2807. https://doi.org/10.1142/
	 8	 A. Ouannas, M. Abdelli, Z. Odibat, X. Wang, V. T. Pham, G. Grassi, and A. Alsaedi: Complexity 2019 (2019) 

1. https://doi.org/10.1155/2019/2832781
	 9	 H. H. Choi1 and J. R. Lee: Mobile Inf. Syst. 2017 (2017) 1. https://doi.org/10.1155/2017/8932631
	10	 D. Eroglu, J. S. W. Lamb, and T. Pereira: Contemp. Phys. 58 (2017) 207. https://doi.org/10.1080/00107514.2017.1

345844
	11	 A. A. Nasir, S. Durrani, H. Mehrpouyan, S. D. Blostein, and R. A. Kennedy: EURASIP J. Wireless Commun. 

Networking 2016 (2016) 38. https://doi.org/10.1186/s13638-016-0670-9

https://doi.org/10.1134/S0005117918060012
https://doi.org/10.1134/S0005117918060012
https://doi.org/10.1515/nleng-2017-0050
https://doi.org/10.1016/j.chaos.2017.10.008
https://doi.org/10.1016/j.chaos.2017.10.008
https://doi.org/10.1177/1077546315580052
https://doi.org/10.3182/20130703-3-FR-4039.00034
https://doi.org/10.3182/20130703-3-FR-4039.00034
https://doi.org/10.1103/PhysRevE.85.016201
https://doi.org/10.1142/
https://doi.org/10.1155/2019/2832781
https://doi.org/10.1155/2017/8932631
https://doi.org/10.1080/00107514.2017.1345844
https://doi.org/10.1080/00107514.2017.1345844
https://doi.org/10.1186/s13638-016-0670-9


Sensors and Materials, Vol. 37, No. 8 (2025)	 3503

	12	 J. P. Ramirez, E. Garcia, and J. Alvarez: Commun. Nonlinear Sci. Numer. Simul. 80 (2020) 1. https://doi.
org/10.1016/j.cnsns.2019.104977

	13	 D. Li: Phys. Lett. A 372 (2008) 387. https://doi.org/10.1016/j.physleta.2007.07.045
	14	 L. M. Pecora and T. L. Carroll: Phys. Rev. Lett. 80 (1998) 2109. https://doi.org/10.1103/PhysRevLett.80.2109
	15	 C. Pukdeboon: J. Appl. Sci. 10 (2011) 55. https://www.researchgate.net/publication/267976343
	16	 P. C. Parks: Math. Proc. Cambridge Philos. Soc. 58 (1962) 694. https://doi.org/10.1017/S030500410004072X
	17	 E. N. Lorenz: J. Atmos. Sci. 20 (1963) 130. https://doi.org/10.1177/0309133308091948
	18	 J. Lü and G. Chen: Int. J. Bifurcation Chaos 12 (2002) 659. https://doi.org/10.1142/S0218127402004620

https://doi.org/10.1016/j.cnsns.2019.104977
https://doi.org/10.1016/j.cnsns.2019.104977
https://doi.org/10.1016/j.physleta.2007.07.045
https://doi.org/10.1103/PhysRevLett.80.2109
https://www.researchgate.net/publication/267976343
https://doi.org/10.1017/S030500410004072X
https://doi.org/10.1177/0309133308091948
https://doi.org/10.1142/S0218127402004620

