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	 In this study, we investigated the application of large language models (LLMs), a subset of AI 
systems specifically designed for natural language understanding and generation, in 
undergraduate electronics design competitions, with a focus on how these AI tools can facilitate 
human–AI collaboration. Using the National Undergraduate Electronics Design Contest as a 
case study, we examined how LLMs can enhance the design process, improve problem-solving 
skills, and facilitate the iterative optimization of engineering solutions. The design task centers 
on an ultrasonic audio jamming system (commonly referred to as a “recording shielding 
system”) that integrates key sensor-related technologies, including ultrasonic transducers, 
microphone-based audio monitoring, and frequency-domain signal analysis using the fast 
Fourier transform. These components form a functional sensor application scenario, where the 
system detects and discriminates audio signals to enable a dynamic response. In this study, we 
examined the application of LLM-driven tools to assist students during the design and 
development of the sensor-based system, demonstrating how these tools supported students in 
addressing complex technical challenges. We highlight the advantages of using AI for in-design 
proposal generation, system optimization, and troubleshooting, while also addressing the 
challenges of ensuring that AI-generated solutions are accurate and feasible within competition 
constraints. The findings suggest that LLMs make a significant contribution to students’ 
learning outcomes, fostering creativity, critical thinking, and technical proficiency in real-world 
engineering contexts. In this paper, we offer valuable insights into the evolving role of AI in 
enhancing educational practices in engineering design.
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1.	 Introduction

1.1	 Overview and impact of the National Undergraduate Electronics Design Contest 
(NUEDC) in China

	 NUEDC, co-initiated by China’s Ministry of Education and Ministry of Industry and 
Information Technology, is a nationwide academic competition designed to advance curriculum 
reform in electronic information disciplines and cultivate university students’ innovation 
capabilities, teamwork, and engineering practice skills.(1) Established in 1994, the contest is 
typically held biennially in September of odd-numbered years since 1997, and the contest spans 
four days and three nights [Fig. 1(a)]. It operates under a “unified national problems, regional 
organization” structure with a “semi-open, relatively centralized” format. Participating student 
teams (usually three-member teams) independently complete the entire task—from design, 
fabrication, and debugging to report writing—within designated venues [Fig. 1(b)]. While 
consulting resources and internal team discussion are allowed, any form of guidance or 
intervention from teachers or external individuals and inter-team discussions are strictly 
prohibited. The problems cover a wide range of electronic information technology areas, 
including power supplies, signal sources, RF/wireless systems, amplifiers, instrumentation, data 
acquisition and processing, and control systems, emphasizing the integration of theory and 
practice, system integration, and innovation.(1)

	 As one of the largest and most influential undergraduate competitions in China’s electronic 
information field, NUEDC plays a vital role in talent development and industry–academia 
integration. For instance, the 2023 contest attracted over 60000 students in 20939 teams from 
1134 institutions nationwide.(2) NUEDC significantly promotes practical teaching reform in 
universities, markedly enhancing students’ engineering practice abilities, innovative thinking, 
and teamwork skills. Furthermore, long-term sponsorship and support from renowned 

Fig. 1.	 (Color online) (a) NUEDC 2024 finals. (Source: https://www.nuedc-training.com.cn/) (b) Students from 
Shandong Polytechnic (the present research team) prepared for the competition.

(a) (b)
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companies such as Texas Instruments (TI) strengthen the ties between academia and industry, 
ensuring that the contest content reflects current industry trends and technological demands.(3) 
Furthermore, achievements in the NUEDC are widely recognized as a key indicator of students’ 
practical innovation capabilities, positively impacting their prospects for postgraduate studies 
and employment.

1.2	 Knowledge construction in university engineering science education driven by LLMs: 
Human–AI collaboration approach

	 In recent years, large language models (LLMs)—a specialized form of AI that focuses on 
processing and generating human-like text—have gradually entered higher education, 
particularly in engineering science, significantly transforming the way knowledge is constructed. 
With the development and application of these models, the human–AI collaboration teaching 
model has emerged as an innovative learning approach, combining the strengths of both human 
instructors and AI models to enhance students’ learning outcomes and creative abilities 
significantly. In this paper, we explore how LLMs have driven knowledge construction in the 
engineering science domain in recent years. We analyze the practice and challenges of the 
human–AI collaboration model.
	 The human–AI collaboration model involves an active interaction between students and AI in 
the learning environment. In this model, AI is not just a tool but an active participant in the 
learning process, offering real-time feedback and adjusting to students’ learning progress and 
needs. In this study, such collaboration is applied to the design of an ultrasonic recording 
shielding system—a representative sensor-based system that integrates audio sensing, analog 
signal conversion, and frequency analysis. These techniques are essential to many modern 
sensor systems, making this a meaningful case of LLM-driven knowledge construction in a 
sensing context. This model emphasizes AI as an active collaborator in learning, enhancing 
learning efficiency and helping students achieve better outcomes.(4) Such AI applications 
enhance students’ learning experience and allow instructors to focus more on high-level 
guidance and academic research.(5)

	 LLMs can be applied in engineering science education not only to teach basic knowledge but 
also to foster higher-order skills and assist with professional research. For instance, Bernabei et 
al.(6) found that students using LLMs for engineering design and problem solving were able to 
increase the effectiveness of their learning and accelerate their understanding of complex 
concepts. These models provide precise calculations, visualizations, and explanations in areas 
such as mathematical derivations, physical simulations, and engineering design, even suggesting 
optimization strategies during the design process. Moreover, Filippi and Motyl(7) highlighted the 
widespread use of LLMs in engineering education for course assistance, problem solving, and 
academic research. These models also significantly enhance academic discussions and critical 
thinking, enabling students to approach problems from multiple perspectives and conduct a 
more profound analysis.
	 This human–AI collaborative approach is especially valuable in competition-oriented 
education environments. In many engineering competitions, students need to learn and apply 
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complex theories and techniques rapidly, and AI can help them analyze problems, design 
solutions, and perform simulation tests. For example, the ChatGPT-powered intelligent car 
racing competition training model proposed by Chen et al.(8) uses AI to assist students in 
problem exploration and solution optimization, significantly enhancing their performance in 
competitions.
	 Although LLMs have brought significant learning benefits to engineering education, there 
are challenges in practice. First, AI-generated responses may not always be accurate, especially 
when handling highly specialized problems, leading to potential errors or biases.(9) This 
necessitates instructors’ additional guidance and corrections. Moreover, the reasoning 
capabilities of current AI models are still not at the level of human experts, limiting their use in 
more advanced academic problems.(10) 

	 In this study, instructors act as domain experts and design reviewers. Although direct 
intervention during the competition is prohibited, instructors provide guidance in pre-
competition training and simulation, helping students assess the feasibility of AI-generated 
proposals, identify flaws, and refine designs on the basis of engineering best practices. Their 
role is critical in bridging the gap between AI suggestions and real-world implementation 
constraints.

1.3	 Study objective

	 In this study, we explore how LLMs can foster human–AI collaboration in undergraduate 
electronics design competitions. Specifically, we aim to investigate the integration of LLM-
driven AI tools into knowledge construction and design processes, enhancing students’ learning 
experiences and competitive performance. NUEDC serves as the primary case study, 
highlighting its role in promoting innovation, teamwork, and practical engineering skills among 
students. We examine how LLMs can assist students in generating innovative design proposals, 
optimizing technical solutions, and addressing real-world challenges encountered during these 
competitions. We identify the benefits and limitations of incorporating LLMs into such high-
pressure, performance-oriented environments and assess their potential for improving the 
overall educational experience in engineering design. Additionally, we seek to provide insights 
into the practical application of human–AI collaboration models in fostering creativity, problem 
solving, and iterative learning, which are essential skills in modern engineering education.
	 The paper is organized as follows. In Sect. 1, we outline the context of the NUEDC and 
introduce human–LLM collaboration in engineering education. In Sect. 2, we describe the 
LLM-assisted design workflow of a simple recording shielding system, detailing the iterative 
interactions among students, LLMs, and instructors. In Sect. 3, we present the system 
implementation, focusing on design integration, optimization, and feasibility under competition 
constraints. In Sect. 4, we discuss the collaborative model, compare it with related work, and 
identify key implications and limitations. In Sect. 5, we conclude the study and outline directions 
for future research on LLM-supported design and learning systems.
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2.	 Optimal Design of Simple Recording Shielding System by LLMs

2.1	 Simple recording shielding system design: Tasks and requirements

	 In this section, we introduce one of the tasks for the 2024 NUEDC Regional Competition and 
the Preliminary Competition of the Simulation Electronic System Design Topic—designing an 
ultrasonic audio jamming system, officially titled in the competition as a “Simple Recording 
Shielding System”.(11) This system aims to emit targeted ultrasonic interference to prevent audio 
recording by nearby devices while allowing normal human conversation to proceed unaffected. 
Unlike physical shielding, this design relies on inaudible sound waves to disrupt microphone 
input, a method grounded in acoustic interference rather than mechanical isolation (see Fig. 2). 
The system consists of two main components: the signal generator and the audio monitoring/
recognition module. The sound source device is required to emit audio signals with an intensity 
of approximately 50 dB/1 m (equivalent to everyday human speech), a duration of at least 10 s, 
and the ability to replay. The recording/playback device must receive and record audio signals 
within a frequency range of 100 Hz to 20 kHz and include storage capable of recording for at 
least 10 s. The sound source and recording/playback devices can be implemented using 
smartphones.
	 In terms of specific requirements, the signal generator must emit effective shielding signals 
with a shielding distance ≥1 m and a shielding angle ≥60° (see Fig. 3). The audio monitoring and 
recognition module must detect the presence or absence of audio signals and, when no audio is 
present, the signal generator must be automatically controlled to stop and turn off the LED 
indicator. The signal generator’s input power must be ≤6 W, with an output power adjustable 
between 1 and 4 W in 1 W steps. The system must also identify different types of audio signal 
and selectively shield voice or music signals on the basis of the recognized type. Finally, a 
detailed design report covering the design process and related testing must be submitted.

Fig. 2.	 Schematic of working principle of ultrasonic audio jamming system, which emits directional sound waves 
to interfere with microphone recordings.
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	 The instructions specify that the signal generator should use a low-frequency ultrasonic 
transducer to generate the shielding signal. This ultrasonic signal is inaudible to humans but 
effective at blocking recording devices. Care must be taken to avoid excessive power output and 
direct exposure to humans to prevent harm when using ultrasonic transducers. Additionally, 
shielding distance refers to the maximum straight-line distance at which the shielding signal can 
block recordings, and shielding angle refers to the angular coverage of the signal. During the 
design process, test ports should be reserved to facilitate the testing of parameters such as the 
power input of the signal generator. Throughout this process, using commercially available 
recording shielding products for modification is prohibited; all designs must be self-developed 
and constructed.

2.2	 LLM-generated design proposal and optimization

	 We employed the Gemini 2.0 Flash Thinking Experimental to generate the design proposal. 
Table 1 provides a brief introduction, followed by a table that summarizes the key points of the 
process. The table presents the evolution of the design for the ultrasonic recording jamming 
system, a device that actively interferes with microphones using sound waves by summarizing 
student queries (P01–P06), Gemini’s deep thought process (T01–T06), and the corresponding 
responses (R01–R06). It reflects the progression from initial requirement definition and 
problem breakdown to detailed module design and overall system integration, incorporating 
instructor feedback on feasibility, implementation challenges, and optimization directions. The 
detailed process is presented as follows.
(1)	�Initial Inquiry: The entire workflow of generating and optimizing the design proposal 

involves a multi-stage, iterative process that fully reflects the comprehensive balance between 
theoretical analysis, solution conception, expert feedback, and practical feasibility 
considerations. Initially, the participating students raised questions (P01) on the basis of the 
competition problem, clarifying the required basic functions and technical specifications the 

Fig. 3.	 Effective jamming distance and angle for ultrasonic signal emitted by audio jamming system.
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system needs to meet, such as shielding distance, shielding angle, power control, and audio 
signal monitoring and recognition requirements. 

(2)	�Model Planning: On the basis of this preliminary inquiry, Gemini initiated its deep-thinking 
process (T01), breaking down the complex problem into several core modules. It then 
provided preliminary plans for each module’s technology paths, component selection, and 
implementation methods, eventually presenting an overall design solution (R01).

(3)	�Instructor-guided Refinement: Building on the initial solution, instructors prompted students 
to critically review AI’s responses, pointing out potential shortcomings in implementation 
difficulty, real-world application, and time constraints. These guided revisions prompted the 

Table 1
LLM-generated processes of design proposal and optimization.
Phase ID User Prompts (P) LLM Deep Thoughts (T) LLM Deep Response (R)

P01/T01/R01

Initial competition 
requirements: design a 

recording shielding system 
with a signal generator and an 
audio monitoring module, with 
specified performance metrics.

Analyze the problem, 
decompose core functions 

(shielding effect, audio 
detection, power control, and 

signal recognition), and outline 
initial implementation ideas.

Provide a detailed plan 
with system modules, basic 

working principles, and initial 
implementation methods.

P02/T02/R02

Request annotations 
mapping each part to specific 

requirements, checking for 
conflicts, and generating a 

design report outline.

Analyze design requirements, 
verify internal consistency, and 
formulate detailed annotations 

and a report outline with 
translation considerations.

Revise the plan with clear 
requirement mappings and 

present the design report outline 
with expert feedback.

P03/T03/R03

Request a more complete design 
for the audio monitoring/

identification module, including 
hardware, circuit design, 

software implementation, and 
testing optimization.

Detail the design of the audio 
module, discussing the selection 

of components (microphone, 
op-amp, filter, ADC, and 
MCU), circuit structure, 

software algorithms, and testing 
strategies.

Present a comprehensive design 
for the audio module with 

specific component choices, 
typical circuits, AI-generated 
code, and testing strategies.

P04/T04/R04

Request a detailed design plan 
for the signal generator module, 
covering hardware composition, 
circuit design, software control, 

and testing optimization.

Discuss the selection of 
ultrasonic transducers, 

driver circuit design, power 
adjustment methods (manual 

or programmable), and testing 
approaches.

Provide a detailed plan for the 
signal generator, including 
an ultrasonic array, driver 
chip, programmable power 

adjustment, code examples, and 
optimization methods.

P05/T05/R05

Request a complete design plan 
for the power supply section, 

covering input protection, 
voltage regulation, filtering, and 

power monitoring.

Analyze power supply 
requirements, plan for USB or 

DC input, ESD and overvoltage 
protection, voltage regulation 
(LDO/DC–DC), filtering, and 

monitoring solutions.

Offer a detailed power supply 
plan, including input protection, 

regulator selection, filtering 
design, monitoring circuitry, 

and testing optimization 
methods.

P06/T06/R06

Request a comprehensive 
software design plan 

(microcontroller program) 
detailing architecture, audio 
detection, signal recognition, 

state control, etc.

Develop the software 
architecture (superloop or 
interrupt-driven), detailing 

algorithms for audio detection 
(thresholding, filtering, and 

debouncing), signal recognition 
(FFT or time-domain features), 

and state machine control.

Provide a complete software 
design with algorithm flows, 

state machine logic, AI-
generated code examples, 

debugging, and tuning 
strategies.
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model to revise and optimize the solution in subsequent answers to ensure that the design met 
theoretical requirements while being practically feasible. Subsequent queries (e.g., P02), 
informed by instructor feedback, asked for detailed annotations of each part of the solution, 
reviewing the design descriptions and their alignment with the requirements while generating 
an outline for the design report to provide structural guidance for writing the full report. 
Gemini in T02 and R02 elaborated on annotating design requirements, resolving conflicts 
between solutions, and integrating illustrations and a report outline.

(4)	�Module Design: The workflow then delved into the specific design of each module. P03 
focused on the audio signal monitoring and recognition module, requiring a detailed process 
for the hardware circuits, including the microphone, preamplifier, filter circuits, and analog-
to-digital converter (ADC), among others. P03 also pays attention to software signal 
processing, including threshold detection, fast Fourier transform (FFT) analysis, feature 
extraction, and classification, as well as parameter testing and optimization. In T03 and R03, 
Gemini provided a detailed design plan, including specific component choices, typical circuit 
design schemes, AI-generated code (pseudocode) examples, and testing strategies, while also 
offering expert suggestions on practical feasibility and debugging difficulty.

(5)	�Component Selection and Detailing: Next, P04 requested a complete design plan for the 
signal generator module, requiring a detailed description of how to achieve the specified 
shielding distance and angle through an ultrasonic transducer array, drive circuits (e.g., using 
dedicated chips or discrete components), and power adjustment methods (manual or 
programmable), along with corresponding code examples and testing optimization plans. 
Gemini expanded on this in T04 and R04, detailing everything from component selection 
and driver circuit construction to programmable adjustment schemes and testing calibration 
methods while incorporating instructor feedback on simplifying hardware and prioritizing 
software solutions. In P05, the student focused further on the power section of the design, 
requiring detailed plans for input protection, voltage regulation, filtering, and power 
monitoring. The LLM (Gemini) in T05 and R05 discussed USB or DC power input options, 
electrostatic discharge (ESD) and overvoltage protection, the choice between low dropout 
regulator (LDO) or DC to DC converters, and how to implement power monitoring using 
voltage dividers and sampling resistors. It also provided an AI-generated code (pseudocode) 
to demonstrate how the microcontroller unit (MCU) could sample and compute these 
parameters. Instructor feedback in this section emphasized considering high current demands 
and heat management in practical applications.

(6)	�Software Design and Testing Strategy: Finally, P06 proposed more comprehensive software 
design plans, requiring the coverage of the microcontroller program architecture, audio 
signal detection, signal type recognition, state machine control logic, LED indication, and 
optional low-power management and debugging communication functions. In T06 and R06, 
the LLMs presented detailed flowcharts, specific algorithm steps (such as sliding-window-
based filtering, threshold detection, simplified FFT analysis, and state machine 
implementation), sample codes, and instructor-guided feedback, illustrating how to build a 
control program that is both efficient and meets competition requirements.

(7)	�Proposal Integration: Overall, the workflow for generating and optimizing this design 
proposal was an iterative process involving student queries, model deep thinking, model 
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responses, and instructor feedback. From the initial concept to the gradual refinement of each 
module and the integration of all parts into a complete report outline, this process fully 
ref lects a design philosophy that emphasizes both theory and practice, as well as 
systematization and operability, providing a detailed reference and direction for the students 
to finalize their solutions.

	 The LLM-generated multi-stage iterative design proposal workflow is presented in Fig. 4.

3.	 Human–AI Collaboration for Designing a Simple Recording Shielding System 

3.1	 Task analysis and design solution optimization

	 In modern engineering design, particularly in competition-based projects, integrating human 
expertise with AI technology has become a crucial factor in enhancing competition-based 
projects, and integrating human knowledge with AI technology has become a crucial factor in 
improving design efficiency and quality. (7) This synergy is exemplified in the design of the 
simple recording shielding system. The core objective, derived from the competition 
requirements, was to create a device capable of jamming nearby microphones using ultrasonic 
signals, a concept explored in various studies on ultrasonic jammer effectiveness and 
evaluation.(12,13) The close collaboration between students, teachers, and AI led to the 
development of a solution that met the competition requirements while being efficient and 
feasible.(7) This solution met the competition requirements and aligned with goals of similar 
implementations, such as the STM32-based system described by Wang and Sa.(14) However, 
while previous works have reported the use of LLMs in course-based design tasks or problem-
solving tutorials,(6,7) our study advances the field by embedding LLMs directly into a real-world, 

Fig. 4.	 (Color online) LLM-generated multi-stage iterative design proposal workflow.
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high-stake competition workflow. Unlike previous models that focus solely on student–AI 
dialogue, our approach introduces a structured triadic interaction among students, AI (LLMs), 
and instructors. This results in a more reliable design cycle that balances model suggestions with 
human feasibility checks. In this section, we reflect on the entire design process, showcasing 
how human–AI collaboration shaped task analysis, solution generation, module design, 
optimization, and decision making, ultimately leading to a rational system design.
	 Figure 5 shows an optimal design solution for the simple recording shielding system. During 
the design, the process began with an in-depth task analysis by the students, who clarified the 
system’s core functions and requirements. AI-generated initial solutions (described in Sect. 2) 
provided a theoretical framework for further discussion. Through continuous dialogue and 
optimization between students and teachers, the AI’s proposed solutions became a key technical 
reference, with adjustments made to ensure the solution’s practicality and cost-efficiency, 
reflecting the iterative nature of engineering design supported by interaction with AI tools.(7)

	 Each design decision, particularly in signal generation, audio monitoring, power control, and 
power management, was iteratively refined with expert advice and AI support, ensuring that the 
final solution not only met the technical requirements of the competition but also had high 
feasibility and cost-effectiveness.
	 Table 2 shows the simple recording shielding system’s task analysis and solution 
determination process, emphasizing the human–AI collaboration perspective among the AI-
generated solution, the teacher’s guidance, and the students’ knowledge construction through 
discussions.

Fig. 5.	 (Color online) AI-enhanced optimal design implementation for a simple recording shielding system.
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3.2	 Task analysis and requirement confirmation

	 In the initial phase, the students analyzed the competition problem and clearly identified the 
design goal: to effectively shield recording devices without interfering with normal audio 
communication (see Ref. 12 for evaluation frameworks of such systems). The system was 
divided into two core modules: the signal generator and the audio monitoring/recognition 
module. This analysis laid the foundation for the subsequent design. On the basis of this analysis, 
the initial AI-generated solutions (Sect. 2) were reviewed.

Table 2
Detailed processes of human–AI collaboration for designing the simple recording shielding system.

Phase Analysis and discussion results AI-generated solutions and 
decision making Final design solution formation

Task 
analysis and 
requirement 
confirmation

The students clarified the 
competition objectives, 

dividing the system into the 
signal generator and audio 
monitoring modules and 
outlining the functional 

requirements.

AI provided an initial design 
proposal, outlining the use 

of ultrasonic transducers and 
the audio monitoring module 

framework.

On the basis of AI’s proposal, the 
teacher–student team adjusted 

the functional requirements and 
feasibility to ensure that the 

solution was simplified and highly 
practical.

Signal 
generation 
module design

The students and teacher 
discussed the signal generator 

design, focusing on power 
control and ultrasonic signal 

generation methods.

AI suggested using the TI 
DRV2667 chip and PWM 

modulation for power 
control, but owing to cost and 
implementation difficulty, this 

solution was not adopted. 

The team decided to use the 
AD9833 DDS chip to generate 

the signal, coupled with a power 
amplifier for power control. The 
solution was simplified and met 
the competition’s requirements.

Audio 
monitoring 
and 
recognition 
module design

The detection method for 
audio signals was discussed, 

and the team initially planned 
to use hardware circuits, 

later deciding on software 
processing.

AI recommended using 
RMS conversion or envelope 
detection circuits to condition 

the signal and use FFT analysis 
for signal type recognition.

The team adopted FFT for 
frequency spectrum analysis to 

identify signal types, simplifying 
hardware and increasing 

recognition accuracy.

Power control 
and system 
integration

The team discussed methods 
for power control and 

ultimately chose the digital 
potentiometer to control 

the power amplifier’s gain, 
simplifying the design.

AI recommended using DACs 
and operational amplifiers for 
precise power control, but the 
team decided that the digital 

potentiometer offered a simpler 
and more feasible solution.

The decision was made to 
use a digital potentiometer to 

adjust power by controlling the 
resistance, simplifying the design 

and ensuring precise power 
control that met the competition’s 

requirements.

Power 
management 
solution

The team discussed battery 
power and DC–DC conversion 
options, ultimately choosing 
the battery power solution to 

ensure system stability.

AI recommended using USB 
Type-C with LDO voltage 
regulation, but considering 

convenience, the team chose 
the battery-powered solution.

The team opted for battery power 
with a DC–DC converter and 
a LDO regulation for voltage 

conversion, ensuring efficiency 
and ease of demonstration.

Final solution 
integration 
and 
optimization

The team integrated all 
modules, optimizing system 
performance and feasibility.

AI provided modular design 
solutions and debugging 
frameworks, optimizing 
technical details for each 

module.

Through teacher–student 
discussions and AI optimizations, 

the final design solution was 
determined, ensuring that it 

was feasible, and cost-effective, 
and met the competition’s 

requirements.
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	 On the basis of the task analysis, Gemini was introduced to generate initial solutions. AI 
proposed a comprehensive design, including the ultrasonic transducer for generating shielding 
signals—a common technique in microphone jamming research(13,15)—and the concept for the 
audio monitoring module. While AI’s solution was technically sound, the students and teachers 
recognized the need for further adjustments in practical feasibility, a crucial step in applying 
theoretical AI suggestions to real-world constraints.(7) Therefore, the team decided to adjust the 
AI-generated solution to ensure feasibility and economic viability.

3.3	 Signal generation module design

	 The design of the signal generation module is one of the core components of the entire 
system, responsible for producing the ultrasonic interference. Research has explored various 
methods for ultrasonic jamming, including those leveraging microphone circuit nonlinearity,(15) 
selective jamming techniques,(16) and even wearable form factors,(17) providing context for the 
design space. An alternative privacy approach involves actively canceling speech signal(18) 
ultrasonic jamming, as specified in the competition guidelines. During this phase, students and 
teachers had in-depth discussions on various design options for the signal generator, including 
PWM signal modulation, the use of DDS chips, and the selection of ultrasonic transducers. The 
discussion focused on achieving the precise generation of ultrasonic signals, the feasibility of 
power control, and the implementation difficulty of the proposed solutions.
	 AI recommended using an ultrasonic driver chip (such as TI DRV2667) combined with a 
DAC chip for power control. Although this solution was technically sound, it was not adopted 
owing to the long procurement cycle and high costs—practical constraints often encountered 
when moving from simulation/proposal to implementation.(14) After careful consideration, the 
student team, guided by the instructor, decided to use the AD9833 DDS chip, which provided a 
cost-effective and reliable solution for generating the necessary ultrasonic shielding signals, 
aligning with the goals described in studies such as those by Gao et al.(18) on speech signal 
cancellation and privacy protection systems, although using a different mechanism (jamming vs 
cancellation). Their findings reinforce the importance of effectively choosing the right 
components for achieving system goals. This choice ensured stable signal generation and better 
adjustability, meeting the power control requirements of the competition while being cost-
effective.

3.4	 Audio monitoring and recognition module design

	 The design of the audio monitoring and recognition module is another key part, enabling the 
system to activate only when needed and potentially distinguish between different sound types 
(although the final implementation focused on presence detection). Students and teachers 
explored how to accurately detect audio signals and distinguish speech from music.(19) Detecting 
the presence of audio [voice activity detection (VAD)], a related task, is often optimized for low 
power.(20) Initially, students planned hardware circuits for audio energy detection. However, 
complexity led them to a simplified digital processing solution.
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	 AI recommended using RMS conversion or envelope detection circuits to convert the audio 
signal into a DC signal for MCU processing. While theoretically reliable, hardware complexity 
and debugging difficulties made it less practical. Instead, the team adopted frequency-domain 
analysis using FFT, which efficiently converts time-domain signals into their spectral 
components. In this context, FFT provides real-time spectral analysis, enabling the system to 
identify dominant frequency bands and determine whether acoustic signals such as speech or 
music are present. The algorithm’s computational efficiency and compatibility with embedded 
systems (such as STM32) make it a widely used tool in digital signal processing applications.(21)

	 Consequently, the teacher–student team decided to handle signal processing entirely through 
software, using FFT analysis for frequency domain processing. For possible future enhancements 
involving signal type classification on the microcontroller, techniques for model compression on 
edge devices would be relevant.(22) This software-centric approach simplified hardware design 
and significantly reduced debugging complexity, focusing efforts on the software implementation 
for the STM32 platform.(14)

3.5	 Power control and system integration

	 In the power control design phase, students and teachers discussed adjusting the power 
within the range of 1 to 4 W. AI proposed a solution using a DAC and operational amplifier for 
power adjustment. While this would ensure high-precision power control and a relatively simple 
circuit design, the teacher–student team decided, after thorough consideration, to use a digital 
potentiometer to control the gain of the power amplifier. This solution allows for precise power 
adjustment, reduces costs, and simplifies implementation.
	 During the system integration phase, students and teachers made final optimization decisions 
on the basis of each module’s complexity, cost, and feasibility. All modules were integrated, 
followed by system testing and debugging to ensure stability and reliability, culminating in a 
functional prototype.(14) The collaborative process was central, guided by both AI suggestions 
and practical experience.(7)

3.6	 Power management solution

	 Power management is an essential component for system design. During discussions, AI 
recommended USB Type C and DC power inputs. However, for convenience during on-site 
demonstrations and stable operation, the team ultimately chose battery power with a DC–DC 
converter for voltage regulation. This practical decision prioritized ease of use and demonstration 
reliability within the context of competition over the potentially more flexible AI-suggested 
options.

3.7	 Final solution integration and optimization

	 Through multiple iterations involving AI feedback,(7) expert (teacher) guidance, and practical 
testing, the final design implementation for the simple recording shielding system(14) was 
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optimized across signal generation,(15) audio monitoring,(20) power control, logic, and power 
management. The team leveraged the AI’s professional recommendations, adjusting based on 
actual requirements, resource constraints, and the known effectiveness and limitations of 
ultrasonic jamming techniques.(13,17) The resulting design met competition requirements and 
demonstrated high feasibility for implementation.

4.	 Discussion

	 In this study, we presented an innovative approach to the integration of LLMs in the context 
of undergraduate electronics design competitions(1) with a specific focus on the NUEDC in 
China.(1–3) We explored the dynamic interaction between students, instructors, and AI,(4,7,9) 
emphasizing how this collaboration enhances design efficiency, problem-solving ability, and 
technical learning outcomes.(5,6) By investigating the iterative design process of the simple 
recording shielding system,(11) we demonstrated the critical role of LLMs in supporting students 
through complex engineering challenges,(9,10) providing expert-level feedback,(6,7) and 
facilitating optimized solutions in real time.(8)

4.1	 Summary of findings

	 The study’s core findings center on implementing LLM-driven tools in an educational 
setting,(7) specifically for designing systems that involve sensing and signal analysis. The 
recording shielding system designed in this study exemplifies a sensor-based application, 
utilizing microphone input for sound detection, ADCs for data acquisition, and FFT for audio 
classification. LLMs, as a subset of AI tools, acting as interactive AI collaborators,(7,9) provide 
invaluable support in generating initial design proposals, refining sensor system architectures, 
and optimizing implementation strategies.(6) 
	 Unlike previous implementations in theoretical or course-based settings,(6,7) LLMs in this 
study acted as real-time design partners, assisting in system conceptualization, module 
implementation, and error analysis. This human–AI collaborative model resulted in measurable 
improvements in creativity, system completeness, and troubleshooting efficiency. The iterative 
nature of the collaboration, with students posing questions, AI models analyzing responses, and 
experts offering guidance, mirrors the iterative engineering design process seen in professional 
environments.(9) This workflow allows students to engage with AI in a way that promotes self-
directed learning while benefiting from human expertise.(5,7)

	 Throughout the design of the simple recording shielding system,(11) AI played a pivotal role in 
problem exploration and solution optimization.(6,8) The AI-generated proposals provided a solid 
theoretical foundation for the students’ designs, addressing challenges inherent in ultrasonic 
jamming,(12,13,15) while expert feedback ensured practical feasibility and cost-effectiveness.(10) 
Key design decisions such as signal generation,(15) audio monitoring,(20) power control, and 
power management were refined through this collaborative process, resulting in a final solution 
that met competition requirements(1,11) while being both technically and economically viable,(14) 
considering the known complexities of selective or adaptive jamming techniques(16,17) and 
alternative approaches such as signal cancellation.(18)
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4.2	 Comparison with related work and human–AI collaboration model

	 Integrating expert feedback into the iterative process is one of the major strengths of the 
human–AI collaborative approach.(7,9) Compared with previous studies, which either explore 
LLMs in isolated question-answering contexts or simulate design thinking processes through 
AI-driven prompts,(6,7,9) our work is distinct in its full integration of AI into hands-on hardware–
software co-design under timed competition constraints. The innovation lies in embedding AI 
not just as a static tool, but as a dynamic team member, where its outputs are critiqued, modified, 
and integrated into a real circuit system in collaboration with human experts. This hybrid 
design-review cycle has not been explicitly demonstrated in previous studies.
	 In traditional education models, students often rely solely on instructors for guidance and 
feedback.(5) However, the collaboration with AI adds a layer of real-time responsiveness and 
flexibility,(6,9) allowing for continuous refinements based on both AI’s suggestions (which may 
have limitations(10)) and expert insights. This dual feedback loop—where AI offers theoretical 
analysis(7) and experts guide practical application—creates an enriched learning environment 
that significantly boosts students’ confidence and problem-solving ability.(4,6) Additionally, the 
combination of AI and expert input enhances the overall learning experience by addressing the 
complexities of real-world engineering problems,(9,10) which often require interdisciplinary 
knowledge and the balancing of theoretical knowledge with practical constraints, such as how 
measurement specifics can affect outcomes.(21)

	 The iterative nature of this process ensures that solutions evolve progressively, reflecting the 
realities of engineering design.(9) Each phase of the design, from initial inquiries to module 
design and final system integration,(14) involved multiple rounds of feedback, ensuring that the 
solutions developed were not only theoretically sound(6) but also feasible for real-world 
application.(10) This iterative model mirrors professional engineering practices, making learning 
more relevant and applicable to students’ future careers.(5,7)

4.3	 Implications and limitations

	 This study also highlights several opportunities for future research, particularly in refining 
the integration of AI into engineering education.(5,7) The findings suggest that LLMs can be 
further developed to create more comprehensive problem-solving agents(6,9,10) that can handle 
increasingly specialized and advanced engineering tasks, potentially addressing more profound 
technical challenges in areas such as advanced ultrasonic jamming(12,13,15–18) and sophisticated 
audio analysis.(19,20,22) LLMs, such as ChatGPT and Gemini, offer substantial support; however, 
their performance in highly specialized domains still requires close supervision and correction 
from human experts.(10) Future research can focus on improving AI’s reasoning capabilities and 
reducing its limitations,(10) such as handling nuanced or specialized engineering queries with 
greater accuracy and less reliance on human oversight.
	 One promising direction involves developing AI agents capable of autonomously assisting 
throughout the engineering design process.(7,9) As AI evolves, these agents can shift from tools 
to indispensable collaborators.(4) Such agents might not only provide proposals and optimize 
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solutions but also perform deep analysis, predict system failures addressing robustness concerns 
related to those highlighted in jamming research,(12,13) suggest alternative approaches (such as 
different jamming waveforms(15) or signal cancellation(18)), or even optimize algorithms for 
resource-constrained environments.(22) This level of collaboration can revolutionize engineering 
education(5,7) by offering students seamless, integrated engagement with AI.(9)

5.	 Conclusion

	 We demonstrated the transformative potential of LLMs in enhancing human–AI collaboration 
within undergraduate electronics design competitions. The iterative, feedback-driven approach, 
exemplified by the simple recording shielding system project, shows that LLMs are not merely 
passive tools but active participants in the learning process. By continuously interacting with AI, 
students can refine their ideas, optimize designs, and address specific technical goals, such as 
microphone jamming, by employing selective methods or understanding alternatives such as 
cancellation, and solve problems in novel ways. This collaboration fosters an environment that 
encourages creative problem solving and critical thinking, both of which are crucial for modern 
engineering.
	 We introduced a novel triadic interaction model that involves LLMs, students, and expert 
mentors in a live electronics design challenge. Unlike previous studies that demonstrate AI 
applications in simulated academic exercises or controlled environments, in our study, we 
documented how iterative feedback from both AI and instructors is operationalized into real-
time hardware development. This not only strengthens the credibility of AI-generated proposals 
but also offers a new pedagogical model for competitive engineering education.
	 The results suggest that the synergy between human expertise and AI-driven tools is likely to 
increasingly shape the future of engineering education and design. As AI technology evolves, 
the potential to create more robust, automated, and intuitive design methodologies (addressing 
challenges such as audio detection and component selection, and their effects) becomes ever 
more achievable. Future research should focus on enhancing AI autonomy, expanding its 
application to specialized domains, and exploring its potential to revolutionize educational 
practices and real-world engineering design solutions. The ongoing development of AI tools 
holds the promise of transforming not only how students learn but also how engineers innovate, 
solve problems, and create the technologies of tomorrow. 
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